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KIKTK ¥VINTEE SCHOOL OK ABSTRACT ANALYSIS (1981) 

On some nonclosed subspaces 

of metric linear spaces 

v ..,. . Z» Lipe^cki , ._ 

i 

In abstract analysis we encounter some types of. conver­

gences that cannot be topologized, e.g.- convergence al­

most everywhere with respect to*a measure or order conver­

gence in a Boolean algebra. There have been several at­

tempts to define completeness-type conditions for nontopo-

logical convergences. We deal here with the following con­

dition of that kind introduced by the team of Prof. J. Ifii-

kusinski (Katowice). We say that an Abelian convergence 

group X has property (K) if every sequence (x^) in X with 

x^-*0 contains a subsequence (x̂ - ) such that the series 

C X,, is convergent (see C3])« We present here some re-

suits, taken*fro.4 Cll and C41, concerning property ^(K) in 

the context of topological convergences. 

Suppose that the convergence. in X is induced by a me-

trizable complete group topology. Then, clearly, (K) 

holds. The converse fails'as shown by Klie (C33t Theorem 

3) who constructed, under the continuum hypothesis, a non-

complete inner product space with property (K). We shall 

give more general results to this effect not relying on 

the continuum hypothesis (Theorems 1 and 2). 

— 
Given a subseries convergent series C x in X, we de-

note by r((x^)) the set 

lîř.x".! «.*».<.•.!. K.1 
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PROPOSITION 1 (t>]t Proposition 2 and Corollary 1). If 

(xw) is a linearly independent sequence in a topological 

_— 
linear space such that JZ x is subseries convergent, then 

*.« * 

there exists a subsequence (x^ ) for which C A x = 0 im-
^ « It.4 k % 

p l i e s ( *\k ) = 0 whenever ( X k ) i s a bounded sequence of 

s ca lars . In part icular , dim l i n r ( ( x t | ) ) = 2.'*r#. 

THEOREM 1 (c f . C4] t Theorem 2 ) . Let X be a metrizable 

l inear space with K ^ d i m X $ 2 K V Then X contains dense 

subspaces X< and Xx with the following propert ies : 

( i ) X ^ X X = CO}. 

(ii) r((x<n))rkXt^ £T for every linearly independent seq-

•» 
uence (x ) in X such that C x is subseries convergent 

• n««. * 

and I = 11 2 • 

In particular, XL has property (K) provided X is complete. 

SKETCH OF PROOF. Let XL be a base of the topology of X 

with card 11 £ dim X. (This is the only place where the me-

trizability assumption is used.) Denote by TT the family 

of all sets r((x^))t where (x^) satisfies the conditions 

of (ii). Clearly, XT is either empty or card V « 2*r-. It 

follows that card ( XL u IT ) * dim X. .Arrange XL u \r into 

a transfinite sequence (S^)^ , where if is the least or­

dinal with card if a card (ULulT)* As dim lin S^ = dim X 

for every *««.vf (Proposition 1), it is easy to construct 

a linearly independent set {x^i *-*l« 2 and *<.vf } c X 

such that 
XL € s^ to* *• * li 2 and * <. if . 

Now, it is enough to put X ^ lin {xj; : ©-< ̂  J for c = lt 2. 



The last assertion is clear. Indeed, if (x^) is a seq­

uence in X with x^ — 0, then 51 Ix^ I < co for some 

n« <n.< •••-, where I-1 is an F-norm in X. In case (x^ ) 

contains no linearly independent subsequence, H x^ € X • 

In the other case, we use (ii). 

PROPOSITION 2 (Lll, Proposition'!). If (xw) is a seq­

uence of nonzero elements in a Hausdorff Abelian group 

such that E x . is subseries convergentf then there exists 

a subsequence (x^ ) for which EI Skxn^ = 0 implies (£h)-*0 

whenever $k€t-lf 0f 1}. In particular, card r((x^))-r2 *. 

Applying Proposition 2 instead of Proposition 1, one 

can prove 

THEOREM 2 (cf. til, Theorem 1). Let X be a nondiscrete 

xnetrizable complete Abelian group with card X = 2** such 

that the equation nx = z has (at most) count ably many sol­

utions given neN and zeX with z*0. Then X contains 

dense subgroups X1 and Xr with the following properties: 

(i) X^x,-- CO), 

(ii) r((xw)) rkXL+0 for every sequence (x^) in X of 

nonzero elements such that EL x^ is subseries convergent 

and c»lf 2. 

In particular, X.fc has property (£)• 

Even though property (E) is weaker than completeness, 

it turns out to be strong enough to imply the Baire cat­

egory theorem. 

THEOREK 3 (till Theorem 2). 5very metrizable Abelian 

group with property (K) is a Baire space. 



On the other hand, there exist metrizable Baire lin­

ear spaces without property (K) (C13, Theorem 3). 

Theorem 3 and a result of Christensen (C23, Theorem 

5.4) yield the nontrivial part of the following 

COROLLARY (C13t Corollary). Let X be an analytic me­

trizable Abelian group. Then X has property (K) if and 

only if X is complete. 

This corollary seems to suggest that an example of 

a noncomplete metrizable Abelian group (or a linear 

space) with property (K) cannot be constructed effect­

ively. 

For an application of Theorems 1 and 3 see L. Drew-

nowskit Solution.to a problem of De Wilde - Tsirulnikov, 

this volume. 
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