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INTERPOLATION THEOREMS FOR REARRANGEMENT INVARIANT p-SPACES 

OF FUNCTIONS, 0<p-<l, AND SOME APPLICATIONS 

Nic.olae Popa 

In this paper we extend two interpolation theorems in the sett­

ing of rearrangement invariant p-spaces, for 0^p><C-U 

Some applications of these theorems are given, particularly we 

extend Theorem 2.C.6 - [4] proving that the Haar system is an uncon­

ditional basis in a rearrangement invariant p-space X iff the Boyd 

indices p x and qx verify the relations 1 <py and q^< oo • Some non 

locally convex Lorentz fonction spaces are examples of such rearran­

gement invariant p-spaces, while in [3] N.J.Kalton proved that only 

the locally convex Orlicz spaces have a Schauder basis. 

In the sequel we assume all the vector spaces to be real. p is 

a positive real number less than 1. 

Let X a topological complete vector space such that its topology 

is generated by a positive function || |L, called p-norm, which ful­

fills the following properties: 1) ||x||x = 0 iff x = 0; 2)||̂x|U'=:|c)c|»||x|L 

foroCeiR, X6X; 3) ||x+y||£ <||x||P + ||y|LP for x,ysX. (We recall that 

|| L generates the topology of X if IV = {xeX; |lxllx^~H~3 > n€ IN; 

constitute a neighbourhood basis of origin for this topology). 

We say that X is a p-Banach space. If p = 1 we find the classi­

cal definition of a Banach space. 

A p-Banach space (X,|| ||) which is moreover a vector lattice, is 

called a p-Banach lattice if 

|x| ^ | y | implies that ||x||^||yj| for x,yeX. 
We shall give the definition of a rearrangement invariant p-spa­

ce of functions only in the case when the functions are defined on 

I = (o,l) . For more details about the rearrangement invariant p- spa­

ces see [5] . 
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A p-Banach space X of functions on I is called a p-K5the space 

of functions on I if the following conditions are fullfilled. 

a) X is a p-Banach lattice of JJ.-measurable functions on I with 

respect of pointwise order (ft is the Lebesgue measure). Moreover 

the functions of X are p-locally integrable. 

b) If ftX and g£.L (I) (the space of all Lebesgue measurable 

functions on I) such that |gj < jf | ̂ -a.e., then it follows that g^X 

and lis|lx<,|f"x* 
c) The characteristic function XA € X for each Ac: I such that 

(X(A)<oo . 

d) The p-norm ||f|L of X i s p-convex, i . e . the p.-measurable func-

v-- DVP 
tion ( / \f^\ p) belongs to X for fp.i Mf ntfX and moreover 

e) (Riesz-Fischer condition). If f-̂ ,... ,fn,... are elements of 

X and / ||fil|P ^*>° % then the ju.-measurable function 
l—j. J\ 

^2- 1/p 
( > Jf^t))15) belongs to X. 

The condition d) is very important and it is used to define a 

substitute of a "dual" for the rearrangement invariant p-space. 

More precisely, let X be a p-Kcrthe space of functions on I. We 

denote by X/ * the set ix : I —>tR; such that the function 

t —^x(t)
1 / p = |x(t)|1/p sign x(t) belongs to XJ. 

Endowed with the usual operations.with the pointwise order and 

the norm||x||/ x =|||x| Jlv » X(D)
 b e c o m e s a Kffthe space of functions 

on I, i.e# a 1-K6*the space of functions on I. 

For instance if X = L (0,1) then it follows that X, x= 1^(0,1)., 

We can give also the dual construction. 

Let X be a KSthe space of functions on I. We denote by X^p' the 

set 4x : I •—> fR; such that the function xp belongs to Xj, 

V**' the p-norm 

llx||(p) = |||x|p|| 

We consider for x X p the p-norm 
i/p 
X 

Then X p becomes a p-K6*the space of functions on I with respect 

to usual operations and pointwise order. 
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For instance if X = 1^(0,1) then it follows that X^p^= L (0,1). 

If X is a p-K6the space of functions on I then it is obvious 

that 

- - t - c p i T -
We can consider also the K5the dual of X(D),P-(D)

 = ig-I — > -3 ; 

\ |f(t)g(t)| dt<<*> for all f€x ( -J. We introduce on [x( 1 the 

o 

norm 
1 

"g|i = imi s u p^ S | f ( t ) g C t ) ' d t 

'^"(p)^1 o 

and fX/ H becomes a K6the space of functions on I. 

Then X is a vector sublattice of Xw : = 4 X, J tvp/ but in ge­

neral it is not a p-Banach subspace of it. 

A p-K5the space X of functions on I is called a rearrangement 

invariant p-space of functions (briefly r.i.p-space) in the following 

conditions hold. 

1) For eYery f 6X and every measure preserving automorphism 
6: I —•> I the function foS belongs to X and moreover ||f ĉ 6|| =||fj| 

2) X is a p-Banach subspace of X" and X is either maximal i.e. 

X = X", or minimal i.e. the subspace of all simple p-integrable func­

tions is dense in X. 

