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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Isometric theory of duality in Banach epacee 

Glllee Godefroy 

I) Probleae in isometric duality theory 

Let X, Y be Banach epacee. Let ue eay that Y ie a 
dual epace if there exiete a apace Z euch that Z' ie iso­
metric to Y . Let ue eay that X ie unique predual of X' 
if eny Banach epace Z euch that Z* ie ieometric to X* , 
le ieometric to X . The probleae in ieometric theory of dua­
lity are mainly the following onee: 

1) Find conditions on X which ensure that X ie a dual 
epace. 

2) Find conditione on X which ensure that X le unique 
predual of X' . 

3) Study the propertiee of the norne on X', X " ,... . 
4) Inveree the ( )• functor • let if : X'—»X' an 

leometry. Doee there exiet tf Q i X —»X euch that 

W e ehell answer theee probleae for some special claeeee 
of Banach epacee. 

II) Exietence of preduale 

Thie lemma ie an application of Hahn-Banach theorem. 
Lemme 1. Let E be a Banach epace, and f £ E " . The follow- . 
ing assertions are equivalent: 

1) VuGE . || f*u || fc|| u || . 
2) Ker fOE* i S */-denee in E£ 9 

(where E* ie the unit ball of E' ). 

From thie lemma we can deduce. 
Theorem 2. If the norm of E ie Frechet-differentiable on a 
denee eubeet of E 9 or if E le separable and does not con­
tain 1 ( IN) , then the following aeeertlone are equivalent: 
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1) E is isometric to a dual apace, 

2) There la a contractive projection froa E" onto E , 

If 1) - 2) are eatiefied , then there la only one contractive 
projection froa E" onto E , and the predual of E Is uni­

que. 

Example, E an Aeplund apace, for any equivalent nora, 

III) Unicity of preduala 

Definition 3. Let E be a Banach apace, and { x j
n
r ^ be 

a eequence In E • The sequence \*nJ i» eald to be weakly 

unconditionally convergent (w,u,c) If we have 

•oo
 r 

Cltt^n-llH**
 VtG

*' • 
n-1 

Thia lemma haa been obtained by M. Talegrand and myself 

Lemma 4. Let E be a Banach space. Let { x j be a sequence 
• . . ^ $ * . , 

in E' which tende to 0 in (EVo"(E',E)) . If the eequen­
ce (x } ie w,u,c, then one haa lis x • 0 in 

^
 nj
 n-*+co 

(E',<T(E'.G)) for any predual"* G of
1
 E'\ 

Froa lemaas 1 and 4 we can deduce the following theorem, 

which asserte that numerous propertiee are sufficientsto ensu­

re that a Banach epace ie unique predual 

Theorem 5, The Banach spaces E belonging to one of the .fol­

lowing classes, and their eubspaces, are unique predual of 

their dual for every equivalent nora. Moreover, every bijectl-

ve Isometry of E' Is the adjoint of en Geometry of E • 

a) spaces with Radon-Nikodym property. 

b) spacee whoee dual does not contain 1 ( IN), 

c) B-convex spaces, 

d) weakly K-analytic spaces such that c
Q
( IN) is not 

a quotient space of E , 

e) weakly sequentially coraplet Banach spaces, complemen­

ted in a Banach lattice, 

f) & -spaces, 

g) preduala of von Neumann-elgebree, 

h) spaces with local unconditional structure which does 



36 

not contain ljj° uniformly. 

IV) Properties of norms on dual spaces 

This theorem extends an old result of Dixmier 

Theorem 6. Let E be a non-reflexive Banach space, 1-comple-

mented in E" # Then the unit sphere of E* n* ' contains a 

simplex of dimension n • 

Corollary 7. Let E be a non-reflexive Banach space. Then the 

unit sphere of E* n* ' contains a simplex of dimension n • 

For example, the unit sphere of E* ' contains a tetra­

hedron. Note that if E is a non-reflexive Banach space which 

is isometric to one of hie duals, then corollary 7 proves that 

the unit sphere of E contains simplex of any dimension. 

Let E be an Asplund space, and N an equivalent norm 

on E . Let us call !T{H) the "tangent space of N ", that 

is the norm-closed linear subspace of E' generated by the 

differentials at the points of Frechet-differentiability of 

N . Let us say that N j / v ^ if 5"(N1) • TX^Z) , and let 
Jf be the set of equivalence classes of norms on E for the 

relation /v • The set Jf is ordered by 

Nl > N2 *"•* r<Nl> 2 r<N2> • 

We have now 

Theorem 8. Let E be an Asplund space, and N an equivalent 

norm on E . The following assertions are equivalent: 

1) (E, N) is a dual space. 

2) N is minimal in the ordered set (X, >) • 

In other words, it is necessary and sufficient, for N to 

be a dual norm, that N be "as less differentiable as possi­

ble" between the equivalent norms on E . 


