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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Multipliers on complex Banach spaces 

Ehrhard Behrends 

Let X be a complex Banach space. By E
x
 we denote the 

set of extreme functionals on X , i.e. the extreme points 

of the unit ball of X' . 

Definition: An operator T : X — > X is called a multiplier, 

if every p € E x is an eigenvector for T' , i.e. if there 

is a function a : E^ — > <E such that p o T = a (p)p 

for p € EL. . Mult(X) means the collection of all multi

pliers on X . For T,S € Mult(X) we say that S is an 

adjoint for T (and we write S = T* in this case) if 

a g = a~" (complex conjugate). 

In our talk we discuss conditions on T and/or X 

such that T* exists (in general, T will not have an 

adjoint; consider for example X := the disk algebra 

and T : f N gf with nonconstant g ) . Among other facts 

we show that T € Mult(X) has an adjoint T* if any one 

of the following conditions is satisfied: 

(1) X is finite-dimensional 

(2) X is smooth 

(3) X can be embedded as a self - adjoint subspace of 

a CK-space 

(4) a (T) is contained in the closure of the unbounded 

component of (E N. O (T) 

(5) X is an L -predual space, and E^ (weak*-closure) 

is contained in the convex hull of E x ; this is 

satisfied, for example, if X is an abstract 

G-space 



Ą(, 

(6) X is an L -predual space, and the unit ball of X 

has an extreme point 

(7) X can be represented as a space 

X = {flf € CK , f(k±) = / f± du± for i=1,...,n} , 

where K is a compact Hausdorff space, k . . , . . . , k 

are distinct elements of K , u . . , . . . , u are (signec 

measures on K such that II p. II < 1 , 

ly.l ({k1,...,kn)) = o for i=1,...,n . 

Problems; 

1. Is it true that T exists whenever X is reflexive 

(or strictly convex) and T £ Mult(X) ? 

Has every T € N 

predual space ? 

2. Has every T € Mult(X) an adjoint if X is an L1-

Basic facts concerning multipliers as well as a development 

of the theory of M-structure where multipliers and their 

adjoints are of interest can be found in the Lecture Notes 

volume of the author ("M-Structure and the Banach-Stone 

theorem"; Lecture Notes in Mathematics 736, Springer-Ver-

lag 1979) 
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