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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Peynman path integral as spectral decomposition 

J. SouSek, V. SouSek. V* Janis 

In previous lecture we introduced the Fock-Stueckelberg 

space #and the propagator ^ on it, KOW we shall try to give 

another representation of the operator jfc which does not depend 

on the splitting of %t in 3 ^ and J hut is completely deter­

mined hy classisal action (or by Lagrangian). We also hint to 

the connection of this formulation of QKT with Peynman path 

integral. 

For simplicity of our considerations we shall assume only 

the theory of one scalar field9 i.e. the Lagrangian 

£(i**) - %[(%fw)2 - a 2r 2< x i - ? f 4 ^ - j<x></w. o; 
we also take into account the external source J(x;. Quantiza­

tion in our formalism 1B a construction of operator X on space 

<?C • The construction of this operator from classical Lagran­

gian. we shall call the kinematical quantization • The proce­

dure performs as follows 

a/ to the classical field <f(x; assign the operator distribu­

tion <p on ^ which has the expression in creation and anihi-

latlon operators from previous lecture 

with fa being a massive parameter appeared only due to dimen­

sional reasoning (i.e. the action is dimension!ess,) . That will 

be finally removed from the theory. Its interpretation will be 

clear later on* 

b/ construct the operator jfc from quantum action in the manner 
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% - exp{i/?Q) - «p{ljd*x£{'*x> } . 

We emphesize here that <J>X *
s a distributive operator and de­

rivatives act on $ in similar way as on numher-valued dis­

tributions. Due to distributive character of <j>x quantum ac­

tion has not proper mathematical meaning without renormali-

z at ion or without regularizing the theory. We do not want to 

treat these problems here. 

Prom the previous lecture we know the interpretation of 

matrix elements of >£ - they are just Green s functions G 

G^(x1f... ^)-<o|<|> ...<|> -#|o> , (2) 

we added the index //0 to a matrix element to express explicit­

ly the dependence on parameter^ • We prove 

G(x v ... x n) . lim G^(x 1 f ... x nJ (3; 

to be valid nonpertxtrbatively from the equations of motion, 

i.e. equations for Green s functions. Knowing commutation re­

lations and expression for 7i in 4>x we derive the quantum 

equations of motion for operator X • Prom following commuta­

tion relations 

R . *J] - h fc-7) . L4X. 4>y] - 0 (4) 

we obtain ^y,. ++% .fy- + l [ + " . » ] 

Prom definition of A we have 

Ik.*! - 'faW* **> 4»x* Ml * J<->] . i.e. 
[(f- i^2 • *2)4>I+;\4^ J (x)]x - - i^2(^)e • X4£) (5) 

which are equations of motion for >-̂  that is understood to be 
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a functional of 4* and Jlx). These operator equations are com­

pactly represented equations for Green s functions. From (2) 

and (5) follows 

(2x~ if*2**2) % (
x
»

x
1 '

# # # x
n )

 +
 ;iG (x^x-x^...*^) + 

^ W ^ , . . . ^ « -iS^V%^
v
--'

x
k-1»

x
k+1*-*-

x
n^

 (6^ 
having in mind the limiting process /*r*°» (6) are the equations 

for Green s functions. (6) make clear the interpretation of /fa 

being the Feynman causal € • 

To restore the generating functional from %C we use spec­

tral decomposition in a special basis (Feynman basisJ. Since 

L^x» Tyj « 0 and we suppose 4>x to be an irreducible ring of 

operators, we can choose the basis that diagonalizes 4> simul­

taneously, i.e. 4>xlf> - cfCxJ | <f> f ffc) ^ y ^ 4 j t 

where y(x) is called classical configuration. Such basis is 

not from dC t as ^ z
 are distributive operators, so l^lie 

in some suitable extension of ̂  • In Feynman basis we can 

formally introduce the projector measure 

l&<f] /f><<f/ - |(f><.fiTr 4
 d f < * ) . 

in th is measure the decomposition of unity i s 

1= JifXf/ W , 
ortogonality \ f ) Y > = Sift*') > S&t '•* V(f!> <T i f * ) - ^ (if) 

A vector from of we can represent by the vector is asure 

iv> - sy<?i Y^) if> > w ) - «f/> > . 



161 

Operator JC has the spectral decomposition 

and the generating functional j£ (we let A * 0*in (})) is 

where d/-(f) is Peynman measure. To obtain it we use the defi­

nition of virtual momentum Tfxi [TT „ 4^1 • -i d(x-y). (7) 

Prom (A) and (7) we get 

*x-̂ (4>x-<£r -ft-M^x^x)- (8) 
Vacuum i s characterized <£~ j 0^ • 0 • (9) 

Using the representation of a s ta te in Peynman bas is we have 

|0> « Jt^Vf)!^) m d 4>xl0> - J[df] </>(*> Y0<f)|tf> • 

TTXI0> • I [ d f ] ( 7 ^ Y 0 ^ > ) ' t f > • * » » (8; and (3) we ha­

ve in Peynman basis the functional Equation 

*•>*•£» j f e v " . - 0 

with solution *p0(»f^ •
 exPV" T 2" J f W d*xj. Thus gene­

rating functional is expressed 

which is just the Peynman1 s path integral representation for 

generating functional /1/ with^j-* 0. Green's functions ard ob­

tained by functional derivatlng that gives the functions defi­

ned by (2) and (3). 

