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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1581)

SZZLEREDI  Th:CR3x IT3FLIZS FURSIZKEZRG THEOREL

Dzlibtor Yolny

In 1936 F,EréBs end F.Turir rrorosed tke following ccniecture:
iven 8 set A of integers with pce:.tive urrer dencsity, that is
sétiefyir.g ' / Ll
__4_0__1___
Ainaop >0
then A contains arbitrarily long srithmetic progression.
The conjecture was proved in 1974 by E.Szemerédi and now it is
known e&s Szemersdi theorem / partial results were given
by K.F.Roth for 3-sequences in 1552 and in 1969 by E.Szemerédi
for 4-csecuences/.
in equivslent formulation of Szemerédi theorem that we
will use later is
Fer ary Q= {w‘,f doubly infinite sequence of zeros:and ones
satisfying "~
. Eing We
Lm, afp —=—" > 0O
v ”v
there is an arbitrerjly long arithmetic progression of indexes
such that @5L=27
In 1977 Szemerédi theorem was proved by H.Furstenberg by
megne of ergodic theory. H.Fursienberg proved his ergodic theorem
v-hich implies Szexeredi theorem.
(Que ﬁ(o) be & dynamical system, that is, (-Q,(ﬂco«)
be a rrcbebility space with UZealgebre (ﬂ end probability measure
du, T is a measure rreserving bijection ﬂ“>-Q
Purstenterg ergodic theorems:

for all A€y , G@AP0 ens

any positive integer K there exists ./ such that
AT ... nT™“"4] >0

A procf of the fact thet 'Furstenberg theorem implies Szemerédi
tkeorer ray be found e.g. in fl] . ¥We are going to prove that
assuming Birkhoff ergodic thecrem the theorems of Szemerédi end
Furcsterbterg are eguivalent.

1, Szezerédi tktecrem <= Furstenberg theorem
At the first we formulate Fursternberg theorem in enother way.

Let (..Q ‘-@17;6(") be giver ec ir Fursterberg trecrem.

Let __(L:{qﬂ be the space cf dcudbly irfinite ceguences where



"o

I is the set cf irntegere.
ecairred with & prcduct topolo&y is & cormpect anid zetrizetle
srr.ce. The subbase of the topclogy is fcrmed by sets {U.'w,"-d&f
=0 or ./ , m€Z Jelementgry cylinéers/. Let ‘/ﬁ‘ be
the least O~ -algebre containing €ll elementery cylinders.
Let ' be e shitt (2,—2L%/ tee. Selpr “im /-
('Q"I‘R‘ Sl is a dynamical sygtem for any probebility measure
on I( A, ) preserved by S.
.S is prese"ving 6“0 ifr S ig Preserving agon the set of sll
finite intersectione of elementary cylinders.
Let &’ be the least Q™-algebra containing T™(4), 77(2~A)
for ell m from I .
(_Q’,,FZ"T,'G‘O) is a dynemical sygtem. It is easy to see that in
order to prove Furstenberg theorem / for fixed A / one cen

consider only the system (.Q.l(ﬂ" 7,‘4“') .
Let % _(7_—7_{2» be defined by forzmula

. (’V“—‘k’ 'xA(T"‘w). '
Define (a% by (a'a)a-oa_@"@)) for BEOQ, « It is easily

seen that

1. CecA’ iz y(eleA
2. 4 (Tw)= SGw))

(

[A,,T"Zn-,.nr ?]corresponds under ‘!P to

.‘wgw a0 " = o
{we); Gyzu= “,, ’/}
Under these fecte it is sufficient to prove Furstenberg theorem
for' ('Q"/"qo, ‘5;60’) /{:{w:q'a{},o‘{,@)}O. ‘
Suppose for some & Furstenberg théoren doesn t hold.
It is &{Io:ad;,__-azu‘wzflj =0 and becsuse of shift-

4 = :w .

inveriantness of 6“' &{w.wf—%--.. M"‘UVVJ '0
for any / from I .
Wie can see that the set of ell QJE'Q with k-erithoetic
progressions of cnes is e countable union of sets of meesure O

g0 it has measare @ . Complement Of this set ! ie erift
inv-.rient and of mez;sueg«(f)"/: 4 sc we czn ccnsider

a dynecicel systen (’Qu('Q,,SIG"') .
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Birencff ergoddc theorern sheows thzt fer eny ireproile fussiden

_ . .there existe 'Z suck tkat "Z,, ,&3‘0) —?/?w) %A.G‘ﬁ
- /}wJ 4% '-ff(w) 4% - |

Ferticulerly ccngider %‘ )f(‘v)' “% % &)

%e haye O‘g‘%“}" [@ %“‘(‘") "j]?(w) %“‘(‘U)

Cenaequently there exists an GJE.Q such that ,
4=, /(J"w) —>o 30. e o

Thus there exiata k-arithmetic progression &., of ones in @

-This contradicts the assuxption Qe_f%’. 4

2. Furstenberg theorem = Szemerédi theorem
¥%e Lave fu-{a_:} a rrogression of zeros and ones such that

.&24‘5& ;.b we >0 o Let & ve £n slgebra of finite
sums of finite intersections of elementary cylirders in {2, .
is ccuntable end, consequently, one cen choose & subsequence

a'=(2 by Syt " e ‘1/”‘1‘7"7“’" rord gy A
euch that  fow X z-,, L _ __exigts for ang
£6 ¢ eand moreover ’a_“ o Cf"t':o) >0
where L = {‘0- w7} -

Fut DfE)—‘&“‘{Z*&E Ceﬁu) ﬂ Fel « It 18 easily seen

that ¥ 1s a nonnegetive and finitely additive get function

on o Because of compactness of ) cean be extended

{tc a measure V defined on the whole of ﬁo (..ﬂ.ﬁ, S'H,)

is e dyrecicel system.-and by Furetenberg theorem for E:{m:q-'tj
& erbitrery integer there ‘exists ~A& such that )
u[‘gnstn...ngm “dg 7 >0 o Thus

L 30 % eng g i ST —Pus> 0,
Trig proves Szemerédi theorem for erlthmetic progressions of
lenghtat most f o K arbitrery positive integer.
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