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ON THE SECTION OF A LATTICE-COVERING OF BALLS 

by A. BEZDEK 

1. Introduction 

A Thue [9] has already proved in 1910, that the incircles and 

circumcircles of the faces of {6,3} constitute a densest packing 

and a thinnest covering of equal circles. The corresponding densi

ties are n/vT2" = 0,9069. . . and 2n/ /27 = 1, 2091. . . . 

An analogous result for incongruent circles does not hold. The 
2 

circles of radii r,,r2,... such that Er. = « and r. -> 0 can 

be arranged so that they fill (or cover) the plane with density 1 [2]. 

Under special conditions the density of a packing (of a cov

ering) of incongruent circles is investigated in [3-8]. 

Let us recall the nice results of G.Blind [3] and G.Fejes Toth 

[5] respectively: The density of a packing (of a covering) of the 

plane by circles of radii r,,r2,... such that, for any two in

dexes i and j, r./r. ^ 0,9... can not be greater than n/\/l2 (less 

than 2n//27). The density of a packing of circles arising by inter-

sectinq a packing of equal balls by a plane is at most n/v/12. An 

analogous result for covering does not hold: Intersecting a covering 

with equal balls by a plane we can obtain circlecoverings with den

sity arbitrarily close to 1. 

G. Fejes Toth raised the problem [6] of finding the thinnest 

covering with circles arising by intersecting a lattice-covering of 

balls. Of course, if a circle may arise from two balls, the density 

is calculated as if it would be two circles. 

2. Results 

We shall prove the following 

Theorem 2.1. 

The density of a covering of circles arising by intersecting 

a lattice-covering of balls bv a plane is at least (2n/\/27) + e where 

G = 0,0174-. (1) • Equality holds only for case described in 2.2. 
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2.2. 

We define a parallelepiped T(x) for 0,85 < x < 1. Denote the 

vertices of T(x) by A. i = 1,. so that the segments A^ A-J +I 

should be edges i = 1,...,7 , and the vertices A-jA^A^A, should 

be on a plane. Denote F the midpoint of the face A.A^^A.. Let 

T(x) be the parallelepiped having the properties il-i4 

il The face A,A2A^A4 is a rhombus 

i2 A XA 3 = 2x 

i3 A.-F = 1 and A-.F is an altitude of T(x) 

i4 The tetrahedrom A,A-A.A-. has a circumsphere of radius 

Fourther we shall denote a body (a disc) and it's volume (area) 

with the same symbol. It is easy to verify that 

T(x) = x(vЗ+2x -x + vz 3-2x2
-x

4
) 

Let 

T(x ) := max(T(x) I x Є (0.85 , 1)} . 

By virtue of 4.5/4 

x =VMZ^H2
 =
o.8842... . 

o v 6 

Equality can occure in theorem 2.1. only when the centres of the 

balls form a point-lattice having a generating parallelepiped T(x ) 

Let as consider a plane which touches a ball of this covering and 

which is parallel to the face A-jA-A^A, of T(x ) (fig. 1/a). 

fig. 1/a 
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The densitv of the circles on this plane 

25 

d
o - тПE^T 

[1 ) Let 

є = d„ 
2п 

1,2266888 

0,0174892... 

For comparing we show good coverings (fig. 1/b, 1/c). (The thinnest 

lattice sphere-coverinq is represented on fig. 1/b.) 

4-

1.7889... 

fig. 1/b 

1.7889... 

1.7889. 

/ 

/ 

/ / 

/ 

1 
- 1.92. 

/ / 1 . 6 6 . . . 

/ 1.66. . . 

fig. 1/c 

It will follow from Lemma 3.1. that in both cases the plane having 

the thinnest circle covering is parallel to the base face of the 

generating parallelepiped and touches a ball of this covering. The 

corresponding densities are 

respectively. 

1,3414.. and 1,303... 
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Corollary 2.3. 

The thinnest covering of ecrual circles can not arise by inter

secting a lattice-covering of balls . 

3. An analogous problem for sphere-rows 

Let us consider all the unit spheres, the centres of which lie 

on the coordinate axis e and have coordinates £a (where I is an 

integer and a is a given positiv number) 

We want to find from among all planes being perpendicular to 

axis e, that one which minimizes the total area of the intersections 

of the plane with the balls. The following Lemma states that the 

extremal plane touches a ball. 

Lemma 3.1. 

