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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS ( 1 9 8 1 J 

THE GENERALIZED REGULAR FUNCTIONS OVER COHFOR1SAL QUATERNIONIC 

.UANIFOID 

\L. Iterkl 

It is well known, that tke system of all regular quaternionic 

functions ( in Fueter sense,see [l3) is not closed witk respect 

to co&position.Hence we can not define tke notion of regular function 

of quaternionic variakle over certain class of quaternionic manifolds 

as in tke tkeory ao complex variakle* 

We must define tke notion of "regular function" as a section 

of a special canonical fibre kundle over conformal quaternionic manlfeli 

Tke set of quaternions will ke denoted ky H9tke set of all regular 

functions evera open sukset U will 10 denoted ky 0(U)» 

Let us denote ky G tke conformal group of quaternions, it means 

tke group of all mappings of tke form (a + kq)(e + dq) ,wkere 

a,k9e9d€H and ad - ck / 0* 

We say9tkat tke real four-dimensional manifold M is a conformal 

quaternionic manifold 9 if tkere exists tke atlas en M suck,tkat 

tke transition functions kelong to G. 

The following theorem contains a "pseudegroup property" ef 

0(U) witk respect to G.Fer proof see [1] • 

Theorem: 

Let f(q) = (a + kq)(c + dq)-"1 ke an element of G.Supposeftkat 

f is continuous on U.Let us denote by J^(q) tke function 

Jf(q) = (c + dqr^lc + dqf/Iken F:U—*H is regular en U if 

and only if tke function J^(q).F©f(q) is regular on f *(U)# 



/J.iГ 

Tme main theorem of this paper is the following: 

Theorem: 

Let ffg€Ofthen Jf#g(q) - Og(q)*Jf(«(q)). 

This theorem contains a "chain law" for the functions J. 

Now we can define a line fiher bundle A(M),which forms a suitable 

space for regular sections ever confermal manifold M. 

Definition: 

Consider the trivlallsation (U^p.^) of a cenformal manifold Iff, 

Denote p.-* = ?j°'i• 

Over each U^ we dwfine A(M) to he trivial,isomorphic to UjxH. 

The transition functions are the following ones: 

V± x H i > U. x H 

(x,qi) i > (x,qj) 

qj . = ^ j ^ i ( x » ^ i 

It can he shown9that this object is well defined • 

Now we define a notion of regular section of A(M). 

Definition: 

We esry,that a section u:M—>-A(M) is regular, if for each trivialisati 

on (Ui,pi) of M the function u^cpj ,where u^ is the trivialisation 

of u over U^,belongs to O(U), 

It can he shown,that this definition is corect,it means,that | 

regularity not depends from a choice of trivialisation. 

It is a consequence of a previous theorem. 
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