5) We have the canonical inclusions 

L oO(0fl)c:Xc:Lp(0fl) 

such that the norms of these maps are less than 1. (We denote by ||T|| 

the expression sup-jJ|Txj| ; |jxllx̂ ll , where T : X—•> Y is a linear 

and bounded operator acting between the p-Banach spaces X and Y). 

Interesting examples of r.i.p-spaces are p-Orl.icz and p-Lorentz 

spaces. 

Let M : [~0, oa) —»|R + be a continuous, increasing and p-convex 

function. (We mention that a function M : [p,°°) — > tR+ it is called 

p-convex if 

M[(c*Xp +|3yp)1/p]^ocM(x) +£M(y) for xfye tR+ and 

cx.,|3e-R+
 s u c h t h a t o C +l 5 s ! ) • ^ M(°) = °f M(D = 1 and if lim M(t) = 

= <x>we say that M is a p-Orlicz function. ~~**° 

Instead of an 1-Orlicz function we say simpler an Orlicz func-

tion. 

The p-Orlicz space 1^(0,1) is the space of all Lebesgue measu­

rable functions f : I — > IR such that 
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^ M ( - ^ l ) d t < o o 

o * 

for some P>0. 
The p-norm on 1^(0,1) is defined by 

l|fliM = inf(f>0; ^ M ( l f ( t ^ )dt<lj . 
o 

It is not so difficult to prove that 1^(0,1) is a r.i.-p-space 
maximal. 

We mention also that, for X = 1^(0,1), it follows that X/p\ = 

= i^ (0,1), where M(p)(t) = M(t
1 / p). 

Of some interest is also the subspace ^(0,1)^1^(0,1) of all 
Lebesgue measurable functions f defined on Ip,l) such that} for all 

^>0 , we have ^ M ( (t'j ) dt < <*? . HM(0,1) is a r.i.p-space mi-

o 

nimal• 
t 2 p 

If M(t) = e
e_1~

1 then 1^(0,1) / 1^(0,1). 

Another interesting class of r.i.p-spaces is the class of p-Lo-

rentz spaces. 
Let 0<q<<*> and let W be a continuous non-increasing positive, 

function defined on (0, oo ) s u ch that lim W(t) = 0, 
1 oo t->o 

*\ W(t>dt = 1 and J) W(t)dt = oo # 
o o 

Let 0<p^.q<o<?. Then the p-Lorentz space of functions L^ (0,1) 
is the space of all Lebesgue measurable functions f on I such that 

r r i q 1/q 
!,f,lW,q = ( J C (t)J W(t>dt> <0° 

o 

(Here is f*(t) = inf sup lf(s)|). 
pL<E)=t s £ E 

Then 1^, (0,l) is a r.i.p-space maximal, where 0 < p < l . We men­

tion that, for X = Ity q(0,l), we have X, ̂  = 1^ , (0,1). 

The r.i.p-spaces are used in interpolation theory. More precise­

ly they constitute the natural framework for theorems of Calderon-Mi­

te aghin and of Boyd. 
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In the sequel we present the extension of these theorems for 

r.i.p-spaces. 
First of all we introduce an order relation on L (0,1). 

Let f,g£L (0,1), 0 < p ^ l . We write f-<g if for all se [b,lj 

we have 

R S 

P r r...iP ^ jf*(t>l dt <. ^ [g*(t)] đt 

It is obvious that f -< g is equivalent to each of the following 

relations: |f | -< \g\ ; f*-^ g*; tlf-< 7\g for all real numbers ^ 0. 

P p 

It is clear that f-<g and g-<h imply that f-<h. Moreover f-<g 
p ° ° p ^^ p p " 

and g-< f hold simultaneously if and only if f * = g*. 
Another useful relation is the following 

P t
f
iФ

f
г)V f*©f*. 

Here is t^&-£2 = (f£ + f^) 1 / p . 

It is true also a relation similarly to Riesz decomposition pro­

perty, namely: Assume that g-jf^n © fp fov positive functions g,flf 

f2. Then there exist the positive functions g-L>g2 such that 

g = g]_© &2 -22-̂  gi"^ fi' i = 1 , 2 # 

Indeed gp-< f^ + f5 and, by Proposition 2.a.7-[4], there exist 

g£, g£>0 in 1^(0,1) such that gf + g£ = gP a n d gi-< fi » i = 1> 2- We 

conclude (Jenoting (g^) p by gi? i=l,2. 

The next proposition shows us that a r.i.p-space X is an"ideal" 

for the order relation —< . Namely 

Proposition 1. Let X be a r.i.p-space on fo,l]. Assume that 

g ^ f and f ex. Then g ̂  X and ||g||̂ l|f|| . 

Proof. The case p = 1 constitute Proposition 2.a.8-J4j. 

Let 0 < p < l . Then g p -< fp and, by the same Proposition i t f o l -

lows tha t g P € X ( p ) and j|g||P = | |gP| | ( p ) < | | fP | j ( p ) = ||f||P . m 

An operator T from a p-^anach space X taking values into a 

p-Banach l a t t i c e Y i s said to be quasi l inear i f : 

1) |T(*x)| =|o<|'|TxJ for a l l scalars oc and x e X . 

