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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Peynman path integrel as spectral decomposition
J. Soulek, V. Soulek, V. Janis

In previous lecture we introduced the Fock-Stueckelberg
space X and the propegator X on it. now we shall try to give
_ another representation of the operator *x wh:lch_ does not depend
on the splitting of X in K, end J but is completely deter-
mined by classisal action (or by Lagrangian). We also hint to
the connection of this formulation of Q¥T with Feynman path
integral.

For simplicity of our considerations we shall assume only
the theory of one scalar field, i.e. the Lagrangian

Lig,2)= 3[2pw)? - 292 - F - swpmn ()

we also take into account the external source J(x). Quantiza-
~ tion 1n-our formalism':ls a construction of operator .% on space
7[. The construction of this operator from classical lLagran-
g:lé.n, we shall call the 'kinematical quantization'. The proce=
dure performs as_fonows
a/ to the classical ﬁ.eld c.f('x) assign'the operator distribu-
tion 4’! on # which has the expression in creation and anihi-

lation operators from previous lecture
— 1 + + -
fx) ¢x = Fe (ax + ax) = ¢+ ¢x
with 4, being a massive parameter appeared only due to dimen-

sional reasoning (1.e. the action is dimensionless) . That will

be finally removed from the theory. Its interpretation will be
clear later on. '

b/ construct the operator X trom quantum action in the manner
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X - exp{iﬂq} = exp{i d4xz(4’x) } .
We emphesize here that ¢x is a éistributive operator and de-
rivatives act on ¢x in similar way as on number-valued dis-
tributions. Due to distributive charaéter of ¢x quantum ac-
tion has not proper mathematical meaning without renormali-
gation or without regularizing the theory. We do not want to
treat theﬁe problems here.
From the previous lecture we know the interpretation of

matrix elements of Z - they are just Green's functions G

G;,o(xh... xn)-(ol¢x1...¢xn.klo> , (2)
we added the inde; Hoto 8 matrix element to express explicit-
ly the dependence on parameter 4 . We prove

G(Xqys oo Xy) = }‘.120(;#.(:1, eee X)) (3)
to be velid nonpertmrbatively from the equations of motion,
i.e, equations for Green's functions. Knowing commutation re-
lations end expression for X in 4’: we derive the quantum
equations of motion for operator X . From following commuta-

tion relations
[ 4512z Sy o (4 ty]-o )
we obtaln 4 W bt AT + 1[¢;.'}l]
From definition of A we have '
[¢;.A]- -/—’;?[(a% nl) b+ A2 + J(x)] , i.e.
(3% 1p? + e 22 3] X = 2p2(93% + X437) ()

which are equations of motion for X that is understood to be
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a functional of CPx and J(x). These operator equations are com=-
pactly represented equations for Green's functions. From (2)
and (5) follows

(?i— 1/4024. mz) G/'.(x,x.l,...xn) + AG/‘Sx,x,x,zv...ﬁ) +

n
+J(x) GA’ XypeeeXy) = -if_:.‘ &x-xk) (.?‘4»(!1 veeoXy q9Xy, qr0e .xn). 6)
having in mind the limiting process N;+0, (6) are the equations

for Green's functions, (6) make clear the interpretation of A,
being the Feynman causal £ .

To restore the generating functional from Z we use spec=
tral decomposition in a special basis (Feynman basis). Since
[d’x’ ¢y] = 0 and we suppose (Px to be an irreducible ring of
operators, we can choose the basis that diagonalizes ¢x simul-
taneously, i.e. 4>x|(p) = px)lgd> | px) e_VfZ]R 4),
where kf(x) is called classical configuration. Such basis is
not from & , as 4’: are distributive operators, so (y)1lie
in some suiteble extension of % , In Feynman basis we can

formally introduce the projector measure

[eg] I4><ql = LP<AT g 290 »
in this measure the decomposition of unity is
1= [ip><el [do]
ortogonality C¢l¢'> = {(qiy') , ‘ﬂd‘f’-] 1#'(?')5 1) - ()

A vector from of we can represent by the vector m asure

oy = [l v) 19> 5 Y@ =<qiv)> .
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Operator .7( has the spectral decomposition

K- [ A 105col [do]
and the generating functionalZ (we letA= 0'in (1) is

2(3) = 1 XIoy = [M(7 ogsfpqr= [ A4 D aucp,

where d/u(\p) is Feynman measure. To obtain it we use the defi-

nition of virtuel momentum T,: [Tl'x, ¢y] = =3 g(x-y). (1)
From (4) end (7) we get

— - ‘2 - .

