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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

ISCI'ORPHISIIS OF PRODUCTS
J. Vindrek

Problems of isomorphisms of products have
been studied for various structures, namely al-
gebraic, relational end topological ones. In 1933,
S. Ulan put a problem ( see [6]) whether there exist
two non-homeomorphic topologicel spaces X, Y such
that X% and Y2 are homeomorphic. Ulam’s problem
was solved positively by R. H. Fox in 1947 (see[ 1]).
In 1957, W, Hanf (see [ 2]) constructed a Boolean
algebra B isomorphic to B? but not to B2 ;(Obviously,
putting C= B, D = IB2 one obtains non-isomorphic
Boolean algebras with isomorphic squares.) By [3],
the similar assertion is true also for locally
conpact metrizable spaces,

The problems mentioned can be generslized as
problems of representations c;f commutative semi-
croups by products in a following way : Let ( S,+)
be a comsutative semigroup, C a category with finite

products. A collection {X(s); se S} of otjects of C
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is called n rerresentation of (S,+) by producte
in ¢ if the following tvo conditigns are satisfied :
() xX(s+s°) is isomorphic to X(s) x Xx(s°) for
all s , s’e S ;
(2) X(s) 4is isomorphic to X(s?)iff s=s’
The representation of commutative semigroups
by products in various structures has been investigated
at the Seminar on General Mathematical Structures
in Prague, under the leading of V. Trnkové.
A survey on representations of commutative
semigroups is given in [4] ; Let us recall
Prnkovd’s general method éor constructions of
productive representations :
According to [4] » any corrmtative senigroup
is isomorphic to a subsemigroup of (exp I - card S,*)
(where the additive operation + on the power-set
exp nig'card S jg defined by
A+B={ner® °88 5 ,(3rca, ge B)(Vaex, card s)
(n(a) = £(s) + gla))})

Thus, it suifices to construct for any subset A of



18%

Heoecard . - .
1ot card S oy oviect X(A) of a given caterory such

Hor G
that for every A, Be exp I o °8¥0 8 . folloving

iwo conditions hold :
(1) X(A+B) is isomorphic to X(A)X X(B),
(11) X(A) is isomorphic to X(B) iff A= B‘.

If a given category has artitrary products
and coproducts and if the distributivity of
finite products and artitrary coproducts is
satisfied, it suffices to find a collectiocn
{X, ; aeg} (vhereyis the first ordinal with
card y* =4 .cerd S) such that for every

A, B e exp Hr the following condition holds :

(*) zr h_e-LA ag: Xg(a) ia isomorphic to

SRR Txk‘a) 1ff A=B.

2¥ ke B 2er

Representations of semigroups by preducts
of topological spaces have been investigated
with respect to special properties, namely the
connecteiness, the O-dimensionality and the
netrizability. While V., Trnlkové constructed in

[5] a connected metric spuce X hoxreomorphic to
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%> but not to %2 (and soxe fenerally, she proved
that every finitely generated Abelian srour can be
represented by products of connected metric spaces) ’
the similar problem for metric O-dimensiénal spaces
was still open., }oreover, V, Trnlové prévéd that if

a compact metric O-dimensional space Y is homeomorphic
to Y3 then it is elso homeomorphic to Yal.

In the present 'note, there is given a sletch of
a construction of a metric O-dimensional spaee which
is isometric to its cube tut which is not homeomorphic
to its square (moreover, every cz.)mmutative senigroup
has a representation by products of metric O-dimensional
spaces').

Denote by C the category of netric spaces with a
diemeter £ 1 and Lipschitz mappings with a constant = 1,
Obviously, C has arbitrary products and coproducts,

(1£ I ic a set and 1(xg ,¢4); i€ I} is a collection

of objects of C then ;D_I(I_,_ ’ 91) = (112; X ’Q)

vhere §U=xi)jer , (Vidie 1) = sup Iei(xi 1Y)

One can see easily that the functor assigning to
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each -etric space (X ,¢) a topological spece
with the.topology induced by ¢ rreserves finite
products and arbitrary coproducts.,

Now, an application of Trnkové’s genereal
nethod is the following : for every aey find
a O-dimensional object X, of. C suchk that (= )
is satisfied .an'd for every f e ¥ the space

7 xﬁ(e) is also O-dimensional,
aey -

cardinel numbers B, = § Ba,n i NE I} such that

the following conditions hold :

r
2 <’30,o ’ﬁa,n < fsa, n+l ?

Be,o > (sww fgy 5 b<a})r where
By = 8w {fy n; nell . Let

oo o1 :
¢ =t U o1z, oag

n=1 iz 1 3 » 3E

be the Centor set (with the usual metric) ,
c, = [2.3°1,52]n ¢, D= {237 ; nev~{c}}u

U § O} (-eain with the ususl real-line metric),
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Ter every zey” dgfine a weiric space Xa ¥y glueing
Ba,n cories of G, to the roint'a.B_n”lof D as

shown in the picture .
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The proof of (%) and of the O-dimensionality

of products T x£(® 4431 ve publiehed in [73.
2ey
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