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SШULTANEOUS STRATEGIES AND BOOLEAN G.ШES OF UNCOUNTABŁE LENGTH 

P t r Vojtáă 

The paper is devoted to the study of the existence of a 

A -closed dense subsets of a Boolean algebra under certain game-
-theoretical properties, T.Jech in C3-3 introduced the following 

game. Let B be a complete Boolean algebra and o£ an ordinal num­

ber. The transfinite game Q(BtcL) is played between two players 

"White and Black. Let White and Black define a decreasing sequence 

w0 * b1 * w2 *b3 > ' ' • > wA+2n^ V
2 n + 1 > '•" ( 1 ) 

of nonzero elements of B of the length -= ̂  by taking turns defi­

ning its entries. (White chooses ^ + 2 T I »
 f o r P* ^-k^* < °̂  ,n6<-° -

Black chooses b« 2 i ) ̂ rne Play 3-s w o n by Black if the sequence (1 ) 

has nonzero intersection and length o£ , and by White if the inter­

section is 0 . A winning strategy for Black in the game Q(B,<£) is 

a function G> : U f *B : (i<-o-.}—*B with the property that Black wins 

every play (1 ) in which he follows §" • 

Theorem 1 (T.Jeoh C3j). Assume B is a complete Boolean algebra and 

3 an uncountable cardinal number. Then (a)—?>(o)—>(d), where 

(a) Algebra B has a 3-closed dense subset. 

(o) Black has a winning strategy in the game Q(B%*£ ) for each^"^. 

(d) Algebra B is (^,^,2) distributive for each T <-A . 

Basically, our research was motivated by the question whether 

(o)—>(a), i.e. whether the existence of winning strategy for Black 

implies that B has a 3-closed dense subset. The following defini­

tion concerns the structure of the set of all strategies and is 

powerfull also for limit cardinal numbers. 

Definition 2. We say that Black has a simultaneous winning strate­

gy of the length % in the algebra B if there is one strategy 

^ : LJl ^B : <£< A J =>B such that 5" is winning for Black in each 

game Q(BfeL ) for <£*/) # 
Lemma 3. (a) —> (t>)—> (o), where 
(a) and (o) are as in the Theorem 1, and 
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(b) Black has simultaneous strategy for B of the length A . 

PROOF. Is obvious. 

In what follows we describe a type of algebras for which 

implication (b)—» (a) holds, namely the ones which has a tree-base. 

We give some conditions under which a boolean algebra has a tree-

-base. As a consequence we get an characterization of the algebra 

Col (•),#). At the end of this paper we give some historical 

comments. 

§1. Notations, definitions, constructions. Let B be a complete 

Boolean algebra, ^ is the canonical ordering of the algebra B, 

/),**, £" are cardinal and °L tfitd* ordinal numbers, Ldm denotes the 

olass of limit ordinal numbers. B+ = B -lO}, BI*\I is a partial 

algebra, hsat(B) denotes the hereditarily saturatedness. By P and 

Q we denote a maximal partition of B, system ©={]?/:<**•'?} is 

called a matrix, P^'s are columns of ® , x 6 P̂  is an element of 

the matrix® , P<<Q denotes that P refines Q, P « ® if P refines 

each P^ . ® is said to be monotone provided U<fi implies % < < P^ . 

Remark, that if © is monotone, then (^®, ^ ) forms a tree and ^ 

is the pC-th level of this tree. Let -Qi = [ Q ^ : oi < ^1 . Then -0, 

refines © if each Q^ refines P^ . For x€B +, X A A P ={yAx:y6^}nB+. 

