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NINTH WINTER SCHOOL ON ABSTBACT ANALYSIS (1981) 

THE CAUCHY-RIEHANN EQUATIONS IN ANTICOMMUTING VARIABLES 

J. Hruby 

Starting from the deep relation between the system 

of numbers / complex,quaternions,octonions / and exten­

ded supersymmetries N -= 2,4,8 we obtain the constraints 

for superfields.The supersymmetrie complex and quaterm-

onic Cauchy-Riemann equations are explicitly given. 
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I. Introduction 

It is well known that for the ordinary confuting numbers 

the extension of the real number is the complex number,the ex­

tension of the complex number is the quaternion and the last 

extension gives the octonion, because the Hurwitz theorem is 

valid [lj. 

We can use such extension on the anticommuting numbers to 

study the connection between this system of anticommuting num­

bers and extended SUSY . 

Recently geometric E?(n) models become more popular among 

physicist and play crucial role in gauge theories [2J.These mo­

dels are known G* models,concretely the CP(n) model and HP(n) 

model.The CP(n) model is connected with complex fields,which 

are elements of the coset space SU(to-+i)/SUfa)*U(4)%and. the H?(n) 

model is connected with quaternionic fields,which are elements 

of the coset space Sp(*-+*)/Sp{/n)x SJD(A), 

It is well known that super symmetric extension of the C?(nj 

model is connected with the complex SUSY f 3] .Also super symmetric 

extension of the quaternionic models was assumed via supercoset 

approach [AJ. 

Here we shal show the connection between super HP(n) model 

and quaternionic SUSY or the extended SUSY N = 4.The complex and 

quaternionic superanalycity will play the role of constraints. 

The last step which is not full clear yet is the connection 

between octonionic super Ca?(2) model and K = 8 extended SUSY. 

This case is of course most interesting because in the N = 8 ex­

tended supergravity models one has unified theories of fields 

incorporating all spins.So as in the extension of numbers also 

in the K = 8 extended supergravity models it is the last step of 

the extension,if we want to have spin ? for rraviton f 4 J. 

+) 3U3Y = supsrsymmetry 
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2. The complex supersymmetric Cauchy-Riemann equations. 

We shall start with the relation between N = 2 extended SUSY 

and complex anticommuting numbers.We repeat that on the Bose le­

vel the coset space S\)(*>+*> /S\)l*) * V^) for the CP(n) model can 

be identified with the complex projective space involves n com­

plex fields (fitx)£ M ^ / S V M , ! = 1.2,....n. ' 

The fields (ft -*V are satisfying a constraintv 

and two fields related by the U(l) gauge transformation 

i A AM 
Lfilx) - A (fit*). (2.2) 

It can be also interpreted so that the automorphism group 

U(l) which preserves the norm of complex numbers is the gauge 

group. 

The U(l) local gauge invariant action of the CP(n) model has 

tte formi s • i !<-* %)( ' ir^, <M, 
where LI = Q + A n- and the Abelian gauge field *V has the form 

•V* ifXf' c*.») 
and transforms under (2.2) like f\ - /\. " Q. A * 

The super CP(n)model can be obtained via direct supersymmetri-

zation (f.U) -* p*fi) . K~+ \ -- Qc - A.. 

in the action (2.3) and constraint (2.2) „where 

§• (x(0) - <p<) * (fy(<) • fG%f(*) t 

i'h>-k,l-i*r, 
are the scalar superfield,supercovarint derivative and spinor 

gau^e superfield respectively. 

We shall construct the super C?(n) model directly in U(l)- ga 
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uge invariant way using the connection with complex numbers and 

functions.The gauge group U(l),which preserves the norm of comp­

lex numbers,will give the complex 3U3Y that is equivalent to 0(2) 

real extended 3USY. 

We shall combine two real anticommuting variables 

in the complex one: ^ 

i * M , ft'tf'-fc1 (2.,) 
in the full analogy between real and complex numbers. 

By analogy with the complex function we shall write a complex 

superfield C(^B,B) 5 C ( xd^CO) Qf-iO1) . 

The SUSY transformation on the complex superspace lx§&t&) 

was first defined in two dimensions by I^.Ademollo et al.[6J 

SX^^-H^4 ^ ^SQ't^-Z (2.6) 
and on the superfields L(xOf6) acts as follows 

SC -Itti'gQlC, 
where Q « | - $ » , <? ' j H P • 

2iese supercharges anticommute with the covariant derivatives* 

^i^'-W-m , H*ite'i(0\+Dl). 
Ve decompose the complex superfield into the real and imagina* 

ry part C (*. 0,0) * A (*, OW) t / $ U, 6*6*) . 
By analogy with complex functions supersymmetric complex 

Cauchy-Riemann equations are 

O'A " D'B (2.7a) 
D'B *-D2A (2.7b) 

