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JSnETH WHITER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Ideals in algebras of unbounded operators 

H. Junek 

Algebras of unbounded operators appear as models i n the quantum 
f i e l d mechanics. One of the questions of t h i s theory i s the 
description of the normal s t a t e s ( p o s i t i v e l inear funct ionals) 
of these algebras. To answer t h i s problem W. TTMlffERMATO / 5 / has 
Introduced a c l a s s of interes t ing idea l s* The operators of these 
idea l s are needed to represent the normal s t a t e s as trace 
functionals . 
Using some l a t e s t r e s u l t s of the theory of loca l ly convex spaces 
and operator Idea l s in the main part t h i s lecture we w i l l give 
a complete description of the geometrical properties of these 
idea l s . In our f ina l remarks we w i l l return to the problem of the 
representation of l inear funct ionals by the trace. Let us s tar t 
with some basic notations* 

1. The maximal Op* - algebra L*(D) 

To exclude the very pathological oases of operator algebras the 
considered.operators should not be to much unbounded. In / 5 / 
LASSHER has introduced the notion of the maximal Op*-algebra on 
a given domain D9 which i s very convinient from several reasons 
and which i s a straight-forward general izat ion of the C*-algebra 
L(H) of the bounded operators on a Hilbert space H. Let us reca l l 
t h i s de f in i t ion . Let D be a l inear dense submanifold in a Hilbert 
space H. The maximal Op*-algebra 1^(L) on the domain D i s the s e t 
of a l l l inear operators I (bounded or not) act ing in H and having 
an adjoint X* such that X(D) £ D and X*(D) £ D. Of course, L+(D) 
i s a x - algebra and a l l operators X L4(D) are closable and w-
continuous in H. Important examples of domains are obtained in the 
following way. Let X be a pos i t ive operator defined i n H. Then 
the set 

v = r\ DU21) 
n=o 

i s the natural domain of the. algebra generated by X. The most 
famous example of th is type i s given by the operator X « x 2 - £ -* , 

dx2 



ЙO 

which i s generated by the posi t ion and the momentum operators* I t 
i s well known and easy to see, that in th i s case the domain D 
coincide with the nuclear space ^f(tt) of the strongly decreasing 
functions on the real l i n e . Let us return to the general case . The 
algebra L+(D) defines i n a natural way a topology t on D, which 
i s given Ijy the net of a l l seminorms 

p x(d) x« |[Xd| f d 6 D t X€=L+(D). 

The domain D i s cal led 8 e l f adjoint, i f 

D -*f)fa(X*) I X£L+(D)} . 
Under this assumption (D9t) i s a complete semi-reflexive space and 
i t s projective spectrin can be ident i f i ed with the energet ic 
spaces Hj of the X L+(D) 9 where the norm in Hj i s given by 

Bd||| = IdB2 4 JXd||2. The imbedding D —>H i s continuous* There­
fore, we have a ringed Hilbert space 

D — * H —^Df, . 

I f (D.t) i s metrizable then i t i s a re f lex ive (F)-space . This i s 
the case in the mentioned above examples. A countable system of 
seminorms generating the topology t on D i s given i n t h i s case 
*y Pn(d) - I ^ d J for a l l n£JU. 

2. The Ideals J? 

We assume in a l l the fo l lowing, that D i s se l fadjo int and metri ­
zable. 
A question of some importance i n the theory of quantum f i e l d 
s t a t i s t i c s i s the representation of s t a t e s by the trace* To solve 
this problem, TIMlSRMAiTO / 5 / has introduced the fol lowing idea l 
in L+(D)i 

J ^ = ^TeL+(D) s X*TY i s nuclear on H for a l l X,Y£X + (D)} . 
for each T € X^ the following def ini t ion makes senses 

w(x) *- trace XT «- trace TX f X€L+(D) • 
The l inear functional w I s ca l led a trace funct ional . I t a r i s e s 
the question, what functionals on L+(D) have such a trace repre­
sentation. Before discussing t h i s question in our f i n a l remarks, 
in the main part of t h i s sect ion we w i l l inves t iga te the s truc ­
ture of J/*or, more generally, of the following i d e a l s : 

Definition. Let J ibe an operator ideal i n L(H). Then 
J* **{T€L+ (D) : X*TY £ A for a l l X,YeL+ (D)} . 



Proposition 1. JT i s an x - ideal in L+(D). 

I t i s easy to see f that the operators YeJT are bounded in f a c t . 
Moreover, we have the following characterizat ion. 

Theorem 1. An operator T€L+(D) belongs to Ji i f and only i f T 
i s the r e s t r i c t i o n of a continuous (ant i l inear) operator 
TQx D* — * D such that a l l products 

H -£•> D« —2^. D _ « * H 

belong to -A- for a l l continuous l inear operators R, 3 • 

Proof, We r e s t r i c t us to show, how to extend the operator T. For 
h € H f d e D and X^L+(D) i t holds |(XdfTh)l « l (T*Xd,h) |< 
5 ll T*X\Idllh|| . This shows 2h£.D(X*). Because D i s assumed to be 
se l fadjo int , i t fo l lows T(H) 9 D. Moreover, T i s continuous 
as a mapping from H in t o D. This fo l lows from Py(Th) « 
« llYThR i lYTlllIh|| for a l l Y€L+(D) and a l l h e H . The same __ 
i s true for T*s H —> D. The dual operator T"1 maps D^ into 
H1 * H. We show ^ ' ( D 1 ) £ D. Let d € D f d» G Df and XGL+(D). I t 
fol lows K U v l ^ ' d O l - K A d t d ^ l i cpy(T*Xd) -» c YT*Xd < clYT*x(lc 

for some Y€L + (D) . This shows T^'d' e D(X*). But D i s se l fadjo int . 
n-K / I M \ /*- n rrru^ .-*.._•__.v.-..-, m _ «i.K Therefore, we have T* (D') g D. The operator TQ -= T* i s the 

wanted extension of T because i t s r e s t r i c t i o n to D i s T. 