The algebra B is said to be (̂ ,c*° ,^)-distributive provided for any 

matrix ® = {P^roC^^j there is a maximal partition P of B such 

that (Vx€P)(Vct<^)(|xAAPi / <7\ ). Algebra B is called (3 ,~,*)-no-

where distributive if for each x 6 B + the algebra B^x is not 

(3.°° ,*)-distributive. Recall that B is (2,°* ,*)-nowhere distri­

butive iff there is a matrix ® = {P^ : tA <?} suoh that for each 

x 6rB+ there is some cL < •) with IxAAP^I>*C # In this case we say 

that & is a matrix witnessing to (3, oo fK) -nowhere distributivity 

and if B is {X,°° 12)-distributive for all <£*<•/* (e.g. if B has si­

multaneous winning strategy for Black of length /J ) then ® will 

be assumed to be monotone. We say that D S B is a 3-dosed dense 

subset of algebra B (we say sometimes base instead of dense sub­

set) if ( V x 6 B + ) ( 3 y 6 D ) ( y . 3 x ) and for every decreasing sequence 

(a^ : <* **£*}£ D of the length V < ?i there is an y€-D suoh that 

yta^ for eacho6<1T# d(B) denotes the density of B. A matrix 

(§)= {P^ : A< %} is said to be a tree-base of the algebra B of the 

length ^ if U® is a base (i.e. elements of ® form a base) and 

© i s monotone (i.e. (U(S)t*) is a tree). For unexplained notation 

we refer to Tsl. 

§2. Tree-base, game-tree and simultaneous strategy. The idea to 

construct a /9-olosed dense subset of a Boolean algebra from a 
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tree appeared independently in Tl3 and Ckl. Me develope the tech­

nics of £k~J to obtain more general results. 

Theorem k. Assume B is a complete Boolean algebra whioh has a 

tree-base of the length 3 and B has simultaneous winning strategy 

for Black of length A • Then B has a <3 -olosed dense subset, 

PROOF. The idea of the proof is following. We introduce a natural 

notion of a game tree according to strategy 6" for Black in whioh 

every branch is a play of game Q in which Black follows & and 

the elements of the tree split on even levels (turns of the White) 

and odd levels are determined by even ones and 6" # Then by trans-

finite induction we construct an game-tree according to & whioh 

refines the base ® and this is the desired 3 -closed base. 

Let ® = {P^ : c*<-./w be a tree-base of B and 6" is a simul­

taneous winning strategy. A tree (T,*) is oalled a game-tree of 

length 7i aooording to the strategy 6* if 

(i) TCB +, -S is the oanonioal ordering of B, T has length 3 

(ii) {Vole 3 n U m ) ( V n e w ) T 2 . is a maximal partition of B 

(where T^ denotes the (S-th level of the tree T) 

(iii) (^xGT0^+2n+i )(
x =^(Pr(x))) (where pr(x) is the sequence 

of predecessors of x in the tree T). 

Note that any branch of T is a play of game ^ in which Black 

follows 6* , so it is of the length d • So if T is a base of algebra 

B it is a 3 -olosed base. To this end we have to construct a game-

-tree T which refines the tree base (£) t'.e. 

(iv) (WeanUaJIVnecoJtT^^^P^) 
Assume that T^ + 2 n is constructed already. For T / + 2 n take the maxi­

mal system such that 

<V> Tc/+2n
 r r f i n e s T ^ + 2 n , 

(vi) {<5 (pr(x),x) : x e ^ J is a maximal partition of B 
whioh refines P. • 

oc +n 

This is possible because ^+2xi
 i s a Same tree of the length 

JL+Za according to the simultaneous strategy & of the length 3>o/+2n, 

algebra B is complete and (oC,o<? f 2) distributive. 

q.e.d. 

Now we consider the question, when does there exists a tree-

-base for a Boolean algebra. We need the following technical lemma. 

Lemma 5# Assume 3 is an uncountable cardinal number, B is a comple­

te Boolean algebra whioh has a simultaneous winning strategy for 

Blaok of length 3 and <&) = {p^ : ol<al is a monotone matrix 

wittnessing to (3,°o ,*C)-nowhere distributivity of B. Then for each 

X 6 B + the following holds 
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(i) ll(y,d) : yePot* xAy ^CD?I^ *^w (i.e. x interseots many 

elements of the' matrix © ) 

and (ii) hsat(B) > K* 

PROOF. The main idea again is to construct something like a game 

tree of type (̂ £,9 ), but its relation to the matrix® is a little 

bit more complicated as in the Theorem 4. 

