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ENTROPIC DIMENSION OF UNIFORM SPACES 

Jiří Vilímovský 

It will be shown that the concepts of the "entropic" dimen­

sion of compact metric spaces due to Pontrjagin and Schnirelmann 

[4] and the "approximative" dimension of locally convex topologi­

cal vector spaces due to Pietsch [3] may be generalized to the 

case of a general uniform space. Comparison of this type of dimen­

sion with the covering dimension Ad will give the common generali­

zation of several results obtained in [3] and [4} • 

Throughout the paper we will refer to [2] for basic definiti­

ons and results pertaining to uniform spaces and covering dimensi­

on. If A is a set, we shall denote H(A) the hedgehog over the set 

A, that is the set of all pairs <a,x>, a€A, 0i=x^1, where we con­

sider <a,0> = <b,0> for all a,b€A (the body of H(A)). The unifor­

mity of H(A) will be defined by the metric 

x + y if a 7- b 

\x - y) if a = b 

Recall that H(A) is a onedimensional infective uniform space [2], 

and that every finite-dimensional uniform cover of a uniform spa­

ce may be realized by a uniformly continuous mapping into a suf­

ficiently large product of hedgehogs [1]. 

At first we refine the last result in finding even n-dimen-

sional spaces Tn(A) such that every at most n-dimensional uniform 

cover of a uniform space may be realized in Tn(A) for some suffi­

ciently large set A. 

Definition 1 ; Let A be a set, we define for all n^cj the uniform 

subspace T (A) of the product H n + (A) of n+1 copies of H(A) as 

follows: 

T (A) = !^a,1>; a * A \ with the uniformly discrete uniformity inhe­

rited by a cannonical embedding into H(A). 

Tn(A) = TQ(A)x H
n(A) u H(A) * TQ(A) *H

n~1 (A) u ... UHn(A) xTQ(A) 

for n^1, the uniformity of it is induced by the cannonical embed­

ding into En*](A). 

d(<a,x>,<b,y>) = {, 
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So T (A) is a subspace of H (A) consisting of all points, at 

least one coordinate of which lies at the end of some spine of 

the hedgehog. 

Immediately from the definition one may observe that the di­

mension AdT (A) = n for every n 

Theorem 1 : Let X be a uniform space, then fldX£n if and only if 

for every uniform cover u. of X there is a uniformly continuous 

mapping f:X—*>T (A) realizing vi , where A is any set of suffici­

ently large cardinality. 

Proof: Take for A any set such that all uniformly discrete famili­

es in X have the cardinality at most |A|. X has a cover-basis 

consisting of covers of order at most n+1, therefore starting 

with any uniform cover li of X, we may find a uniform refinement 

U of w of order at most n+1. We take w. a strict shrinking 

of ^ and V a uniform (n+1)-discrete refinement of *U* . 
eU" = LyVvL; k=1 ,... ,n+l\ , where U, are uniformly discrete fami­

lies in X. We take the natural uniformly continuous mappings 

f,: v^iX —*T (A). H(A) is an infective uniform space, hence 

every f. may be extended to a uniformly continuous f, :X—^H(A). 

Now we define for every xeX f(x) =\f, (x); k=1 ,... ,n+lV« f is uni­

formly continuous into Hn (A) and ranges in T
n(A), because V 

covers X. From the construction now easily follows that f~ (V) 

refines *U for a suitable uniform cover (VT^of T (A). 
n 

The sufficiency of the condition is evident. 

Definition 2 : Let d be a pseudometric on a set X, UcX, £ > 0. 

We shall denote ( cf. [3]) 

Mt(U,d) = sup|m €6J ;3
 x p • • • fx

m^ ^ such that d(x. ,x.)>X 

for all i t j ̂  

If U is precompact in d, the numbers M£(U,d) are finite for 

all £>0 and the asymptotic behavior of the function M^ of vari­

able £>0 for €—*0 may serve as a measure of complexity of the 

space (U,d). We recall two (slightly modified) classical results 

mentioned in the foreword: 

Theorem PS Ul : If (X,d) is a precompact metric space with AcLX >/nf 

then there is a constant c>0 such that for sufficiently small £>0 
w e h a v e M,(X,d)>-^-

£ » £Hl 

Theorem P f3}: If E is a locally convex topological vector space, 

the (algebraic) dimension of E is at most n if and only if for 

every continuous seminorm p we can find a neighborhood U of 0, 

such that 
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Me(U,pM 
lim — < °° 
t-o £ " n 

where p'is the pseudometric related to the seminorm p. 