Denote S (x) the sum of the intersections of the balls with a 
the plane, beeing perpendicular to axis e and intersecting it in 

a point of coordinate x. Then 

a^ If k+I " a K 2k2+l (k > ° i n t e 9 e r ) ' t h e n 

S (x)^(2k+l)[l-((k+l)a-l)2]n-2a2 k ( k + 1] ( 2 k + 1 }n = S (1) a b a 

b/ If j^+l * a -* £ (k > 0 integer), then 

S (x)^(2k+l)[l-(l-ka)2]n-2a2 k(k+1](2k+1K = S (1) a b a 

c/ If 1 ̂ a then S (x) > (l-(a-l)2)n = S (1) 
a a 

d/ If a > 2 then S (x) ̂  0 = S (1) 
a a 

Proof. 

The cases c/ and d/ are trivial. 

Case a/ Considering that the function S (x) is periodical we can --------------------- a ~ 
restrict ourselves to the case 0 £ x £ a 

a < 2ĵ jrr <?=> !-ka > f «=> (k+l)a - 1 < f-

If 0 ̂  x ̂  (k+l)a - 1 then the total area of the intersections of 

the plane with the balls having a centre of coordinate not greater 

than x is eaual to 
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k 
E 

1=0 
п E (l-(x+£a)2) . 

The total area of the intersections of the plane with the balls 

having a centre of coordinate greater than x is equal to 

k 2 
n E (l-(£a-x)z) 

£=1 

The sum of these terms 

S (x)=n(2k+l)(l-x2)-a2nk(k+1)(2k+1) -: fn(x) a j X 

for 0 ^ x ^ (k+l)a - 1. 

On the other hand, for (k+l)a - 1 ^ x ^ 1-ka we have 

Sa(x)=f1(x)+[l-((k+l)a-x)
2]n =: f2(x) 

Finally, for 1-ka < x < a we have 

Sa(x) = f±(a-x) 

Since we can represent the functions f, and f~ in the forms 

fx(x) = -cx
2+d (c>0) and f

2
( x ) = C(-x2+ax)+d' (c'>0) 

S (x) attains its minimum for x = (k+l)a - 1 and x = 1-ka in a 
the interval (0,a). Therefor, in view of periodicity, we have 

S=(x)2n(2k+l)[l-((k+l)a-l)
2]-2na2 ^(k+1) (2k+l) = a b 

= S ((k+l)a-l) = S (1) 
a. a 

Case b/ We can restrict ourselves to the case 0 £ x £ a again, 

a > 2k
2
+1 <=> 1-ka < | <==-> (k+l)a-l ^ ~ 

is easv to see that for 0 £ x ^ 1-ka we have S (x) = f,(x), 
a ,.« j. 

It 
* 2 For 1-ka £ x £ (k+l)a-l we have S (x) = f,(x)-[l-(x+ka) ]n . 

a j_ 
Finally, for (k+l)a-l £ x £ a S (x) = f-(x-a). 

a x 
The proof can be finished similarly as in the case a. Since 

2 f (x) = -ex +d , Sa(x) attains its minimum for x = 1-ka. There-x a 
for, in view of periodicity, we have 
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S (x) * п(2k
+
l)tl-(l-ka)

2
]-2пa

2
 k(k

+
l)(2k

+
l) 

a ь 

S(l-ka) = S
я
(l) 

a d 

4. Proof of Theorem 2.1. 

Let us denote by r a lattice such that the unit spheres 

centred at the lattice-points should cover the space. 

Lemma 4.1. 

Any plane S satisfies at least one of the following proposi

tions : 

1./ There exist two lattice-points P,,P« such that the 

distance-difference defined by ld(P,,S)-d(?
2
,S)I is not 

greater than •--. (Where d(P,S) denots the (algebraic) 

distance of the point P from the plane S.) 

2./ The plane S is parallel to a face of a greating paral

lelepiped. 

Proof. 

Let us consider a pair of lattice-points P,,P
2
 of least 

distance-difference. If such a pair does not exist, the proposition 

2./ is true. Let us denote the distance-difference ld(P,,S)-d(P
2
,S)! 

by a. Since any translation transfering a lattice-point into anoth

er lieves the lattice invariant, for any lattice point P we have 

d(P,S) = ka (k is an integer). Let us consider the plane S, 

containing P, and being parallel to S. 

Let the vectors P,Q and P,R the basis vectors of the lattice 

S, n r. The parallelepiped generating by the points P,,P
2
,Q,R is 

empty, thus it is a fundamental parallelepiped. This means that 

proposition 1 is true. G> 

We can get a lower bound for the density of circlesystem using 

the following method. 

Divide the circles into groups and associate the groups with 

domains satisfying the properties i/-iii/ 

i/ The domains are disjunct. 

ii/ The circles of a certain group and the domain belonging 

to this group can be covered by a circle of the fix 
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radius R < ~. 

iii/ There exists a number V such that for any groups the 

total area of the circles belonging to the group divided 

by the area of the domain associated twith the group 

schould not less than V. 