Te= (02010 $:-3(BzT+ &) (o)
Vacuum is characterized 7|0} =0 . (9)

Using the representation of a state in Feynman basis we have

10y = Jlagl vo(e) 14> end ¢, 10} = [[ag] p(x) Yol@)ig> »
Tigle) = j’[dcp](?(g) '\youp))hp .From (8) end (9) we ha-

ve in Feynman basis the functional équation

$
(P(X) + 72‘? és‘f(z)\l’ @) =0
with solution ‘\|f (p) = exp{ T ‘r LP (x) d4x} Thus gene-
rating functional is expressed

2
Z@3) = _yei‘ﬂ(q"’)exp{- -%Sq; 2(x) d4x}[§q7]
which is Just the Feynman's path integral representation for
generating functional /1/ with 4— 0. treen's functions aré ob-
tained by functional derivating that gives the functions defi-
ned by (2) and (3).

Literature

/1/ E.S. Abers, B.W. Lee Phys. Rep. C9(1973)1
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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Yanifestly covariant equivalent to quantum field theory
J. Soudek, V. Soulek, V, Janis

In 1942 E.C. Stueckelberg /1/ made an attempt to formu-
late quantum mechanics in a covariant space of wawe functions
Y i.e. he used the four-interval normalization of Y(x), x€ M
(x 1s Minkowski space): ﬁ«r(x)]zd‘x = 1. The space spanned on
such functions forms LZ(L') and we call it the Stueckelberg
space. In 1949 R.P, Feynman /2/ éevelopped the method of dia-
grams which is up to now the basic ingredient of the quantum
field theory(QFT). Feynpan started with the formula

K(112)= Ef112) + 1ejd‘3 K{B)V3)EPI2)+ oee (1)

where K(112) is the total propagator of a particle from 1 to 2
(1,2€ M), K°(1l2) is & free propagator of a particle, V(3) is
an interaction. Ve now shall try to generalize (1) for many-par-

tical cese, i.e. K, K°~o 7'(.7,operators on Fock-Stueckélberg

space. This generalization looks like

Z R BTTE, THIRTR, + e m e R (o
and has the same Feynman interpretation for many particles as
(1) for onme particle. ‘

The Poék-stueckelberg space is constructed from Stueckel-

berg spaces Hg = Lz(r.'): n
gf_ Y, ® Hg for bosons

3{ - @ k=1

Fs " i Oy, Bp= n

VAR ;! for fermions
k=1 ©

@. A are symetrized and antisyrmetrized tensor products.
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Ho is zero particle state with scalars (€ nu:nbers). As usual-

ly we introduce creation and anihilalion operators (operator
distributions ) ? 8gy a; with commutation relations [ax,a;]z J“tx-y
x,y€ ¥, If {0> is from H, with ax]C) = 0, then JfFS is spanned

on |0), &%, ..., a¥ |o), n= 1,2, ... . Ve shall use the suit-

% *n
able multipoint notation 3

“(n)l {XS(X.‘,...,xn“x.‘,...,ﬁéM } ')
o0

¥ = Uu® | gF 15 Fock-Yinkovski space,
n=0

1
= ! 2 eee ’
8y (n) 2 a'xm ax1 0 x = (x1,...,xn)mr

and we shall also use the Einatein's summation rule - summing
(integrating) over all double repeated (not appeared in par-
enthesis ) indexes. The vowpleteness relations tor b~ 4 Py ©88
be put down as

4 = a}loXole; dyix) = elo)olay
with J(ylx) = <ol a.ya;lo) , X,y M.
The many particle wawe function % on XI’S will be y(x)= {x{Y),

xemr or [y)= Wx)|x)Ix)= a;lo). We must emphesize here

(3)

that 4(x) has interpretation as multiparticle amplitude for
states localized in space-time points /3/, i.e. it describes
the virtuel states of the physical particles. Among these vir-
tual states exist also the physical states, that means - phy-

sical states form a subsoace %, of ?f,s. yfphys is spanned

phys
on states | P, @)= a%.’wu:) - e”ipx a;l(:), poao@.u@')-Jp5+m§ ,
;e 'R’.i.e. on states with correct dispersion relation for four-

momentum, Now we are able to cefine the operator %o' We want
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<yl,x/°lx>, x,yel:r to be the i‘ransition amplitude of many-par-
ticle stete ;x) to many-perticle state iy). %hen Xo is & free
propagator, then it must be diagonal (preserving the particle
number) 80 we write

Ko=o ly}(xl X (y1x) , x,5¢ i o

.X/O{Y") 4y|,;xl Ko(Fq1x9)eee Eo(T 1% 12, )
where (x| is a lengith of a nultipdint x (number of components),
Ko(ylix” is a complex function. To define the full‘_gropaga-
tor X we are to define an operator of interection 7. It will
certainly be that changingﬁ' the nunber of particles in the pro-
cess. The general form oi’y is 5:- a; J(ylx)a'x 1 X,y E ol ’
where J(ylx) is some integral kernel (may be nonlocel), To
reptore the formula (2)i.e. the full propasgator is a sum of suc-
cesive iterations - particles are propagated freely,then some
of them interact and interacted particles again are freely pro-
pagated; we must introduce a new isomorfic copyx FS of 92

and their tensor productx-ﬂ;.s 7fFS.~We shall denote ax, 7;;

enihilation and creation operators in sz and identify a;ml-oa <

ie ';:-» a;, IC)®I0) — 10} whenever confusion is excluded.

