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SIMULTANEOUS STRATEGIES AND BOOLEAN GAMES OF UNCOUNTABLE LENGTH

Peter Vojtas

The paper is devoted to the study of the existence of a
A -closed dense subsets of a Boolean algebra under certain game-
-theoretical properties., T.Jech in [3] introduced the following
game, Let B be a complete Boclean algebra and « an ordinal nmun-
ber, The transfinite game ?(B,o() is played between two players
White and Blaock., Let White and Black define a decreasing sequence

b
wo>b1>/w2;b3> eeoe /Wﬁ+2n?‘bp+2n+1) a-vo (1)

of nonzero elements of B of the length € & by taking turns defi-
ning its entries, (White chooses Yo g2n ! for (> limit <ol new;

Black chooses b{$+2n+1) The play is won by Black if the sequence (1)
has nonzero intersection and length o« , and by White if the inter-

seotion is O , A winning strategy for Black in the game g(B,«i) is

a function 6 : UiF’B :[!;&ol}——-)B with the property that Black wins

every play (1) in which he follows & .,

Theorem 1 (T.Jech EBJ). Assume B 1s a complete Boolean algebra and

A an uncountable cardinal number. Then (a) —>(c)—>(d), where

(a) Algebra B has a A-closed dense subset,

(o) Black has a winning strategy in the game §(B,T ) for each % <A,
(d) Algebra B is (7,2 ,2) distributive for each T <A .,

Basically, our research was motivated by the question whether
(c)—»(a), i.e. whether the existence of winning strategy for Black
implies that B has a A-closed dense subset. The following defini-
4ion concermns the structure of the set of all strategles and is
powerfull also for limit cardinal numbers.

Definition 2, We say that Black has a simultaneous winning strate-
gy of the length A in the algebra B if there is one strategy
6:J{*B :d<A} —>B such that & is winning for Black in each
game 9(13,0( ) for &4<A,

Lemma 3. (a)—»(b)—> (o), where

(a) and (o) are as in the Theorem 1, and
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(b) Black has simultaneous strategy for B of the length 4 ,
PROOF, Is obvious,

In what follows we desoribe a type of algebras for which
implication (b)—> (a) holds, namely the ones which has a tree-base,
We give some conditions under whioh a boolean algebra has a tree-
-base, As a consequence we get an characterization of the algebra
Col (A,K). At the end of this paper we give some historiocal
comments.,

§1, Notations, definitions, constructions. Let B be a complete
Boolean algebra, < is the ocanonical ordering of the algebra B,
A,R, T are ocardinal and ot ,/3,3’“ ordinal numbers, Lim denotes the
olass of limit ordinal numbers. BY = B -{O}, Blu is a partial
algebra, hsat(B) denotes the hereditarily saturatedness, By P and
Q we denote a maximal partition of B, system ® = iPuL 1 d<d) is
called a matrix, P, °s are colums of ® , x € By is an element of
the matrix ® , P<<Q denotes that P refines Q, P<< @ if P refines
each P . ® is said to be monotone provided A< implies Py << Ry
Remark, that if ® is monotone, then (U®, &) forms a tree and B
is the A -th level of this tree. Let (2 = {Q,,_ : <A} ., Then £
refines (O if each Qy refines P, . For XEB+, XAAP ={yAx:yeI_’l}nB+.
The algebra B is said to be (A, ,X)-distributive provided for any
matrix ® = {P*:oi<3} there is a maximal partition P of B such
that (VxeP)(Va<A)(IxAAR <A ), Algebra B is oalled (A,~,%)-no-
where distributive if for each x€& B* the algebra Blx is not

(A,02 ,K)-distributive. Recall that B is (A,09 ,R)-nowhere distri-
butive iff there is a matrix ® = de : A <A} such that for each
x €BY there is some ol <A with le\'\Po‘ 12 , In this ocase we say
that ® is a matrix witnessing to (A,90,%)-nowhere distributivity
and if B is (T,99,2)-distributive for all €<«A (e.g. if B has si-
multaneous winning strategy for Black of length A } then @ will
be assu.med to be monotone, We say that D& B+ is a A-o0losed dense

subset of algebra B (we say sometimes base instead of dense sub-
set) if (VxeB*)(@yeD)(y4x) and for every decreasing sequence
ga* : d €TYISD of the length T <A there is an ye& D such that

y £a,y for each <«T , d(B) denotes the density of B, A matrix

®= {p, : 42 A1 1s said to be a tree-base of the algebra B of the
length A if U® is5 a base (1.e. elements of (® form a base) and
® 1s monotone (i.e. (U®,%) is a tree). For unexplained notation
we refer to [2].

§2, Tree-base, game-tree and simultaneous strategy. The idea to
construct a A-olosed dense subset of a Boolean algebra from a
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tree appeared independently in f 1] ana [ l&]. We develope the tech-
nics of [4] to obtain more general results,

Theorem 4, Assume B is a complete Boolean algebra which has a
tree~base of the length A and B has simultaneous winning strategy
for Black of length A . Then B has a A -closed dense subset,
PROOF, The idea of the proof is following., We introduce a natural
notion of a game tree according to strategy © for Black in which
every branch is a play of game g in which Black follows & and
the elements of the tree split on even levels (turns of the White)
and odd levels are determined by even ones and 6, Then by trans-
finite induction we construot an game-tree according to © which
refines the base @ and this is the desired A -closed base.