Literature 

/1/ E.S. Abers, B.W. Lee Phys. Rep. £2.(1973) 1 
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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Manifestly covariant equivalent to quantum field theory 

J. Soucek, V. Sou£ekf V. Janis 

In 1942 E.C. Stueckelberg /I/ made an attempt to formu­

late quantum mechanics in a covariant space of wawe functions 

Y» i.e. he used the four-interval normalization of Y(z)» -*GM 

(U is Minkowski spacej: (̂ (xjj d*x • 1. The space spanned on 

such functions forms L^(ll) and we call it the Stueckelberg 

space. In 1949 H.P. Feynman /2/ developped the method of dia­

grams which is up to now the basic ingredient of ths quantum 

field theory(QPT). Feynman started with the formula 

K(1|2)= K0(1I2) + iejd
43 *£\\i)H3)Xpl2)+ ... O ; 

where Kl1|2) is the total propagator of a particle from 1 to 2 

(1,26 Jl)f Kj;i(2) 1B a free propagator of a particle, V(3) is 

an interaction. TTe now shall try to generalize (1) for xnany-par-

tical case, i.e. Kf K --* J(9 3f0 operators on Jfock-Stueckdlberg 

space. This generalization looks like 

and has the same Feynman interpretation for many particles as 

(4) for one particle. 

The Fock-Stueckelberg space is constructed from Stueckel­

berg spaces H s • L2(Kj: n 

«? © H« for bosons 

*s-Śb H- . н
n
-

ч n 
A H

c
 for fermions 

k»1
 5 

©f A are symetrized and antisymetrized tensor products. 
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E Is zero particle state with scalars (C numbers J • As usual­

ly we introduce creation and anihllation operators (operator 

distributions) : a 9 a* with commutation relations [a 9a*]»J^(x-j 

x fyeK. If |0> is from H Q with
 a

x|C^ » 09 then ̂ Sfpg Is spanned 

on \o)9 a* 9 ..., a* \o)9 n« 1929 ... • <!7e shall use the suit-
x1 *n 

able multipoint notation s 

M ( n )« (x«(x1 x n)|x 1 9... 9x neM} f 

IT » U M<n>
 9 V? i s Pock-L!inkovski space, 

n=0 

a x - ( n ! ) 4 a v . . a ^ , # x , ^ . . . . . ^ j f 

and we shall also use the Einstein s summation rule - summing 

(integrating) over all double repeated (not appeared in par­

enthesis) indexes. The completeness relations for <$£« can 

be put down as 

i - aJl0><0lax
V <f(y|x) - a^loXolai 

with *£y|x) -<Olaya+|0> 9 x9y M* . 

The many particle wawe function ^ on <"-pS will be Y( x ) " {-^V^i 

X 6 K or |v>« yix) |x>9 |x > « a*|0>. We must emphesize here 

that ^(x> has interpretation as multiparticle amplitude for 

states localized in space-time points /3/9 i.e. it describes 

the virtual states of the physical particles. Among these vir­

tual states exist also the physical states9 that means - phy­

sical states form a subsoace **->„,.- ot <%»*• ^T>hvs is sPanne<* 

on states |iT9 a ^ » ftffcJc^ * e" X ajl cX P0*bxp>, t^p>*Jv^+m 9 

p&|> 9l«e. on states with correct dispersion relation for four-

momentum, .Now we are able to cefine the operator ̂ C Q- We want 
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<yi^0bc^t x,y6 I. to be the transition amplitude of many-par­

ticle state |X> to many-particle state 1 y>. When J^ is a free 

propagator, then it must be diagonal (preserving the particle 

number)9 so we write 

Xo' <-JiyX*l*x-Vy,x> • *>*61? * 

where |xj is a lengjyth of a multipoint x (.number of components)> 

KQ(y1|x1) is a complex function. To define the full propaga­

tor %£ we are to define an operator of interaction J . It will 

certainly be that changing the numbfer of particles in ths pro-

cess. The general form of J is y » a* J(ylx)a_ ,x,y£ K? , 

where J(y|x) is some integral kernel (may be nonlocal). To 

restore the formula (£)i.e. the full propagator is a sum of suc-

cesive iterations - particles are propagated freely, then some 

of them interact and interacted particles again are freely pro­

pagated; we must introduce a new isomorfic copy ̂ F S °* pg 

and their tensor product 2x « 2^ s® S^T^. we shall denote ax, li* 

anihilation and creation operators in 2?TpS and identify a^l-^a 

1 ® ax-*ax, |C>0tO> —*|0> whenever confusion is excluded. 