2) There ex is t s a constant C<oo such tha t 

|T(x1+x2)|< C(JT X-J + |T X 2 | ) , X±9 x 2 ^X . 

A quasi l inear operator T i s bounded i f l|TU<<?° . 
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Now we can state an extension of Calderon-Miteaghin's Theorem. 

(See Theorem 2„a„l0- [4]). 

Theorem 2. Let X be a r.i.p-space of functions on fo,l| . 

Let T be a quasilinear operator define on L (0,1), which is si­

multaneously bounded on 1-^(0,1) and L (0,1). 

Then T applies X into X and moreover 

| |T| |X421 /P-1 C max (||T||pf llTll^ ) , 

where C is the constant aforementionned. 

Proof. Let f £X and 0<.s<l. 

f f ( t ) - f * ( s ) i f f ( t ) > f * ( s ) 
Put g s ( t ) = Vf(t)+f*(s) i f f ( t ) < - f * ( s ) 

I 0 if | f ( t )Uf*(s) 
and hQ(t) = f ( t ) - g s ( t ) . 

I t is clear that ||hs|j = f*Cs) and, denoting by A = £t € (o , l ] ; 
f ( t ) > f * ( s ) l , B = [tfc [0,IJ ; f ( t ) < - f*(s)^, we have p(AUB) = 
= f { t £ [ o , l ] ; |f(t) | > f*(s)j : = d f(f*(s)) ^ s. 

Hence 1 

i ny? + s [f*(s>lp • 5g s
( tD p dt + s[ f* (s>]p = 

0 

= 5{(f(t)-f*(3)]P+[f*(s)]P}dt+ 5{[f*(s)]P+if(t)+f*(s)|P}dt + 
A B 

(*) +[s-[i(AUB)]. [ f * ( s ) ] p ^2 - - p { ^ lf(t)ip+(a-(i(AUB))[f*(s)]p}i 
"s AUB 

^(since ^ r f * ( t ) | p d t = sup \ l f ( t ) | p d t ) ^ 
% L J K<r)=s <r 

- T ^ s -j 
4 21"PL ^ &*(t)] P dt + ^ [f*(s)] pdtJ £ 2X-p ^ [f*(t)] p dt. 

o (l(AUB) o 

Since JTf|<C (|TgsJ + |Thsj ) we have 
s 8 
{ [jTf)*(t)]pdt= ^)[[T(f)(t)]pj* dt ^ (since f £ g implies f * « g * ) 4 

s _ ° 

£Cp $ [(|Tgs | + |Tha()p]*dt<Cp ^ ( |Tg s |
P + |Ths |P)* dt< 

o 8 ° 8 

^(since (f_©f2)*--<:f*©f*)4CPr5 (|Tgs|
p)*dt + $ (|Ih

s|P>*dtU 
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-iCP t-ax(||T||P, \\f[f^ )q,gB |g + . [t*(s^X 

3 

^(by t* ) )^2 1 -Pc p max <||T|g, H T ^ ) $ [f*(t)]P dt. 

Consequently Tf -< 21/l>mmlC max(||Ti| , IITIÎ ) -f. 
Hence, by Proposition 1, it follows that Tf 6X and |Tf||4 

^2 1 /P- 1 C max(||T||p, H H l ^ ).|WIX . m 

The natural projection P^(f) = fX^, where Ac fb,lj is a Lebesgue 
measurable subset and f €Lo o(0,l), is the most common example of a 
simultaneously continuous operator on L (0,1) and L^CO,!). 

Another, more intricate example is given by Tf(x) = 

= Yl (n~5/p)f(x1/n), where f€L(0,l) and x^Io-ll. 
n=T p J 

Indeed Theorem 3#2-[2} shows us that, for every sequence(a )*f, 

of Borel functions on LO,1J and for every sequence (<-On--i of measu­
rable functions on [o,l| such that 

J2f. *> 
(**> sup -U^Y l~ \ |an(x)l

p dpi(x) = M < oo , 
M(B)>0 I4**' n=T "; n ' l 

°n (B) 

oO X1 

the expression Tf(x) = > a (x)f (<r (x) ) , where f € L (0,1) and 
n=l p 

x & [ o f l ] , defines a bounded operatur T : L (0,1) —» L (0,1) such 
that ||T||= M 1^. 

If T has the aforementionned expression it is easy to prove the 
condition (**) for every Borel set B, consequently T is a continuous 
operator on L (0,1). 

oo 

Since llTfl^ <J ( Y~ n~5/p) llfll̂  for f 6^^(0,1), it follows 
that T is a bounded operator on L^ O , ! ) too. Hence T applies X into 
X and it is bounded on it. (Here X is a r.i-.p-space). 

As an application of Theorem 2 we give the following example of 
a complemented subspace of a r.i.p-space of functions on J0,l(. 

