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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

On decompositions of spaces on nearer sets 

ityszard yrankiewicz and Andrzej Gutek 

Definition. A Hausdorff space X is said to be pseudobasically 

compact iff there exists a pseudobase ^C of X and a relation < 

defined on *€* such that 

(a*) if U,V6<£ and U< V , then UtV and U/V, 

(b} if (Si^.1^. and (& is e chain with respect to <., then 

n<&/ 0, 
(O *or each open set 7/CX and V€*£ if W n V / 0 then there 

exists u e £ such that U£W and U<V. 

The following tv/o lemmas are just simple observations: 

Lemma 1. An open subset of a pseudobasically compact space 

is pseudobasically compact.— 

Lemma 2_. The closure of an open subset of a pseudobcsically 

compact space is pseudcbasically compact.n 

The following is not so trivial: 

Lemma 3- A cense G$ set of a pseucobasic&ll^ compact space 

is pseudobrcicell^ compact. 

Frocf. Let X be a pseudobasically compact space end let 

JUn: n=l,2,...^ be L decreasing sequence of open set3 of X 

C...C. that G= O^Ur : r.=lf ?,...} is cense. Let € be & -&euco-

basf cf X ar_c let (a)-(c) hclc for £ . Ccr.cioer families 

£ c = ̂ Ufc^ : UdlntG^ tnt £ n - { u n G : U€<£ fend Ut U n\ cllntu"! 
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for n-1.2 Tut ez= KJ{*e,y/- k = M , . . . } -.,e -o r V , 7 € £ a 

'•-- '*<-V i f f U . V € ^ 0 i,r.L V<V or i lT 'J, V fe ( < e a \ «eo") 

tr.c ' . •<; «,.'.. i f Vt£,r_ ;..»:. Vfc-C^.,. «.::;. ir.t (7 N L'V F . 

T::e fLL.il;.. i g Q i s s pseucott.se of G end l e V ( c ) hold for £ . 

fcni < i • 0 

Le£:._a 4. Let X be a p s e u d o b a s i c a l l y compact space and let 

^ te t pseudobase of X fcr which (eVCc) hold. Then there 

fxists a pseudobase (?£.<£. such that ICP^'J^X') and such 

tr.at (a)-(O noli, for (?. 

Prcof. Observe first, that TTw(x)>co . Cuppose that K.l>lTw(x) 

unz let C& be such a pseudobase of X that |5̂ >j =T7w(x'). For 

etch IfcSb choose, whenever it is possible, Un,Vn£t£ such 

thLt --<VB ar.d l'EtECVs. The family 

(PJ = {i:e*£ : for so-e UtQ> we have V= 'JB or *J = 7fi^ 

is a rreucobase of X and |(Ŝ  | =cITw(x). 

Curpcce that we have constructed (?• for k<n. For eacn 

?eUi.<?k: k=",...,n\ and EtfSb c:;oose U p B € € such that 

"-., r < ? and Ur - 5.B whenever ?A\I:J- 0. Tut 

( 5 ^ = \ue£ : there exist .TfcU^?k : k=lf ...fnJ end Bfr<2> such 

that V= U-. -. 1 . 

:.;€ fa~il;, Q = UlC? n: n=l,2f...} is a pseucobase we re-

cuire. 

The following is proved in [1) . 

!<-•—fc ̂ . Let ;. be a pse-ccbasicall;. co-pact space and let 

5 T A U ) -- -:-----̂ " *-:.-:. the first .j:^.'.3-:^:lr cf.r-intl. Let ^ 

Ic t. pcir.t fir.iic cover o*" X consisting of aca^er sets. If 

fcr e*-cr. A^ir the union Uc/t has t:.e 3«i.ire property- then 

*c 'cr.-̂ f-arer 3r set ctr. be covered b; l*rs thai. 2 el clients 
cf T. 

a 
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Tr.ecrer, 1. let X Le a pseudobaricall^ compact space and let 

^v;(X)< Z^ . If ^ ic e pcint finite far.ilj of meager sets co

vering X, then there exists Ji^% SUCH that \J<A has not the 

Baire property.-

The theorem of [*J j can be reformulated as-follows: 

Theorem 2. If X.is a pseudobasically compact space and 

«flV.(X)̂  2^°, then for each map f : X—*Y having the Eaire pro

perty , where Y is a space with cj-disjoint base, tr.ere exists 

a meager set F£X sue;; that f|X\F is ccntir.jcus. 

Using theorems above one can prove easily the following: 

Theorem 3 (A. Loveau and 3.0. Simpson \*f\). Let X be c met

ric space and f: [o)l — * X be such a mapping tr.at the counter-

image of an;* open set is completely Ramsey. Then there exists 

en infir.ite subset T of u) such that f ([T] ) is separable.-. 

Theorem 4 (?rikr^ and Colovay [5*3)* I* X is a metric space 

end f: {0,1}—*x *s 8 measurable function, then there exists 

a subset A of [0,l"J sue;* that f (A) is separable and the Le-

tesgue measure of A is equal to 1.-

For details we refer our paper [i"^ • 

Let K+(X) denotes the family of all non-void and compact 

subsets of X. Let (2>(x) denotes the family of ail s^Lsets of 

X having the baire property. A mapping F:X —*• K*'v¥) is louver 

<5Mx)-aeasurfable iff JxtX : P(x)^T,7 ? \ t ^(x") for each 
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T:.eore.i £. Let X be a pseucicb*; sic ally compact spece, let 

-fiwU)^*1** fcnc let Y be e metric space. Let ?: X—>K*(Y) 

Le lcv;er (J^(x)-iaeasur6ble. Then there exists a GSlxj-measu-

rcble function f : X—*Y such that fCx^Ftx} . 

The theorem above is proved in £33- T"e refer to this pa

per for e detailed ciscussion of selectors theorems. 
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