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On infinite—dimensional manifolds 
H.Torunczyk 

Let I denote the segment G-1ft] f 9 the Hilbert cube I00 

and Ep the separable Hilbert space of square-summable sequences. 

In [43 and [5} f the author has proved the following 

characterizations of spaces looally homeomorphic to Q or lpf 

respectively: 

1. A locally compact AKB-spacef Xf Is a Q-manifold iff 

the following condition Is satisfied for each n: 

(aE)n any map f:In * £lf2\ — > X can arbitrarily closely be 

approximated by maps g with g(In* 1)n g(In* 2) = /J. 

2« A separable complete-metrlzable AKE-space, Xf is an 

l^-manifold iff 

(«E) given an open covering tA of X and a map f : D — > X f 

where D Is the disjoint union 1° u I « • ••« there Is 

a map g:D —> X such that {g(In)5 n is a discrete 

collection In X and g is 21 -close to f 

(i.e lf(d)fg(d)J refines W f V d * D ) . 

Here,, we present an application of 2 to showing that 

certain topological groups are actually lp-cianifolds, and wa report 

on some recent results of B.J.Daverman and J.Walsh related to 

result 1. 

§ 1. Topological groups which are Hilbert manifolds. 

T.Dobrowolski and the autor have jointly proved the following 

result: 

Theorem ( [3] ) . Let G be a metrlzable topological group and 

X Its separable complete-metrlzable subspace which is multiplicative 

(i.e. 1£X and xy€X for zfy £ X ) . In order that X be an 1- -

manifold it suffices that X €• ABB and no neighbourhood of 1 in X 



m 

be totally baunded in the right structure of G. 

Combined with earlier known facts this shows the following: 

Corollary 1. Let X be a complete-metrizable separable AMR. 

If X admits a topological group structure then either this is a lie 

group structure, and X is a finite-dimensional manifold, or X is 

an lg-manifold. 

Corollary 2. Let X be a separable closed convex subset of 

a Banach space (or of a B -space)• Then, X is either homeomorphic 

to lp or is locally compact (and then homeomorphic to one of the 

sets I xE * r0j1)m where k £• a>, l<oo fm^ 1 and min (m,l)sO; 

see ClJ )• 

Question: Do the analogues of the above corollaries hold 

true for non-separable spaces X? (C.f• the characterization of 

non-separable Hilbert manifolds in ^5J )• 

Outline of the proof of the Theorem* Let d be a right-invariant 

metric for G. We fix 7\ and f t D -> X in (-ME) and let 

oc(x) = sup ̂ distd(x,X^U ) i VkU} /Z 9 x £ X, 

D k » t
d * D s o c ^ C d ) ^ 1 / k 5 , k » 1 f 2 f . . . 

Using the fact that no neighbourhood of 1 in X is totally 

bounded in the metric d we construct sequences {gk: D —*-*$££(} 

and {*k1 . C(0,oo) so that the following conditions hold 
k£o 

for k^1 

(1 ) k gk -- f on B s D k + 1 and gk = g ^ on D k - 1 ; 

(2 ) k d ( g k ( I n n D k ) , g k ( I ^ ) > g k for n < n ; 

(3 ) k d(g k , g k - 1 ) <. £ k - 1 / 4 
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4)k ^ k * ttin *1/k> £ k - 1 / 4 * tEere» *o s 1)# 

It is not difficult to see that g » lim g. is the map desired 

in ( « ) • (Hint: First check that d(g(x),f (x)) <*f (x) for x ^ !)• 

To show that {g(Ia)5 n > 0 is discrete assume that (g(x±))± 

converges to a point ytX and distinct x ' s belong to distinct 

cells in D. Then inf ocf(x i)^ 0 - for otherwise (f(x.)) would 

contain a sub-sequence converging to y, yielding oc(y) » 0. Thus 

there is a k« N with ixA °° C D . and (1) and (2). yield 
"i»o K * 

d(gUi)fg(x.)) £ £ k for i F- 3. This contradicts the assumed 

convergence of (g(xi))« 

The construction of the g^s and ^fc*8 (outline). Assume 

for simplicity that -D^D. In this case the sequences will terminate 

after the first step, which is as follows., Let £ * be so small that 

no compact set in 6 is an £ ̂  - net in 

B -* I x« X : d(xf 1) < 1 3 • We let g-, \ 1° - 'f 11° and, if 

g. 1 I ° u . . . ^ l n i s already defined, we s e l e c t pS B with 

d (p ,x )> £ 1 for x * fab"1: a ,b , £ g ^ I 0 " ...» In)u f ( I n + 1 ) $ 

n+1 
and we put g<J (x) =* pf(x) for x ( T • In this way we inductively 

define g1 ll
n so that the resulting map g* satisfies {2)^. 

The general case (where no D, equals D) is technically more 

involved but follows the same idea* See 3̂.3 for details. 

§ 2. Homology characterizations of 3-manifolds. B.J.Daverman 

and J.Walsh have recently showed that, in the result 1, the 

"disjoint n-cube property" of (at) can for n > 2 be replaced by 

a cisjointness property in homologies. To be more specific let us 
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say that, whenever ( U f V) is an open pair in X and o< * H (UfV) 

(integer coefficients), a compact pair (AfB)C(U,V) is said to be a 

Cech carier for * iff any neighbourhood of (AfB) in (UfV) contains 

a cycle homologous to o; in (U,V)# 

Theorem ( £23 )• Let X be a locally compact Aim. Then, X is 

a Q-manifold iff it satisfies (x)2 and the following condition: 

(.*)* given open pairs (U^Y^) in X and relative cycles 

a i ^ Hat^Ui,Vi^ * s 1,2> t h e r e are ^ecn carriers (A^B^) 

for c<± with A^Ag-JB', 

It is unknown whether (.*)* is satisfied by any infinite-dimensional 

homology manifold X (i.e., by any locally compaot ANR such that 

HaE(X, X X \x\ ) « 0 for each x € X ) . It is easy to show that (at)f 

is satisfied if the homology manifold has the property that any 

relative cycle in it admits a finite-dimensional Cech carriev;see 

C23 • Also, property (x)* is relatively easy to prove for certain 

CE-images of Q-manifolds, and thereby can be used to prove that 

these images are manifolds themselfes* A sample application is: 

Corollary ( £2} )• If X is a space such that 2x l n ~ Q for 

some finite n then Xx I 2S Q. 

p 

It is unknown whether, in the statement above, I can be 

replaced by I« This is related to the open problem whether X* I 

satisfies (xjp for any infinite-dimensional homology manifold ; 

this problem is of great interest also foreman!folds of finite 

dimension n^.4. The author has recently abserved that, at least, 

X * D satisfies (.s)p *or any X as above and D a dendron with a 

dense set of separating points. Denoting by p : D --> I the natural 

retraction having -H0 non-trivial point inverses, all of rhich are 
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dendra, one thus faces the following 

Question: If X * D 2 Q, is 1 x * p : X * D - * X « I 

approximable by homeomorphisms? 
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Editorial note: 

This is an abstract of a talk presented by the author at the 

8th Winter School (1980) 