Corrolary 5. Let X be a r.i.p-space. 0 < p < l , and let 7 " Q be a 
CT-subalgebra of the (T-algebra ff of all Borel subsets of [0,l| conta­
ining the sets of Lebesgue measure equal to zero.If there exist A e S 
and £ > 0 such that 
(1) J^AflB);>fc^(B) for B6: 5~ Q 
and such that 
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(2) for all Borel substes CCA, there exists B^XI 0 with BOA = C, 

then X( 5Z ') = •[-^ x> ^ being a ̂  -measurable function^ is a com­

plemented subspace of X. 

Proof. Let PA be the natural projection of L_(0,1) onto L_(A). 

By (1) it follows that the restriction of P^ on L ( ]T_ ) = LD((0,1)> 

5""" , U-) has a continuous inverse and (2) shows that P^ maps LD0E! ) 

onto L (A). Hence PAlL ( <C~ )
 : L

p( Ê̂ ,) — > L p ^ i s a l i n e a r h o~ 

meomorphism. Consequently T = Q P*, where Q = |PA[T t y~ ) \ 

continuous projection from L (0,1) onto L (^7). Using (1) it follows 

that HP^Il^ = Hf Hoo for all f e L ^ ^ ) = L^( (0,1), H o , \L ) and by 

(2) we get that P^I-oot^ )) = Lo0(A). Thus T = Q P^ is a continuous 

projection from LOJ(0,1) onto Loa(YZ )• Applying Theorem 2 we get 

that T is a continuous projection from X into X. If f € X d L (0,1) , 

then Tf6L p(J3 o)nxcX(^). Conversely, if g € X ( £ ^ C L (J^-then 

g = Tg and we are done. m 

An example of a <T-algebra 5~Q verifying the conditions (1) and 

(2) is the following. 

2 I 0 = ̂ BUCUD; B e [0,1/2] a Borel set, C = Z(B), where %(x) = 

= x + 1/2 for xe[0, 1/2] , and f-i(D) = OJ. 

Theorem 2 allows us to conclude that the linear operators simul­

taneously continuous on Loo(0,l) and L (0,1) act continuously on eve­

ry r.i.p-space X. Since there exist interesting operators which are 

bounded only on some L (0,1) with p < q < 00 , we shall study further 

the r.i.p-spaces X which are "between" L (0,1) and L (0,1), in the 
pl p2 

sense that every operator defined and bounded on these two spaces is 

defined and bounded also on X. 

In this purpose we recall the definition of Boyd indices. 

For 0<.s-£oo we define the operator D as follows. 

For every measurable function f on 10,l] , put 

( f(t/s) t^min (l,s) 

(Dsf)(t) =J 
I 0 s<t^l. 

Obviously ||D8J| ^ 1 and 
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s 

MJ •„•jьMIS -

sup C | f( / s ) l p đ = s foг s < l 
iifllp^l { ' 

s 

sup S | f ( t / s ) l p dt ^ s for s ^ l . 
lifll^l i 

Consequently | |DJJD = s ' p and, by Theorem 2, i t follows that D 

acts continuously on X and l l^g l jx^ 2 1 ^" 1 m a x ( l , s 1 > / p ) . 

Moreover (D f) ^ Daf for every f and 0 < s ^ o ? . Consequently s s 
we can compute | |DJ|x using only nonincreasing functions f. Since,for 

such a function f, we get D f ^ D f , where 0 < r < s - d oo , i t i s c lear 

t h a t ||D8i|x i s & nonincreasing function of s . Moreover | | ^ r s | | x ^ 

^IP^IxMpsllx f o r a 1 1 0 < r , s < o o . 
Now we can define the so-called Boyd indices p x , q^. 

p = i i m lofi s = s u p lOfi s } 

s - * ~ l o g | j D s | | x s>l l o g p s | | x 

q = i i m lo f i s = s u p log s > 

s ^ O + l o g | p s j | x 0<s<l log ,p s j | x 

If | p s | | x = -1- f o r s o m e s > l we put p x = c o . Similarly, i f 

HDslix = ~ ' f o r a 1 1 s < 1 » w e P1 1* °-x = o c > • ° D v i ° u s l y Px = O-x = P :£oT 

X = L (0,1) where 0 < p 4 o < " 

Proposition 4. Let X be a r . i . p - s p a c e . Then 

1) P 6 P x 4 q x ^ o o . 

2 ) P x ( p ) = Px/p -S-l qX ( p ) = 1x/p-

Proof. 1) Since | p s j | x ^ 2 1 / ' p - 1 . s 1 / / p for s > l , we get 

p^ = i i m loffB ^ l i m log B = p > 
x s->.oo log|jDsj|x s - > ~ log 2"L/P V ' P 

^ P 8 l l x i P 8 - . l | | x > | P S 8 - l l | x = X» consequently 

p - i i m Юд a ^ lim - i S e - S = q x . 
X s - > ~ log|,D s | l x s->oo l o g j p ^ j ^ X 

2) Obviously jjDsj|x = llD. sllx ' 
( P ) 

Proposition 5. Let X be a r.i.p-space of functions on (o,l| . For 

every p ^ p ^ p ^ and q
x
<q

1
<oo we have L (0,1)<-XCL (Q

t
l)

t
 the in­

clusion maps being continuous. 