* Then the density of the circle system is greater than or equal to P. 

Let P.. and P~ be lattice points such that no further lattice 

point schould be on the segment P-jPo an(^ t n e distance-difference 

a of these points from S schould be greater than 0. Let 

L = {I I the line I is parallel to P̂ P,, and I n r + 0} 

Let us consider the intersections of the plane S with the balls of 

the covering. We divide the circles of this covering into groups by 

the following property: Two circles are in the same group it the 

centres of the balls from which come these circles lie on the same 

line of L. We say that this line is the axis of the group. Let T 

be a fundamental parallelogram of the lattice r = {S n I I L 6 L}. 

Distinguish a vertex A of T. Finally, associate each group of 

circles with the parallelogram B-A+T where B denotes the inter

section of the axis of the group with the plane S. 

Obviously the above construction satisfy the properties i/ and 

ii/. It follows from Lemma 3.1. that S (1)/T correspounds for P. 
a 

Since T-a is the area of a foundamental parallelepiped of r and 

the density of any lattice-covering of the space by the balls is at 

least 5/5n/24 [see Bambah [1]], we have 

4n 5/5n 
3Ta " 24 

If d denotes the density of the circle-covering arising on the 

plane S, in view of the proposition *, we obtain 

(2) d ^ 3 T S a ( 1 ) a 

Proposition 4.2. 

If a G (0;0,954) then 

S ( a ) : = T T S a ( 1 ) a > d o 

(d is defined in 2.2.) 
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Proof. 

We have already determined the value of S (1) in the lemma 
a 

3.1. It is enough to consider the cases a/ and b/. 

a/ If - j < a < 2F1-T t h e n S'(a)=-^^(k+l)(2k+l)[4a-(4k+3)a2] 

4 
Then derivate is ecrual to zero for a = O and a = , . , ~, and it is 

-, 4k+3 
positive for a = r-—r- . Since 

0 < r i T < 4 r < 2 
k + 1 2 k + l 2 k + l ' 

1 2 S(a) attains its minimum for the boundary of the interval [-—-, . ] 

Thus 

S ( a ) * 5 ^ n n l n { s ( _ i _ ) | S ( ^ i ) } = 

5\/5n . r ( 2 k + l ) ( 2 k + 3 ) 1 6 k ( k + l ) , 
= 9 m m { - 5 — ; -5-} 

*Z 3 ( k + l T 3 ( 2 k + l T 

By same computation we obtain that this form is greater than 

1.227 > d for k £ 1. o 

b/ If 2J~TT ^ a ^ £ t h e n S'(a) = ^ y 1 k( 2k+l) [ 4a-( 4k+l )a2 ] . 

4 
The derivate is equal to zero for a = 0 and a = ., .. and it is 

positive for a = yrrr • Since 

U < 2k+l < 2k+l < k ' 

2 1 
S(a) attains its minimum for the boundary of the interval [ ?, 1 ,--] . 
T h u s 

s ( a , . ^ r n i n { S ( ^ ) , S ( ± ) > = 

5\/5n . f k ( k + l ) 1 6 ( 2 k + l ) ( 2 k - l ) , 
= —-r--— m m { -j , -5 } 

J Z 3 ( 2 k + l ) z 3 k z 

By same computation we obtain that this form is greater than 

1.227 > d for k £ 1. ® o 

According to Lemmas 4.1. and 4.2. we obtain 
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Corollary 4.3. 

A circle-covering with density greater than or equal to d 

may occur on the plane S if and only if S is parallel to a 

face (it will be denoted by T in further again) of a fundamental 

parallelepiped and the altitude (a) belonging to T is greater than 

0.954. Obviously a is less than 2, otherwise the balls not cover 

the space. 

Proposition 4.4 

If a G [1 

described in 2.2 

If a G [1,2] then d k d . Equality holds only for case 

Proof. 

We can restrict ourself to the plane S mentioned in the 

Corollarv 4.3. It follows from the Lemma 3.1. that d > S (1)/T 
•* a 

and there-is a plane parallel to S on which the density is equal 
S Cl) 2a_a2 2a_a2 

to —-—- = — - — . So we have to minimize the value — - — . For 

technical reasons we will do it in another form. 

Proposition 4.5. 

Let r be a lattice such that 1/ the spheres of radii r 

centred at the lattice points should cover the space 2/ it should 

have a fundamental parallelepiped of a face T and of an altitude 
2ar~a-

a belonging to T such that r ^ a ^ 2r. The value -

attains its minimum for the lattice described in 2.2. Apart from 

the similarity this is the only extremal lattice. 

Proof. 