Our aim is to generalize this sort of ideas and find a tool 

for measure of complexity of a uniform space using metrics and 

compactness even for spaces which are fare from being metrizable 

or (locally) precompact. At first we prove the following technical 

lemma: 

Lemma 1 : Let 3*j...,d be pseudometrics on sets X.j,...,X respec­

tively. Denote «l(di ( I x ^ ^ y ^ ) ; i=1,... ,n\ = m a x ^ (xi,yi); i±n\ 

TTdi is a pseudometric on TTx.. If U.CX., then the following 

inequalities hold: 

TTifgOJ^^) -̂  Me(TTui,TTdi) ^TTMt(ui,di) __ 
Proof: Suppose D<cU. is ^-discrete in d. , then llDi is C-dis-

crete in TYd., therefore the first inequality is valid. 

The second inequality holds evidently for n=1 , because every 

£-discrete subset is 5 - discrete. Assume the validity of the 

inequality for k and take the set TT^U. ; _AL-=1 , • •• ,kS x U,+1. 

Every * - maximal discrete subset -̂ x.; j=1,...,m^ of U,+. is an 

5 - net in UJ.J, that means that all open balls B(x.,l), j=1,«.#,m 

in pseudometric d.+1 cover the set U.+.J. 

Using our assumption we claim that for every j = 1,...,m there 

are at most TT^MjCU^d. ); i=1,..,,k\ points forming an £ -discrete 

family in the set H\U.; i=1,...,k\x B(x.,*) , hence every 

€-discrete family in f T ^ ; i = 1,...,k+lS has at most 

m-H\Mc(U. ,d.: ); i=1,...,k\ points. The result follows now by in-
. T 

duction. 
Definition 1 : If Hi is a family of subsets of a set X, d is 

a pseudometric on X, €>0, we define 

M e ( % d ) =- supI)M£(U,d); U e ^ l , 

Definition 4 : If X is a uniform space, the family 2> of uniform­

ly continuous pseudometrics on X will be called a base for X, 

if for every uniform cover ^ of X there is a pseudometric d € fi) 

such that ^ is a uniform cover of a pseudometric space (X,d )• 

Definition 5 : Let X be a uniform space. We shall say that the 

entropic dimension of X is at most n ( EdX^n ), if there exists 

a basis *) for uniformly continuous pseudometrics on X such that 

for every d €-2) there is a uniform cover *U of X such that the 

following is true: 

M£(
cU,d) 

Til „ < *o 
t->o £~n 
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Proposition 1 : For any set A, EdH(A)^1. 

We notice that the usual metric d on H(A), though it is the 

most natural basis for uniformly continuous pseudometrics on H(A), 

cannot be used for our purposses, because no neighbourhood of the 

"body* is precompact in this metric. In spite of it it is possible 

to find another basis for uniformly continuous pseudometrics on 

H(A) having the desired properties. 

Proof of Proposition 1 : For every n£N ( natural numbers) define: 

t 0 i f r , s ^ i 
1 n 

dn«a,r>,<b,s>) ={ s " 5 i f r « H » s > 5 
- s | i f a=b, r , s > -

+ s - 2 i f a^b> r , s > i 

Every d is a pseudometric on H(A) and the family *u = |d ; n ^ N ] 

is a base for uniformly continuous pseudometrics on H(A). Take 

any d„ € <2) and put iJ the uniform cover of H(A) consisting of 
n ^ 1 

all balls with radius pT with respect to the usual metric d. 
Then evidently -

Mg(
cUnfdn) ^ ^ for all £>0. 

Now we are prepared to prove the main result: 

Theorem 2 : Let X be a uniform space, if AdX -=. n , then EdX 6 n. 