Proof. Proposition 2.b.3-J4J settles the case p = 1. 
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For 0 < p < l f by Proposition 4, we get 1 ^ P i / p < P x / p
 = Px a n d 

qX = q X / p < q l / p < 0 ° * APP^ i nS again Proposition 2 .b .3- [4 ] i t f o l ­

lows that the inclusion maps L —J> X, * and X, v — * L_ are 
q1/p (P) (P) P1/p 

continuous. Hence the inclusion maps L — . » X and X — * L are al­

so continuous. m 

We recall the Theorem 2.b.6-[4] which will be useful in the se­

quel. 

Theorem 6. Let X be ay.i. space. Then p x (resp. q„) is the mi­

nimum (resp.maximum) of all numbers p with the following property 

for every £> 0 and every integer n, X contains n dis.joint functions 

(f.)? -j equally distributed such that 

(--*>( I^|ai lP> 1 / P< | i ^ - i h\\x< <1+*>< ^ iailP>1 / P 

for every choice of scalars (ai)i=1« 

We give further another interpolation theorem which extends the 

Boyd interpolation theorem. 

First of all we introduce the spaces L , whre p^r,q^©o .For 

p^r^oo and p^q<°° we denote by L_ o(0,l) the space of all Lebes-

gue measurable functions on 10,1]such that 

o 

For p^r^oo we denote by 1̂ , ̂ (0,1) the space of all Lebesgue 

measurable function f such that 

lifHr,oo= 8 UP tVr -•*(*><«• ' 
(For more detai l s about the spaces L see [ l j ) , 

Obviously L
q > q (0 .1) = L (0,1) and ftfj| = ||f|| , Moreover we 

have l l f l i r , q 2 ^H f l l r f q
 for 0 < q i ^ q 2 $ « > f l l , thus 

1 ^ ( 0 , 1 ) <". 1 , ^ ( 0 , 1 ) . 

Ey Holder's inequality we get: 

L r , ec^°^CLr a ( 0 ' 1 > C Lr o ( 0 ' 1 > 
3 - 2' q l • 1' q2 

where 0<r-L< r 2 < r , < ©o and q l f q 2 > 0 . 
The spaces Lp a ( 0 f l ) are topo logically complete metrizable vec­

tor spaces* (See [11). 
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If P^q<r, then the space 1^ q(0,l) coincides with the p-Lorentz 

space 1^ (0,1), where W(t) = — } - • t^37"1, 0 <t < oo . 

It is interesting to mention that L^ (0,1) cannot be p-renor-
p, oo 

med such that the p-norm be p-convex. 

Let now p ̂  r-^ oo and let T be a linear map defined on a subset 
of Lp (0,1) with values in LQ(0,1). 

1) The map T is said to be of strong type (r-^rp) for a sui­
table r 2£ [p,ool , if there exists a constant M > 0 such that 
||Tf|L <MliflL for every f ftom the domain of definition of T. 

r2 rl 
2) T is said to be of weak type (rii1^) for some r2 ̂ fPi0*] 

if there exists a constant M > 0 such that 

for every f .from the domain of definition of T. We make the conven­
tion that, for ̂ = 0 0 , instead of |(f j| we put ||f \\^ ^ ^llfil^* 

It is clear that an operator of strong type (r-. ,r2) is also of 
weak.type (r-,,^). Finally we remark that T is of weak type (r-,,rp) 

if and only if there exists a constant M > 0 such that 

_ l/r9 r p/r-, -1 r p 1/p 

sup t.(jA[s€ [0,1| ; lTf(s)U tj) ^ M C p / ^ ^ t X jf*(t)J dt) . 
o 

We prove now the extension of Theorem 2.b.ll-(4]. 
Theorem 7. Let 0 < p . ^ l and p^p-.< <h<c*> and let T be a linear 

operator acting from L - . ,(0,1) into L_(0,1). 
P^iP ° 

Assume that T is of weak types (p-pPp) and (qofQiK Then for e-
very r.i.p-space X of functions on |0,lj such that p., < p„ and (1X<<.11» 
T maps into itself and it is bounded on X. 

The following lemma is an extension of Lemma 2#b#12-J4]. 
Lema 8, With the same assumptions on T as in Theorem 7 there is 

a constant M< 00 such that 

((Tf)*(2t)]P<M [ \ [f*(tup u ^ 1 " 1 du + $ jf*(tu)]P u^1'1 du] 
o 1 

for every 0 < t < l / 2 and f €L^ ^(0 ,1 ) . 
P^tP 

Proof. Suppose that T is of weak types (p^P-^) and (^tQ^) w^th 

the constants M^ and M„ . Let f fcL^ ̂ (0,1) and for u,t£ fO,ll set 
V± q^ PltP L J 
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f f ( u ) - f* ( t ) i f f ( u ) > f * ( t ) 
g t (u ) = -< f(u) + f*( t ) i f f ( u ) < - f * ( t ) 