The operator X will be now the operator j£0 

*o ' 4 Po S ^ ' - O • ? o -^®|0><0I 
that transforms particles from-5? (in-spacej into cC (out-space) 

leaving 7t without change. Interaction operator is then modl-
ES ~-* ^ ~ ~ 

fied in the way ^ - B ! J(y|x)ax • From jfcQ and y we construct 

the formula (2) having in mind the in-states are from 5fpS, 

out-states are from aC „« . Katrix elemenx or operator -?£ , 

Its n-ih iteration is given 



165 

(n!) -^ -<0|af X 7X0 ...?%0 aj|0> - <U|af . . . a ^ t K ^ y ^ ) X 

X^otx^yPo Jf> k l* k K k . . . a*|0> « <0 |a f . . .a^(y k lx k )J(x k .T k ) 

V «^tjcB
,-)»0>. 

where we used the definition of the projector PQ. we define 

a dressed creation operator a^ • affifalx) and a left dressed 

interaction operator^ '« a*+*J(ylx) ax . Then .... . 

(n.;afi« <0|af 7
( d r > ... y ^ a f > ! c > , hence 3 ^ . • * * 5 f 0 f 

when out and in states are from&E (in-states are not dressed,). 

That means, if we are Interested in matrix elements of->L only 

(i.e. in transition amplitudes) the spaced is sufficient. 
PS 

Eow we show what K and J give the results of canonical 

QFT; give the same Green s functions. 

1/ JTeuitr8il_s<s.alar lislil. _ 

We choose K (xly)« il)p(x-y) t U- is Jeynman causal pro­

pagator, J J «/?yd*x(ax4a
+
x)* • This leads to 

y d r>.^/d 4xi ^Ji , 4X «(ax+ e ^ % t are w±ck d 0 U D l e d 0 t s . 

We shall denote canonical QFT quantities by , so $ will be 

the quantum field in interaction representation. The Qreen s 

function in n-th order of perturbation series is 

(n!)Kfi «A
n<0|T[? r . . . $ f l * i 4 : ... : $ ^ $ ± . . . $ ± lo>. 

This expression equals to all chronological contractions (Wick s 

theorem.) • The element M-., in our theory 

(fl-V-Vi -<ci+ f i . • • I 4 J I •" 14>i*. • • + i 1 | 0 > ^ T } 

i s equal to the sum of a l l normal contract ions. But 

4». «j)2 - ^ l * . , 4>
2IO> - <C|a i a | i 0> - iDpd-2)- <ofTl«fe14>27to> -
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Л Ą 

2/ 9.5.2 

Several changes must be done in this theory. Firstly, we 

must introduce a new space 2t f o r antiparticles with opera­

tors b x f b x # Row,fields a x, b x are fermionic, the anticommu-

tators must be considered. All formulas remain valid, only<$(y|x) 

in (3) has different dependence on arguments - the signum 

of permutation must be considered. Thus we have three particles 

- electrons and positrons as fermions and photons as bosons 

with /anti/ commutation relations 

The choice for free propagators and interaction is 

*0(x|y) - iSp(x-y)f K0(xly) - -iS^y-x). D ^ x l y ) - 1 ^ - y ) , 

where T is transposition of spinor indexes which are suppre­

ssed* K Q propagates electrons, KQ positrons, D Q photons. 

y«*t i.Ja«* . fx f^x V ' " i t h i« "tEx + b*+>)' 
T x-(b x + a^V, A x «(cx + cx

ctj). The same arguments Bhow the 

equality of Greens functions in both theories. 

At the end of this lecture we show formula (2)reduces 
to (1) in the case of one particle in external field. 
Starting with y«*l ^ J d* x ig, l ( v b x

wj(b x + a x^j, , de­
noting 7^1 i^Jd 4xtfx)a+a, we have 

*y(dr) xx 

<c\*S *f>\o> _ g , <citf,**]' &C+\0> . £ £ , ft) 
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<0,afb
(dr)-a â >|0>c<0 *fT%> ? r .* ( , 
<ol«^io> k-° 

-<:o/BfCi-^.ya'5']-1^ajio> , 

where ^ X denotes connected grapBs. This proves theicprrect 

reduction of (2) to(l) in this case. 

Literature : 

IM E.C. Stueckelberg Helv. Phys. Acta 1£ 1942 23 

121 R.P. Peynman Phys. Rev. JG 1949 749 

131 P.T. Mather, A. Salam Proc. Royal Soc. A221 1954 23 