Let ®= ip, :422] be a tree-base of B and 6 is a simul-
taneous winning strategy. A tree (T,4) is called a game-tree of
length A according to the strategy & if

(1) TSB*, £ is the canonical ordering of B, T has length 7

(i1) (Vo e ?ﬁﬁld.m)(Vnew)To“Zn“ is a maximal partition of B
(where Tp, denotes the [ -th level of the tree T)

(111) (Vxe Td+2n+1)(x =6 (pr(x))) (where pr(x) is the sequence
of predecessors of x in the tree T).

Note that any branch of T is a play of game g in which Black
follows & , so it is of the length A . So if T is a base of algebra
B it is a A -closed base. To this end we have to comnstruct a game-
-tree T which refines the tree base @ ie.

(iv) (Yl € A oLim)(Vnew ) (T, o9 Pian)

Assume that T'(pl+2n is construoted already., For ’.l‘(’““,an take the maxi-
mal system such that

(v) Typon Tofines T ., o,

(vi) {6 (pr(x),x) : xETOH_zn} is a maximal partition of B
which refines l'*:’(_'_n o

This is possible because 1{‘“_‘_2‘1 is a game tree of the length
J+2n according to the simultaneous strategy © of the length A>c/+2n,
algebra B is complete and (do,00,2) distributive.

q.e.d.

Now we oconsider the question, when does there exists a tree-
~base for a Boolean algebra, We need the following techniocal lemma,
Lemma 5, Assume A is an uncountable cardinal number, B is a comple-
te Boolean algebra which has a simultaneous winning strategy for
Black of length 4 and ®= {Pd_ :d<2} 1s a monotone matrix

wittnessing to (4,% ,)-nowhere distributivity of B. Then for each
xeB* the following holds
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(1) l{(y,d) : yeR @ xay £O Y2 wd (i.e. x intersects many
elements of the matrix & )
and (11) hsat(B) > ©2
PROOF, The main idea again is to construot something like a game
tree of type (7%, S ), but its relation to the matrix () is a little
bit more complicated as in the Theorem 4,

Assume w.,l.,0.g. that x = 1 , In fact for (i) we have to prove
that |LW® 12%®, The existence of simultaneous strategy of length
A implies (T,90 ,2)-distributivity for T <A and B is (4,0 ,C)-no-
where distributive - we l;ave that A is regular, By transfinite
induction we construct F and T such that

(1) TS U® is a Boolean tree (i.e. (i) of Theorem 4 holds)

(11) F : Ui%%:d <A} >T is an tree isomorphism

(111) for each f & AK the sequence F(fl 0) = wor (W)= by,
2 = b AR(E 1), by =8 (), 0w, o0 =\ ity :p< oL +2n IAF(£ld+2n),
bo(+2n+1 = g("x+2n)'"' is a play in whioch Blaok follows © - the
similtaneous strategy of the length a.

As T & U® and ® is monotone and A is regular we have
immediately (i). Ford«A T, is a disjoint system, so hsat(B)> ﬁ‘-"a.
Ir ﬂf‘ >A then k2 is a singular ocardinal number and so hsat(B)> lCd.
If ¥"= A then using & we can construct a strictly deoreasing

tower ito(: d<AY  and then 'it,L- 1:':“_'_1 : A<AT is the desired

w

disjoint system of power K“= A3 .,

q.e.d,
Theorem 6. Let B be a (4,00 ,K)-nowhere distributive complete
Boolean algebra with density d(B) = c? for which the Black has
simultaneous winning strategy of the length A . Then B has a tree
base of length A.
PROOF. Let DS B* be a base of, size ’Cé. As each element of D inter=-
sects I?‘.aelements of -(), = {Qd: ol<7-l}- a monotone matrix witnessing
to (4,00 ,K)-novwhere distributivity - there is a one to one mapping
£ : D—>UL), such that xAf(x) # © ., Split each y erng(f) into
two elements y/\:f‘"'1 (y) and y - £ (y) . We obtain a matrix '
which refines D , i.e. UL is = base, Using (Z; 2°,2) distributi-
vity for each 7"22A we obtain a monotone matrix @ - the desired
tree-base,

q.e.d.
Corollary 7. Let B be a (ﬁ,w,f)-nowhe:'e distributive complete
Boolean algebra with density d(B) = K~ which has a simultaneous
winning strategy for Black of length a  Then

B ¥ co1(2,c2) = co1(a,r) .
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PROOF, From Lemma 5 we have hsat(B) =(IC“'-‘,+ 80 in the construotion
of the Theorem 4 we can add the condition

(V2O ot )17 €Ty 1 722 H200)

The base we obtain is isomowphic to the base of the algebra
col(a, c3),
q.e.d.

We have seen that the existence of a tree base is important.,
Observe that if B has a tree base of the length 7} and IC< hsat(B)
then B is (A,00 ,K)-nowhere distributive., About inverse impliocation
we know only what Theorem 6 says,

The case A = w; was studied in (4], This paper is a genera-
lization of the results of [ 4] for A = w, . For nonlimit oardinal
numbers M,Foreman in [1] proved that if K = AT, a¥=2 , B is
(3,00 ,2)-distributive, d(B) = A ¥ and Black wins g (B, ") then
B has a 3'+-olosed dense subset, Our technics works without cardi-
nal assumptions and also for limit cardinals, but needs stironger
strategliocal gssumpt:l.on.

The notion of the simultaneous strategy gives a view into
the struoture of all strategies. The problem, whether (c) —>(a),
((a), (b), (o) are as in Theorem 1 and Lemma 2) ocan be splited
into two: whether (o)—> (b) and (b)—>(a).
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