I 0 i f | f ( u ) | £ f * ( t ) 

and h t (u ) = f(u) - g t ( u ) . 
I t i s c lear tha t g+ ,h . eL^ -,(0,1) and we apply the fac t t ha t T 

x x PT_>P 

i s of weak type (p-pP^ to g t and of weak type (q-ĵ q-L) to h t . Note 

tha t g t (u ) = 0 for u t f r , 0 0 ) and g*(u)^ f* (u) for 0 < u < t . Hence,for 

t 6 1 , we have 
p / p - r- 4 t - i P ^ ° ... -, P P / P T 

t 1 [ (Tg t )* ( t ) ] 4Mp (p/px) $ [g*(3)] - d s ^ 
o 

n r r * i P P /P- r 1
 n Dx P / P I r r* n D P / P I " 1 

*M£ ( p / P l ) ^ [f*(s)J s 1 ds=MP ( j2) t 1 U f (tu)]Pu X du. 
1 o -1 X o 

Since | h t ( u ) | = min( |f (u)| , f * ( t ) ) , for t e [ o , l ] , we have 

t
p A i K>-«t,]p* # j« 5 K<s,]p s

p / q ^ a s . 
O 

«** . ^ . ( $ [ f * ( t ) ] p
 S

P / q i _ 1 d s + £ [ h ; ( s ) ] P s ^ 1 * 1 da) = 
o t 

n n q l r * 1 P P / q l H i f r * 1 p P / ^ l " 1 
=Mq/ V ^ ^ (t^ '* ^ 5K(tu)] U du)^ 

i 
n n P/qx Qi r r * - i p p / p i - 1 f r ; , * , r ? p P A h - 1 

*"S ' q~ * ( p J E (tu)J u du+ ) Lf (tu)j u " du). 

Since JTf) $ |Tgt| + |Thtl it follows that 

,*._.np. r. .*... ._ .*...-!n <-.- **. [(Tf)*(2t)]< [ (Tg t )* ( t ) + ( T h t ) * ( t ) ] p ^ [ ( T g t ) * ( t ) ] p + RTh t )* ( t ) ] P ^ 

^ fe + \ ) 5 & # ( t u ) ] p u ^ " ^ %-S [ f * ( t u ) ] p u ^ d u . 

o 
This proves our lemma with M = —̂  llP + M̂  . mm 

Pi Pi *L * 
Proof of Theorem 7« Let p and c^ be such tha t p-,<p < P x and 

q x < q < q ^ . Then there i s s > 1 such t h a t , for s ^ s , we have 
lo£ s ^/Po 

po < log||D8Hx * G o n s e ( 5 u e n t : ^ H D s | l x ^ s f o r s » V 

Since s —>• iog°m h * s a n increasing function on ( 1 , 0 s ) , i t 

. - /P Q 

follows tha t there xs K<"« such tha t l p s l | x < K s for 2«s««=o . 
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1 / q « Similar ly, we can assume tha t j|Dsjlx4K s for 0 < s ^ 2 . 
Let now g S.X1 = [X/ x"| such that ilgllx, = 1 and put on 

j g ( t ) i f t < l ~ 
£ ( t ) = I 0 i f t > l • 

Then we get 
1 1 1 °° 
C ( 5 [ f* ( tu /2 ) J p g( t )u P P l ~ du)dt = ̂  uP P l ( ) (D 2 / u f*) p ( t )g( t )dt )dU6 
0 0 0 ° 

L(p) 
P/P -1 T 

= 2 ° Kp (B- - £-) ||f||p for f € X . Moreover, for 0 < t « i ± , 
J r l -• O 

l o o . *o , , 1 

5
/ .-. j . -; p /qT""-- /*- P/Q:i ""*-• r* 4tr 

( ) |f (tu/2)]pg(t)u - du)dt=5u X ( ^ (D2 / uf ) p ( t )g ( t )d t )du* 
o 1 1 0 

^ u P / q ^ | |D2 / u l ip * ||f||p * * ||filp Kp 2P / Po J U
P / ^ P / % - X

 d u . 

= ||filP'2P/q°Kp (J--*-)"1 . 
X qo ql 1 
E&r Lemma 8 it follows that C jjTf )*(t)] pf (t)dt^MQ||fi|

p for g€X» 

° -1 P/P 
such that ||g||Yt = 1. Here Iff = MK

P (£- - ̂ -) 2 ° + 
-*. ° pl po 

p / qo o D -1 

+ 2 (-K -=-—) , M being the constant appearing in Lemma 8. 
% ql 

Hence (Tf )p€ [x( x]" . In other words Tf <=[ [X(p)] * V
P ) = x"» Mo" 

reover ||Tfllplt = ||(Tf)
p||x„ < MQ ||f||

p . 

If X is maximal, then Tf fcX and ||Tfilx^M0 j|f||x. Since L (0,1) 

is a maximal r.i.p-space, then it follows as above that T(L (0,1))C 
^o 

C L (0,1). X being the closure of L (0,1) for the topology of X" 
qo % 

it follows that T maps X into X and it is bounded there. m 

Since p x = qx = r>l, when X = 1^ D(0,l) where 0<p^l<r<<-*> , 
we get a r.i.p-space X non locally convex such that l < p x . $ q x < o° • 

We shall give an application of Theorem 7. 
Let X be a tT-subalgebra of (P (the (T-algebra of all Borel subsets 

of I = [0,l]) such that the Lebesgue measure restricted onUc is (T-fi­
nite. For f6L(0,l), the Lebesgue-Nikodym theorem shows the existence 
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of a uniques-measurable and Lebesgue integrable function, denoted by 

E f, which verifies the relation 

J. A 

{ (E^)g űt = ̂  gf đt 

for every bounded A -measurable function g on [6,1] . 