The operator% will be now the operator .%,

X, = o} P, 5 Xsix) , F, = 1® (0>
that transforms particles from 2€s(in-space ) into %‘(out-space )
leaving ?fnwithoui crange. Interaction og\e;rator is then modi-
fied in the way 7 . % J(le)ax « From xo and :’7vwe c’g?struct
the formula (2) having in mind the in-states are from XFS'

~

out-states are from %FS . Xatrix element of operaior X N

its n-th iteration is given
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(n!)py =<0]a, & .7.7'{"; ....710 ;IIO) = (u]ef...a;kjg(yklxk) X
X Iy 3’ s P J(uk{vk)a REL :Ilo} = <0| af...a;gfo(yklxk):!(xk\vk)
By ot xnx(x 14)10>,
where we used the definition of the projector l’ - We define
a dressed creation operator a = awj?61x) and a left dressed
interagction operator 7““"- a.y("’)J(ylx) ey o Then .. .
(1) tgge Clag 77 oos T Plo), nence Sm 6 Y, |
when out and in states are from }g(in-states are not dressed).
That means,_if we are interested in matrix elements oriz' only
(1.e. in transition amplitudes) the spacez;sis sufficient.
Fow we show what Ko and J give the results of canonical
QFT; give the same Green’s functions.
1y Feutrgl scelar field _
ve chooae K (xly)- 1DFCx-y) » Dp 18 Teynmen causel pro-
pagator , -'.’ 7 ;ffd4x(a +at )4 . This leads to
7@!)"1]‘14:' ¢:4:' ’ ¢x '(ax"' é;)). t ¢ are Wick doubledots,

A
Fe shull denote canonical QFT quantities by, so ¢x will be
)
the quantum field in interaction representation. The fGreen s

function in n-th order of perturbation ser:les :l.e

" 4
(n!)nﬁ -) (olm[&f’f . 4’,m ¢: cee' t ¢ 4>1 ... 4>1 1'
This expression equals to all chronological contractions (?’ick 8

theorem). The element M 4 in our theory
4
(n!)Hpq =(O|4’r1. .. ¢4. iis (bn: . e 4711‘0)/.\1)
is equel to trLe sum of all normal contractions. But

4:'74')2 = ulé, 4,105 = {cla,e}i 0} = 40, (1-2)= (viT[d &l =
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(r—

A

=¢1 ¢2 ané we have ufi = mfi.so <°l¢: ejdrjd;’i' 0= (Ol 1{$f ¢1§}p>.
2/ QED '

Several changes must be done in this th;ory. Firstly, we

must introduce a new space Xf_or antiparticles with opera-
tors bx' 'b;. Now,fields 8z 'bx are fermionic, the anticommu-
tators must be considered. All formulas remsin valid, only&ylx)
in (3) has différent dependence on arguments - the signum
of permutedtion must be considered. Thus we have three particles
- electrons and positrons es fermions and photons as bosons
with /anti/ comrutation relations

[ex.a;]+ - ['bx,b;] . = §¥x-y), [cx/‘ ,c;y]- g,,vsq&-y) .
The choice for free propagators and interaction is

K (x1y) = 155(x-y), K (xly) = -151(y-x), Dor,(xly) = w,fg-y).
where T is transposition of spinor indexes which are suppre-

ssed, Ko propagates electrons, Eo positrons, Do pbotons.

~-e4x +3%) pa +~+ s v
7 1.“‘! (bx ax)y (x bx)(xr x}gih::))

,:/(dr)- :lej'd4x H \Fx YV"’x Ax‘u' » With Yx '(ex + bx

"'-l’x--(bx + ax‘"”), ‘x‘f (chf cx‘p). The same arguments show the

equality of Creens functions in both theories.

At the end of this lecture we show formule (2)reduces
to (1) in the case of one particle in external fiela,
Starting with ¢4} 41( 445 7%, &) ) -
noting 7(IS) 14.[&4: 1{;)5% ) 3(ag+ by )(bx+ 8x )= , de
clae? 20 = Gl oPy L § 2 1 m

cle¥ 0> .ngo:‘_’ (fcl o> "E’Ckz"’n_r(k) ¥

we have




167

(dr)ln dr)|n-X)
ola b | a Mo (0|b( i o 2
¥ b4 1” c - z <0 l‘r[?o jcbs)]ka 1(4-)‘ O) -
Cole*os ‘ k=0

- 0le (-7 H, aF10>

where < )c denotes connected graplis, This proves thet cprfect

reduction of (2) to(1) in this case,

Literature :

/1/ E.C. Stueckelberg Helv. Phys. Acta 15 1942 23
/2/ R.P. Feynman Phys. Rev. 76 1949 749
/3/ P.T. Mathews, A. Salam Proc. Royal Soc. A221 1954 23



