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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)
Ideals in algebras of mmbounded operators
H. Junek

Algebras of unbounded operators appear as models in the quantum
field mechanics., One of the questions of this theory is the
description of the normal states (positive linear fumctionals)
of these algebras. To answer this problem W. TIMKERMANE /5/ has
introduced a class of interesting ideals. The operators of these
ideals are needed to represent the normal states as trace
functionals,

Using some latest results of the theory of locally convex spaces
and operator ideals in the main part this lecture we will give

a complete description of the geometrical properties of these
ideals. 1In our final remarks we will return to the problem of the
representation of linear functionals by the trace. Let us start
with some basic notations.

1. The maximal Op‘ - _algebra I."'{Dz

To exclude the very pathological cases of operator algebras the
congidered .operators should not be to much unbounded. In /3/
LASSNER has introduced the notion of the maximal Op*-algebra on

a given domain D, which is very convinient from several reasons
and which is a straight-forward generalization of the C(™~algebra
L(H) of the bounded operators on a Hilbert space H. Let us recall
this definition. Let D be a linear dense submanifold in a Hilbert
space H. The maximal op*-alpebra L¥(D) on the domain D is the set
of all linear operators X (bounded or not) acting in H and having
en adjoint X* such that X(D) € D and X*(D) £ D. Of course, L*(D)
is a » - algebra and all operators X L*(D) are closable and w-
continuous in H. Important examples of domains are obtained in the
following way. Let X be a positive operator defined in H., Then

the set

(e -]
D= () D(XP)
n=0

is the natural domain of the algebra generated by X. The most 2
famous example of this type is given by the operator X = x2 - Q__z.
dx



which is generated by the position and the momentun operators. 1t
is well known and easy to see, that in this case the domain D
coincide with the nuclear space ¥(R) of the strongly decreasing
functions on the real line. Let us return to the general case. The
algebra LY(D) defines in a natural way a topology t on D. which
is given Ly the set of all seminorms

pg(d) :=lxd] , deDd, XeL'(D).
The domain D is called selfadjoint, if

p = N{D(x™ s xe* (D} .
Under this assumption (D,%t) is a complete semireflexive space amnd
its projective spectruz can de identified with the energetic
spaces Hy of the X 1*(p), where the norm in Hy is given by

lal2 = 1a(2 ¢ |xaj2. The imbedding D —> H is continuous. There-
fore, we have a rigged Hilbert space
D —p H —>D1') .

1f (D,t) is metrizable then it is a reflexive (F)-space. This is
the case in the mentioned above examples. A countable system of
gseminorms generating the topology t on D is given in this case
by p,(d) =]x?a[ for all ne.

2. The ideals SX

We assume in all the following, that D is selfadjoint and metri-
zeble. '

A question of some importance in the theory of quantum field
gtatistics is the representation of states by the trace. To solve
this problem, TIML®RMANN /5/ has introduced the following ideal
in 17 (D)s

X% ={1er*(D) s TTY is nuclear on H for all X,Ye L*(D)}.

For each T e.)(z the following definition makes senses

w(X) = trace XT = trace TXx , X€1%(D) .
The linear functional w is called a trace functional, It arises
the question, what functionals on 1*(D) have such a trace repre-
sentation, Before discussing this question in our final remarks,
in the main part of this section we will investigate the struc-
ture of ¥% or, more generally, of the following ideals:

Definition. Let L be an operator ideal in L(H). Then
A% 5= {T€L*(D) s TTY e for all X,yel*(D)} .
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Proposition 1. .Axis en % - ideal in 1LY(D).

It is easy to see, that the operators re\Ax are bownded in fact,
Moreover, We have the following characterization,

Theorem 1. An operator Te L*(D) belongs to .Az if and only if T
is the restriction of a continwus (antilinear) operator
T,¢ D' —> D such that all products

®
g -B>p —%p S.\

belong to & for 8ll continuous linear operators Ry, 8 «

Proof. We restrict us to show, how to extend the operator T. For
heH, deD and xeL*(D) it holds [(xa,Th)| = |(T™xd,h)| <
SlUo®x\llatin] . This shows TheD(X®). Because D is assumed to be
selfadjoint, it follows T(E) < D. Moreover, T is continuous

as a mapping from H in to D. This follows from px(i‘h) =

=LYl € [yrilh] for all Y €L*(D) and all heH. The same

is true for T™s H —> D. The dual operator T maps D}, into

H' % H. We show T® (D') S D. Let deD, d'c D' and Xe L*(D). It
follows [(xd,7%'a')| = [<T%Xd,a>|$ copy(T¥X8) = ¢ YT*Xd & elyrxilc
for some Ye L*(D). This shows T™ d'e D(X™"). But D is selfadjoint.
Therefore, we have T"(D') S D. The operator T, = %' 4o the
wanted extension of T because its restriction to D is T.