It is clear that f — > E f is an idempotent operator. This ope­

rator is called the conditional expectation and has the norm one on 

L,(0,1) and L O 0(0,l) # Thus -the norm of E is equal to 1 on L (0,1) 

for all 1<£ q^o»-

Corollary 9* With the notations of abovet if 0<£p .cl^p-^q-^oo 

and if X is a r.i.p-space of functions on J0,l] such that Pi<Pv-<r 

^qx<fcq-,, then E^maps X into itself and it is bounded on it. 

Proof. Since p-,> 1 then E is an operator of strong types(Pi>Pi) 

and (q^tQ^). Thus by Theorem 7 E maps X into itself and its norm 

does not depend on Jk . m 

Now we give an interesting application of Corrolary 9. Recall 

that the Haar system (X1)n=-i is given by 7L(t)s. 1 and, for 

£=1,2,...,2k and k = 0,1,.,.., by 

r 1 for te |?26-2)2'"k"1, (2£-l)2"k"1) 
X k (t) = j-1 for t€ |2e-l)2"k"1, (2£.2"k""1) 

(̂  0 otherwise. 

N.J.Kalton showed in [jj] that in a p-Orlicz space X the Haar 

system is a Schauder basis (i.e. every f ex admits a unique expan-• 
oo 

-V , ,oo . „ . . . 

sum sion f = / a±%±f where (%)/_.! is a sequence of scalars and the 

converges for the topology of X) if and only if X is locally convex. 

Particularly, the Haar system (?L)n=1 is not a Schauder basis 

in L (0,1) for 0-trp<l. (See [6]). 

Thus it is natural to ask whenever the Haar system is a Schau­

der bapis in a r.i.p-space, for 0«<p<l. In order to answer to this 

question we associate to the Haar system an increasing sequence of 

(T-algebras i^ n} n = : 1 of Lebesgue measurable subsets of [6,1] . <J-al­

gebra Jk consist of the vanishing set 0 and |0,l} . For n = 2 + t, 

l^£^.2k, k^O, *#n is the -T-algebra spanned byjf -̂  and the intervals 

[(2£-2)2"k-1, (2e-l)2-k""1), [(2£-l)2-k-1, 2^2" k- 1). It is clear that 

c£n is the smallest (T-algebra ̂ such that the function ^3L,..., %\ 

are & -measurables. 

We can now prove the following assertion. 

Corollary 10. Jf X is a separable r.i.p-space of functions on 
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Jp,l] such that 0 < p < l 4 P 1 < P x . < q x < q 1 ^ c x > i then the Haar system 

^^i^n=l *3 a Schauder basis of X. 

Proof. Since X is not isomorphic to L00(0,1) then 

lim IIX/Q t\||x = 0. Consequently every simple function on Q0,l] can 

be approximated in the norm of X by the characteristic functions of 

dyadic intervals 2"k,( +l)2"k), 0 2k-l, k = 0,1,... 
It follows that the Haar system spans a dense subspace in X. 
Observe also that for n m and for every choice of scalars 

a. j? , we have 

m n 

-fn ( ]T 1^) - ]T a.Xi 
A 

and, by Corrolary 9, it follows that ||E ̂ L ^ M for all nelN. Thus 
^^i^i=l *8 a bas*c seciuence in X. (see Theorem III 2.12-|6J ). m 

Remark 11. The restriction imposed in Corrolary 10 that 1< p x ^ 
^qx<<x> is necessary, since in the case Py^l or qy-°* Corrolary 
10 is not merely true. 

For instance it is known (see [l]) that L_, (0,1), where (Xr<l, 
r, q 

0<q<oo and L-, „(0,1) for l<q<o> , are r.i.p-spaces X, where 0^P<-
<r<l, such that X = \0j. Moreover p x = q x^l. 

View of Remark 11 it is natural to ask following question. 
Problem 12. Does there exist a separable non locally convex r.i. 

-space X such that p x = q,. = 1 having a Schauder basis ? 
It is clear that in Lr (0,1), where 0<r<l<q<<*:> , the Haar 

system is a Schauder basis and however L„ ,,(0,1) is not locally con-
vex. 

We are further interested to know whenever the Haar system is 
an unconditional basis in a r.i.p-space of functions on |o,lj . We 
recall that a Schauder basis in X is an unconditional basis if the 
expansion of every element of X with respect to this basis conver­
ges unconditionally. 

It is interesting to remark that the relation l<px^qx;<©o is 
a necessary and sufficient condition for the unconditionality of the 
basis ( X n ) ^ 1 in every r.i.p-space X. We extend in this way Theorem 
2.6.6-[4]. 