Proof : Using Theorem 1 we can find a set S and a family 

^f ; a € j \ of uniformly continuous mappings from X into ?n(S) 

such that for every uniform cover w of X, f" (VT) refines *IX 

for some a € J and some uniform cover t0" of Tn(S). 

Take pfcu), we shall take the following basis 2) for uniformly 

continuous pseudometrics on a product HP(S): 

2) = \ I l-yd- ;i= 1 ,... ,p S i d. 6 ®iT > where *cA are the bases on 

H(S) from Proposition 1. 

Take any d = 1 I d. £§/• For every i we take a uniform cover \i-

of H(S) such that 

M f ( U ,d. ) 4 -1 for every €>0 . 

Now take a uniform cover *t* of HP(S) defined: 

U - i T T ^ ; i = l , . . . , p V ; U-eit-V. 
Using Lemma 1 we may estimate 

M£(<U,d) £ I l(Mi(Ki,di) ; i = l,..,tpM 2
pS~p 

for all £>0. Furthermore L-(/. may be taken as fine, that their 

restriction to T (S) consists of singletons only, hence for all 

diC(2>i, 0 < £ < 1, there is 
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M£(9jtihT0(S), dihT^(S) ) « 1 

If we put p = n+1, c&* = J^T n(S)*T n(S) ; d<Sk2)V» then &% is 
a basis for uniformly continuous pseudometrics on Tn(S) and for 
every d £ S>* we are able to find a uniform cover *\jl of Tn(S) such 
that for 0 < I < 1 there is 

M - ( % d ) £ (n+1) 2ntTn 

All pseudometrics on X of the form d«f , a£J, &&&)' form a ba-
a 

sis for uniformly continuous pseudometrics on X and we have 
M£( f ^ 1 ^ ) , d-f* ) ^ M£(<M,d) 4=. (n+1) 2 nC~ n 

for all a £ J and all 0 < I < 1, hence 
JT^ M£(f;

1(<U), d-f^) < (n+1) 2n < ^ 
t->o £-n ^ 

for all afcJ, and hence EdX£n. 
We may define EdX = n if EdX^n and EdX -£n-1, and also 

EdX =<o if EdX i£n for all natural numbers n. Under this notation 
we may reed the preceding theorem as EdX £ AdX for all uniform 
spaces X. 

Unfortunately we do not know any example of a uniform space 
where Ed differs from Ad. At least for some spaces we are able 
to deduce that Ed coincides with Ad. 
Proposition 2 : Let X be either precompact or uniformly embeddab-
le onto a convex subset of a topological vector space. Then 
EdX == AdX. 
Proof: If EdX = *o , the statement follows from Theorem 2. Suppose 
that EdX£n. 
If X is precompact, we can find a basis &) for uniformly continu­
ous pseudometrics on X such that for every d 6<® there is a fini­
te uniform cover ^ of X with 

Mt(<\Jl,d) Mc(X,d) 
lim — < °o , hence lim — — - — < °o . 

Using Theorem PS we get that d is at most n-dimensional, therefore 
AdX ^ n. 
The second case follows from the first one, because each at least 
n-dimensional convex subset of a topological vector space contains 
a precompact subspace of dimension at least n. 
Concluding remarks: The entropic measure of complexity of a uni­
form space may be used to classify also more complicated spaces 
than the finite-dimensional ones only. If one defines for a uni­
form space X with basis ©2) for uniformly continuous pseudometrics 
£(X,jD) » -|if : (0,1)—• (0,*> ) ; for every d*£) there is a uni­

form cover U of X with lim to) i M*(
cll,d) < oo\ , 

t->o r v t' 6 ' 
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and for a uniform space X 
£(X) = - [^ {£(X,o©) ; S i s a basis for uniformly continuous 

, ^ pseudometries on X j , 
then £(X)/also for many infinite-dimensional uniform spaces and 
may serve as the dimension-like classification of X. For example 
it follows directly from a result of Pietsch [3] t that if X is 
a nuclear locally convex topological vector space with its natu­
ral uniformity, then 2£ belongs to £(X). 

Using this notation the^main results of this paper reed as follows: 
If AdX is at most n, then £~ n belongs to £(X). 
If X is either precompact or a convex subset of a topological 
vector space, then AdX£n if and only if £"n € £(X). 
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