This theorem shows, that the operétors Teﬁz are bounded in a very
ntrong sense, especially, they press H into D. It seems to be very
difficult to answer the question, wether there are nontrivial

(= non finite dimensional) operators in le and what is the struc-
ture of the operators TcJd . To mnswer this question let us start
with =n example of such an operator. Let

B, = fA€L(m) ¢ AM) € D}, By = {45 aeB,} .

ir Ae'Bl end Xe1¥(D), then the product XA is closed and defined
on H, by the closed graph theorem it must be bounded. Now let
T16.A(H). ABED,. Then the product T = AT1B" belongs to A%
because of YTX = YAT,+(X"B)*cA(H) for &1l X,YeL*(D). 1t 1s very
surprising that thig example covers the general case;
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Theorem 2. If (A,) is a normed, complete ideal in L(H), then
* [ ) !
K= By oA BE.

the proof of this theorem is based on a deep result of the theory
of locally convex spaces. rtirst of all we need the following

proposition,

Propogsition 2. Let F-be a metrizsble locally convex space having
a neighbourhood base {T } such that all spaces Pun are Hilbert

spaces of dimension €94 . Then there is a fundamental system of

absolutely convex bounded subsets {M,] such that the spaces PH
are Hilbert spaces of dimension S .

Proof. Let K be any bounded subset of P. Let pun be the gauge
functional of T . ¥e put c = supipun(x)s x €K} and define

[od
. 2 -n,~1 2 <
= P = = .
K =§{xePs py(x) nZ“_1 27 'py (2) 1}

This set is bounded and containg K. But Py satisfies the paralle-
logramm equation, therefore, FM must be a Hilbert space of
dimension € o o o=,

Concerning some notions in the folloiving deep theorem we refer
to /4/. In our spplication to Hilbert spaces the assumed injec-
tivity and surjectivity is not a restricting condition.

Theorem 3. (/1, thm, 7.1.8/)., Let (4 ,x ) be a normed complete
operator ideal in the class of Banach spaces which is surjective
and injective., Let DF be a barrelled (complete) (DF)-space and P
be an (F)-space. If ¥; DF —> P i5 a 1inear continuous operator
such that the products

B, -&> oF —->r 553,
belong toJl— for ell Benach spaces By B1 end all linear continuous
operators R end S, then T admits a linear continuous factorization

pF— T P
J/ T T
1



through Banach spaces B, By end an operator T, eh.

Sketch of the proof of theorem 3. We extend the ideal (4 ,oC)
in L(H) to an injective and surjective quasinormed ideal in the
class of all Banech spaces. let Te.ﬁx Its extension T
according to theorem 1 satisfies the assumption of theorem Do
Therefore, Io has a factorization through T.I €W . Using propo-
sition 2 we cen replace 32 and 33 by the Hilbert space H. This
Yields a factorization

T
pr) _.__—OQD

of .0

E——1 =&
with Q,Pe’h,. Restricting T, to D we obtain T,|D =T = rr1Q".
3. Pinal remarks
Dual to the definition of Aﬁyou can define the set
AD ={set*(m : B3F-5. 3, ¢ A}.
This set is also en x - ideal in L*(D), in generally it contains
umbounded operator. There is the following theorem concerning the

structure of A®, an ideal & is called perfect, if it coincides
with its second adjoint ( A= A**, see /4/).

Theorem 4, If (QA,0¢) is a perfect ideal in L(H), then
' A% _ oy L. TR

where LY(D)' = {X': D* —> D' | xeI*(D) .

Now we return to the problem of the trace representation of the
linear functionals on ideals.

Proposition 3. Let .A and \A be two normed complete ideals in
L(H) such that their product JJ « A, contains only nuclear
operators. Then a dusl pair (Jlx, Jfb> is defined by

<1,5) = {PrQ%,5 " 1= trace Q*spr.r, .



TUring this dual pair it is now poseible to define dual peir
topologies on LAz’ and .Aﬁz. Then the linear continuous functionals
are exactly the trace fumctionals.
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