It means the complex superfieid will be an analytic superfield 

£"7Jfvhen (2.7a„b) are valid.But it means that the chirality con­

dition [ 6 J — 

DC - 0 {..e) 
i s the analyt ic i ty condition.There th i s re s t r i c t ion was obtained 

using the new shifted variable A" - K ~ £ 0 0 ( a complex Bo-

se variable ) • 
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The superanalyticity condition actually plays a role of the 

invariant constraint: Cixfifi) * C(X- \0fQ Q) ; 

what means that the graded Lie algebra in complex 3U3I can be rea­

lized in a smaller parametric superspace with the complex Bose 

variable,but independent of the spinor f , 

By the same way we can obtain the complex superantianalyticity 

D f - 0 . 
In analogy with the Laplace equation for real and imaginary 

part of the complex function the superfield equations of motion 

follows 

DDC*0 . (2.9) 
The corresponding action has the form 

S - il&dvjtiicc . (2.10) 
If we want to have this action also local U(l)-gauge-invariant 

we have to use the receipt given in [8J.We have to introduce the 

vector superfield V(x U.u) ,which transforms as 

V -* V * *(A-A) . (2.11) 
under the local U(l)gauge transformation: 

C-> ^hC . c -»iriKc , _ (2-12) 
where A is also an analytical superfield ( U A s V) . 

It can be shown after [3J that the action 

S * d J ^ dWfl V-CCiv] (2.13) 
is supersymmetrictU(l) -cauge-invariant and equivalent the super 

CP(n) action and super constraint,which is obtained via direct 

supersymmetrization. 

The constraints for ordinary fields in superfield expansion 

will result from the equation of motion for the vector superfield. 

CC=JL'V. (2.14) 

In this way we have connected all components in rir;ht and left 

hand side of eq.(?-14) and so vector superfield y acts as a con­

fining force between the scalar superfields. 
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Complex supersymzietric Cauchy-^iemann equations plays also the tJt 

of constraints.Actually for the supersymsetric constraint from [9J 

which there are assumed "ad boc"-follows from (2.?a,b) and from 

the anticonmutativity of the supercovariant derivatives 

3. The quaternionic super symmetric Cauchy-Riemann equations 

Ve shall start with the relation between K = -l- extended SUSY 

in eight dimensional superspace and quaternionic anticommuting 

numbers.At first we repeat that on the Bose level the space HP(n) 

can be viewed as the symmetric coset space Opl*+4) /$])(*.) x 5j*(l) 

-he Sp(l)-local-gauge-invariant action of the HP(n) model 

has the form 

—. ,..,,.,.-v.\ & • £• £°jU(l^)*- (1;) 
and kkr ... &></*> are quaternionic coordinates. 

The super HP(n) action,which is obtained from (3«l) via di­

rect supersymmetrization X^ (*, Q ) f U^ —> \)^ 

had to be eouivalent to the following SU(2) gauge invariant 

superaction: ^ A (,s ,-tf.tf/,/ **. ±,_tf:f,j?. S&* ^ ^ \ 

/y 
where 

&'W*htf, < 5 - 5 ) 
V is here the 30(2) gauge vector superfield and for quaterni­

onic units /fl follows: 

As in the complex case here can be shown the connection bet­

ween components fields in the expansion of the quaternionic su­

perfield.For the supercovariant derivatives and supercharges in 

the quaternionic case is valid: 
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-\ , * t5-^ 

The supersymmetric quaternionic Cauchy-Riemann equations are 

given by a concept of Fueter holomorphy in anticommuting variab­

les: *$ A n 

DfO, (,.s) 
«n.tis D.fy-> Dktyi°v , 

0.^-0^-^0^=0. 
The condition (3«>5),what is the Fueter grassmanian analyticity, 

which plays a role of constraint: 

It means that quaternionic SUSY can be realized in a smaller^ 

superspace,with hypercomplex Bose variable,but independent on U , 

Similarly we get the Fueter grassmanian antianalyticity con­

dition: . A 

fJ?-0. M 
We remark that also ordinary fields have quaternionic struc­

ture. As instructive example is the case when the quaternion is 

composed from the two complex numbers CA C : <V c C4 t £*C9 . 

This case corresponds the physical example of the SUSY dual SU(2) 

string model [lOJ• 

So as in the complex case in [6J the superanalyticity condi­

tion gives . 

Vh - DC f„ DC - 0, (5.8) 
what is equivalent to the vanishing of the energy-momentum ten­

sor. For the SU(2) strinr the sup3rcurrent is a vector isotriplet 
\ 

(real) superfield given by 

so that the supersymmetric SU (2) invariant Cauchy-Riemann equa­

tions £ive at the classical level V^ (x \jj 0 ) ~ U • 

In such a way quaternionic supersymmetric Cauchy-Riemann equa-
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tions a^ain play a role of the non-linear constraint which i s 

assumed in ref.[lOJ "ad hoc". 

4. Comments 

The open problem in this program of the connection between 

super sigma models and extended super symmetries is the possibi­

lity of the super CaP(2) model and the connection with N = 8 ex­

tended SUSY. 

We hope that a SUSY analytical constraints give all constraints 

in N = 8 supergravity models on 2r ordinary fields. 

The autor is indected to Dr.J.Soucek for useful discussion. 
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