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HZ 
NINTH WINTER SCHOOL ON ABSTRACT AfvALYSIS (1S81 ) 

SZ£-.£RiDI ThiOa£i: ZiFLIiS FURSZiKEiRG TH£CR£L' 

Balibcr Yolny 

In 193^ F.ErdBs end F.Turan proposed the fol lowing conjecture: 
Given a set A of integers with pos i t ive upper dens i ty , that i s , 
satisfying 

JH^ /*«%«J' >0 

then /{ contains arbitrarily long arithmetic progression. 
The conjecture was proved in 1974 by E.Szemeredi and now it is 
known as Szemeredi theorem / partial results were given 
by K.F.F.oth for 3-aequences in 1952 and in 1969 by E.Szemeredi 
for 4-sequences/. 

An equivalent formulation of Szemeredi theorem that we 
will use later is 

For any 60* {b*t} doubly infinite sequence of zerossand ones 
satisfying ^ ^ 

Am, *+> *-+< ** > O 
s*/ *** 

there is an arbitrarily long arithmetic progression of indexes 
^ such that «*i;»-/ . 

In 1977 Szemeredi theorem was proved by H.Furstenberg by 
means of ergodic theory. H.Furstenberg proved his ergodic theorem 
which implies Szemeredi theorem. 

Let C^K^^K^) t,e a dynamical system, that is, C'QViC**'' 
be a probability space with v^algebra (/< end probability measure 
Ats9 7" is a measure preserving bisection -JT/,"^-f2 • 
Furstenberg ergodic theorem: 

For all/<€c/2 f tf**ft)?0 and 
any positive integer It there exists /TV such that 

^ o r V n . . . nT^(*^4J >0 
A procf of the fact that Furstenberg theorem implies Szemeredi 
theorem nay be found e.g. in £lj • We are going to prove that 
assuming Birkhoff ergodic theorem the theorems of Szemeredi end 
Furstenberg are equivalent. 

1. Szemeredi theorem *=$ Furstenberg theorem 
At the first we formulate Furstenberg theorem in another way. 

Let \J2 M tRjTfC*1*' be given ee in Furstenberg theorem. 
Let jD*/qf]ce the spsce cf dcubly infinite sequence s where 



is thc set cf ir.tegers. 
_Q, equipped with a product topology is a compact and metrizalle 
eprce. The subbase of the topology is formed by sets {u:€u^OiJ 
4/^*0 or */ f /ru€X /element&ry cylinders/. Let </^ be 
the least CT-algebra containing ell elementary cylinders. 
Let S be a shift J20~*jC\ / i#e# ^^J-f* ^ - ^ /• 
CjCZe (/̂  S^-V is a dynamical system for any probability measure 
<#°a W A ) preserved by^ 5 . 
O is preserving >*6 iff O is preserving ̂ Uf on the set of ell 
finite intersections of elementary cylinders. ^ 
Let &J be the. least (T-algebra containing T^CA), T^fl^A) 
for all //v from X • 
(nS^T/f^) is a dynamical system. It is easy to see that in 
order to prove Furstenberg theorem / for fixed A I one CBn 

consider only the system (IO-/(A/ T]^J • 
Let f/: SLr^SX, be defined by formula 

Define ^ by J^Ck)* ^ti^te)) for ^ € ^ # . It is easily 

seen that 

1. £ctA' iff Y ^ € < ^ 
2. <f(TOi>)~ s(fy<u)) 

Under these fects i t i s sufficient *o prove Furstenberg theorem 

for C-Qc^ S ^ ) / / - / cV . -«V- /J / C ##1>^-
Suppose for some k Furstenberg theorem doesn t hold. 
It i s /±{tolOf9.*b\i,limJt'f} * ° a n d because of shift-

invariantness of ^o ^fa? ^j* **»&*• ••* €OjK^k^0if V * ^ 

for any -^ from X • 
Vie can see that the set of all €0 6 ^ *ith ^-arithmetic 
progressions of ones is a countable union of sets of measure O 
so it has measure O • Complement °£ this set Sl^ ie sr.ift 
invariant and of measure A (QJ) = *-/ sc "*e c~* consider 

a dynamical system (f2 tO* S ^4%) * 



m 
B.nc;.cff ercedic theorer shew- *tet fcr fc-? ir.-,;r-t:« fur.cticr. £ 

there existe j.f such that &Z+Z/(**<*) —?/%** *>*•£*! 

and. jJko) <£* -$&*»)<&*, - ' 
Particulerly consider i£* ^SVJ • * - » * ? & <*")' 

Consequently there exist0 .an 4*CP such that 

Thus there exists ic-arithmetic progression 6& of ones in <U • 
-This contradicts the assumption 66€jf2' . 

2« Furstenberg theorem = ^ Szemere*di theorem 
We have <Um{^} a progression of zeros and ones such that 

^J***^ ^^>o *** >0 . Let d5 be an algebra of f inite 
sums of finite intersections of elementary cylinders in £20 „ 
(*, i s countable and. consequently, one can choose e subsequence 

such that JZi»*4ijZ£? ?-. (jfa») ex is ts for an* 
^ (6 and moreover j^m. £ ^ £ ? % &"*<>) > ° 

where £ » £ * ; '"•"^J' ** , 
Put U^^^^T^CSUJ) ftlM . l t .J, e a B i l y 8een 

that 1/ i s a nonnegative and finitely additive set function 
on (2- • Because of compactness of £2Q \J can be extended 
to a measure J£ defined on the whole of tA* • ^ % i 6 ^ / ^ H / 
i s a dynamicel system and by Furstenberg theorem for £L afaitof*} 
It arbitrary integer there exists /fc, such that 
Hf&dkn—n S^^JZJ >o . Thus 

This proves Szemere*di theorem for arithmetic progressions of 
lenghtat most £ « k arbitrary positive integer* 
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