This theorem shows, that the operators T€-Jl are bounded in a very 
strong sense, e spec ia l l y , they press H in to D. I t seems to be very 
d i f f i c u l t to answer the question, wether there are nontr iv ia l 
(= non f i n i t e dimensional) operators i n xA and what i s the s truc ­
ture of the operators T€sA • To answer t h i s question l e t us s tart 
with an example of such an operator. Let 

\ «- ^AeL(H) : A(H) £ D ] f *&* * l^z A € 8 x l • 

I f Ae$« and X£L+ (D) f then the product XA i s c losed and defined 
on H, by the closed graph theorem i t must be bounded. How l e t 
T.jeJKH), AfBefcj. Then the product T « AT,-B* belongs to sA* 
because of YTX = YA-T^U^B^GJKH) for a l l X,Y€:L+(D). I t i s very 
surprising that t h i s example covers the general cases 



Theorem 2 . If (1A.06) i s a norraed, conplete idea l in L(H), then 

The proof of th i s theorem i s based on a deep re su l t of the theory 
of l oca l ly convex spaces, .first of a l l we need the fol lowing 
proposition. 

Proposition 2. Let F be a metrizable loca l ly convex space having 
a neighbourhood base { I L } such that a l l spaces F~ are Hilbert 

Bpaces of dimension »% . Then there I s a fundamental system of 
absolutely convex bounded subsets { E * ] such that the spaces Fj, 
are Hilbert spaces of dimension «*H • 

Proof. Let K be any bounded subset of F. Let p.- be the gauge 

functional of Un« We put c n = supfp-, (x)x x € X j and define 

is « i i G P j p M (x ) 2 -- 2 1 2 ' n c ; 1 P n ( x ) 2 < 1 } . m n«i rn 

This Bet is bounded and contains K* But p„ satisfies the paralle-
logramm equation, therefore, P„ must be a Hilbert space of 
dimension ̂  H 0

 # H » f\ • 

Concerning some notions in the following deep theorem we refer 
to /4/. In our application to Hilbert spaces the assumed injac­
tivity and surjectivity is not a restricting condition* 

Theorem 3» (/1, thm. 7.1.8/). Let d4,«< ) be a normed complete 
operator ideal in the class of Banach spaces which Is surjective 
and infective. Let DF be a barrelled (complete) (DF)-space and F 
be an (F)-space. If Tj DF —^-F is a linear continuous operator 
such that the products 

B Q -2-»DF -£->F -
5 ^ B 1 

belong to <A for a l l Banach spaces BQ, B1 and a l l l inear continuous 
operators E and 5, then T admits a l inear continuous factor izat ion 

DF 1 ^F 

I ,, î 
B2 î — > B з 
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through Banach spaces Bp? B, and an operator T. $=Jk • 

Sketch of the proof of theorem 3* Ve extend the ideal (Jl %oC) 
in L(H) to an i n f e c t i v e and surjective quasinormed idea l in the 
c l a s s of a l l Banach spaces* Let T € j r ^ . I t s extension TQ 

according to theorem 1 s a t i s f i e s the assumption of theorem 3 . 
Therefore, T has a fac tor iza t ion through T..GJI-. Using propo­
s i t i o n 2 we can replace Bp and B-. by the El lhert space H. This 
y i e l d s a fac tor iza t ion 

T 

with QfPe1!>i* R e s t r l c t i l l g T
0

 t 0 D w e o b t a i n T0f D « T » PT.-Q*. 

3 . Pinal remarks 

Dual to the de f in i t i on of J-i you can define the se t 

jfi =is£L+(D) . » ; • S • 5>1 C J\}. 
This set i s also an x - idea l i n L+(D) f i n generally i t contains 
unbounded operator. There i s the following theorem concerning the 
structure of Jl . An idea l oft i s cal led per fec t , i f i t coincides 
with i t s second adjoint ( v/U J i** , see / 4 / ) . 

Theorem 4 . I f (Jl foC) i s a perfect ideal i n L(H)f then 

A% « L+(D)« • Ji • L+(D) f 

where L+(D)f - [ X 1 : Df — ^ D« | X 6 l + ( D ) . 

How we return to the problem of the trace representation of the 
l inear functionals on i d e a l s . 

Proposition 3 . Let JL and JL t c ift0 formed complete idea l s i n 
L(H) such that the ir product A^ • Jig contains only nuclear 
operators. Then a dual pair <JpJf j{%/ i s defined by 

< T , S > « < P T 1 Q * f S > . - trace Q3CSP.T1 . 
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Tring thi* dual pair i t i s now poss ib le to define dual Pair 
topologies on J& and Jig. Then the l i n e a r continuous functionals 
are exactly the trace functionals. 
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