Theorem 13. Let X be a separable r.i.p-space of functions on 
Jp,l] . The Haar system (#n)^i is an unconditional basis in X if and 
only if K p x ^ q x < o © . 

Proof. If K p x ^ q x < « » then by Theorem 7 and using the fact 
that the Haar system is an unconditional basis in L (0,1) for all 



214 NICOIAE POPA 

K q < o o (See Theorem 2.C.5-J4J), we get that the projections E-from 

X into the subspace P-Tli^cr^ x» where CTd Cj is a closed subset, are 

uniformly bounded. Thus (X- )jZ± is an unconditional basis in X. 

Conversely, assume that ()(.)., is an unconditional basis in X. 

By Proposition 4, p x
 = PY/ D > consequently Theorem 6 shows 

that -£pv (n) spanned by positive disjoint elements having the sa-
X(P) 

me distribution function are uniformly contained in X, N# It follows 
p *P' 

that X contains uniformly the spaces £p„(n) spanned by positive dis­
joint functions having the same distribution function. 

In other words there is M > 0 such that for all neiN there are 
2 n 

2 disjoint functions (u. ).:_-i having the same distribution function, 
such that ||u. || = 1 and verifying the inequality 

|!L p V P X 2^ ^ p I /P X 

C*> M( I " ||uJ|x
X) >H } ~ u-|| > IT1 ( / j|u.|| x) 

1=1 1=1 A 1=1 A 

Let (h. ) , the Haar system over (u-) ,, defined by 
1 i=l x i=l 
-n/pv 

hl = 2 < ul + — +\n> 
-n/p. 

21 

X h 2 = 2 (ux + ... + u ^ - ̂ n. 1 + i - ... " "2n) 

-n/pY 
h
2n-l + 1 =2 <ul " u2> 

: -n/Pv 
h
2n

=2 ( V J " V ' 
Since X is separable we can assume that u. is a finite 

linear combination of characteristic functions of intervals 
(-c--l)2~ , -i.#2~" ) for some k non depending of i, Applying a suita­

ble automorphism of [o,lj we can suppose that on the first 2 n dyadic 
intervals of length 2" every u. is non-zero exactly on some of tho­
se intervals and takes there a value nondepending of i, say f>-,m The 
same fact is also true for the following 2 n dyadic intervals of len-

-k r> £ 

gth 2 , where f>-^ is replaced by p 2
 and so on* 

Thus, for some me IN and some scalar s (f3-)m_-, we have 
m 

ui = IZ (Mr n -k n -k l-£i£2n. 
1 j=T ' J £i-l+(j-l)2n)2 % (i+(j-l)2n)2"ic), 

Remark that 
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n / p ү ч-— л 

2 h, . u, . . . . . . - п - . . . - „ . > Ą Г 

n / p л 

J = l u 2 +J 
m 

-5 = ui +.-.+ v - 2 " V-2

+i • - " V-1= S ^ z ^ W i 
n/p 

X . łU = u 2 *;hи ^ n - l ^ + . . . + u „__- _ _ 9 - u __- „ _ 9 - . . . - u 

m 
4 2 " " x + l ••• u

2 n - l + 2 n - 2 " 2

Пялl+2n~$l ***"" 2 n 

s .J=T ^ X 2 k - n + 1

+ 2 j ' 

~>n 
and so on. 

In other words in .j . p constitutes a block basis for a permuta-
J J~*--

tion f̂ of the Haar basis (X„)__-, of X. Thus the unconditionality con-
2
n
 n n

~
1
 2* 

stant K of jh .j .
 2
 (K is equal by definition, to sup$||£ aiQini'.x 

2 n
 1 = 2 

|| / a.hJL^.1; 0. = + lj ) is less than K x, the unconditionality 

oo 

constant of the basis (X n) n =_ of X. 

Let now Tn : [uj f^± — > ^ p (2
n) given by T ^ u ^ = e±, 1£ i^2 n, 

be an isomorphism which (by (*)) satisfies the relation 
JITJI-IIT^H^M2 for all n£N. 

If s- : ̂  (2n) *L-. (Of1) is the isometry given by SCe.) = 
n PY P Y 
n/p„ 

= 2 X - „ » then u = s„o T verifies the condition 
A[(i-l)2-n, i 2"n> .n n n 

KINK1!!*.-*2 n = - . - » — and moreover we g e t 

f o г l $ i $ 2 n , n = l , 2 , . . . 

W .X± 

Thus the unconditionality constant of the system (h.)•_, is the 

same, up to a factor M , as that of first 2
n
 elements of Haar system 

in L (0,1). If p
v
^ l , since the Haar system is not an unconditional 

p
x
 X 

basis in L_ (0,1), then it follows that K — z r ^ 0 0
 • Consequently Py- TI n 

^X ~°° w n
^

c n
 contradicts the fact that (X

n
)

n
^

1
 is an unconditional 

basis in X. Thus 1< p
x
 and similarly we can prove that q

x
«c. oo

 # 
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Consequently the Haar system is an unconditional basis in 

J-v (OJ 1), where 0<q<l<r-c<-x>, in spite of the fact that this spa-

ce is not locally-convex. 
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