Assume w.l.o.g. that x = 1 . In fact for (i) we have to prove 

that | LJ (jy l̂ -K. # The existence of simultaneous strategy of length 

3 implies (V,oo , 2)-distributivity for V<A and B is (7\ ,oo ,*) -no­

where distributive - we have that 3 is regular. By transfinite 

induction we construct F and T such that 

(i) T.= U(9is a Boolean tree (i.e. (i) of Theorem 4 holds) 
(ii) F : U { * »" <* «/*)->T is an tree isomorphism 

(iii) for each f &- *K the sequence F(f t" 0) = wQ, 6"(wQ)= bj , 

w 2 = bt/\ F(f l* 1), b 3 =
6r(w2),...,w^+2n = A{b^:p<^+2n}AF(f^+2n), 

b, p +1 = ^(Wo/+2 )»••• **-s a Plav ^ n which Blaok follows 6" - the 

simultaneous strategy of the length /\ . 

As T £ LJ(*x and & is monotone and ^ is regular we have 

immediately (i). For<^*3 T, is a disjoint system, so hsat(B)~> JC1"". 

If tZ^ >/) then *£'-' is a singular cardinal number and so hsat(B)> »C , 

If C^s /} then using 6" we can construct a strictly decreasing 

tower ctj: ot-i^j and then <t ̂  - t « : A<dj is the desired 

disjoint system of power 1CU= 3 

q.e.d. , 

Theorem 6. Let B be a (3, ©o f*C)-nowhere distributive oomplete 
" •• ^j 

Boolean algebra with density d(B) = -Cw for which the Blaok has 

simultaneous winning strategy of the length 3 • Then B has a tree 

base of length /} . 

PROOF. Let D ? B be a base of, size £ . As each element of D inter­

seots JC elements of XJj = t-Q̂ : ̂ <fl/- a monotone matrix witnessing 

to (/), oo , K) -nowhere distributivity - there is a one to one mapping 

f : D—5>Ul . i such that xAf(x) ^ (D . Split each y€r .rng(f) into 

two elements yAf" (y) and y - f" (y) . We obtain a matrix J-.--L» 

which refines D , i.e. (JjQ, is a base. Using (fr,°°,2) distributi­

vity for each °t< 2 we obtain a monotone matrix ® - the desired 

tree-base. 

q.e.d. 

Corollary 7. Let B be a (2, <*>, £)-nowhere distributive oomplete 
A 

Boolean algebra with density d(B) = )CW which has a simultaneous 

winning strategy for Blaok of length ^ . Then 

B = Col(A,lC4) - Col(3,T) . 
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PROOF. From Lemma 5 *e have hsat(B) = ( V ^ s o in the construction 

of the Theorem h we oan add the condition 

<V x e T .6+ 2 n +< )U - T « i - + f c w x . » y ^ * » * K* ) . 

The base we obtain is isomojpphio to the base of the algebra 

Col(*, C ^ ) . 

q.e.d. 

Ve have seen that the existenoe of a tree base is important. 

Observe that if B has a tree base of the length 7\ and>C< hsat(B) 

then B is (fl,°° ,**)-nowhere distributive. About inverse implication 

we know only what Theorem 6 says. 

The case ^ = oJ was studied in £k\. This paper is a genera­

lization of the results of Zh\ for r. = co v For nonllmit cardinal 

numbers M,Foreman in C O proved that if K = ̂ +>, /I = 3 , B is 

(3, ©* , 2) -distributive, d(B) = 3 + and Black wins S(B,9>) then 

B has a y -closed dense subset. Our teohnios works without cardi­

nal assumptions and also for limit cardinals, but needs stronger 

strategical assumption. 

The notion of the simultaneous strategy gives a view into 

the structure of all strategies. The problem, whether (o)—>(a)» 

((a), (b)f (o) are as in Theorem 1 and Lemma Z) oan be splited 

into two: whether (o)->(b) and (b) —>(a). 
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