Denote G the system of spheres of radii r centred at the 

lattice points of r. Consider in G a particular sphere K. Since 

the system G is homogeneous, the spheres of G cover the space 

if and only if 

(3) the surface of K is covered by the rest. 

We divide the spheres of G into layers: Two spheres are in the 

same layer if and only if their centres are in the same plane 

parallel to T. A layer is called layer ¥ if the centres of its 

spheres lie on the plane ¥. Denote the layer containing the sphere 

K by layer S. Let layer S' be the layer next to layer S. 
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Denoting, finally, the part of K lying between the planes S 

and S' by K+, since r £ a ^ 2r we have: 

The statement (3) is true if and only if 

(4) K is covered by the spheres of layers S and S'. 

Consider the Dirichlet-tiling V of the plane S, generating by 

the centres of spheres of the layer S. The cells are congruent, 

centro-symmetrical hexagons inscribed in a circle. (In the sence, 

that a rectangle is a degenerated hexagon.) Let R be the 

circumradius of the cells. Obviously R ^ r, otherwise the spheres 

not cover K . Denote D the cell belonging to the centre 0 of 

the sphere K. Denote P the part of K , the projection of which 

(onto plane S) lie in D. Obviously the part K ^ P is covered 

by the six spheres of layer S, the centres of which have Dirichlet 

cells neighbouring to cell D. Thus the statement (4) is true if 

and only if 

(5) R < r and P is covered by the spheres of layer S'. 

Let us project the centres of the layer S' onto the plane S. 

Consider the Dirichlet-tiling V generating by the projections. 

The tiling V consist of translates of the disc D. It is easy 

too see, that 1/ the cell D contains at least one edge of V 

2/ the four cells D ,...,D. of V, which have common point with 

this edge, cover the cell D. 

Denote 0. (i=l,2,3,4) the centre of the sphere of layer S', 

the projection of which is associated with the cell D.. The . 

parallelogram 0,020^0. is a fundamental parallelogram of the 

centres of layer S'. We have proved the statement (5) is true if 

and only if 

(6) P is covered by the spheres centred at the points 0-. ,02,0. ,0 * . 

We shall need a Lemma 

Lemma 

Let AB an arc on the intersection of K and of a plane 

perpendicular to S. If a sphere K' of the layer S' contains 

A and B, then it contains the whole arc AB. 
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fig. 2 

The proof of this Lemma is trivial. 

Corollary. 

An arc polygon consisting of arcs similar to AB is covered 

by the sphere K. if and only if the sphere K. covers the verti

ces of the polygon. 

Marking; 

We denote the point of P, projection of which is X onto S, 

by X' . 

For symmetrical reasons Q' (and P' resp.) is covered if and 

only if A4 (and AJ resp.) is covered so, the statement (6) is 

true if and only if 

(7) the spheres K,,K2,K3,K4 cover the points A^ and E^ 

i=l,...,6; j=l,...,4. 

The paragraphs 1 -4 will contain processes diminishing the 

2ar-a value of -= . Continuing this processes we obtain the extremal 
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lattice. 

1 Remove all the neighbouring layers in the direction perpendicu

lar to S through the same distance. Preserving the property of 

covering we can do it as far as the points Af;E' (i=l,...,6; 

j=l,...,4) are covered by the spheres K^ £=1,...,4. 

(8) Let ч 
°1°2 = 2b 

°1°4 
= 2c 

°2°4 = 2e 

PQ = 2x 

P 0
1 = Q0 3 

and PO-. = QO-, = R 

The distance between the point E' and the plane S (the plane S' 
1
/~2 2 Hi 2 

resp.) cannot be greater than vr -b (than vr -c resp.). Thus 

/TT~2 , Í2 2 vr -b + vr -c ^ a 

Since min{OP,OQ} ^ x, the distances d(P,S) and d(Q,S) are less 

than or equal to vr2-x2. Thus 

/r2-x2 + v^ 2^ 2 
R ^ a 

That is 

a й mi 
r f2

 2 , / 2 „2 / 2 .2 , / 2 2, 
n{vr -x + vr -R , vr -b + vr -c ] 

Denote b', c' the two shorter sides of the triangle 0.0.0^. (b' 

and c' correspond to b and c not necessary.) Let x' be the 

distance between P and the third side of the triangle 0-jO-Ô . In 

any case 

• r Í2 2 _, /2J2 I 2 .2 ^ [~2 2, ^ 
Ln{vr -x + vr -R , \/r -b + vr -c } ú 

. • f/2 ,2 x /~2 2 f~2~T^2 , /~2 72, (m , 
< mm{vr -x' + vr -R , vr -b* + vr -c' } =: a(T,r) 

Let us consider the layer S and the parallelogram-lattice gener

ated by the sides b', c' as vectors. From now on T denote the 

parallelogram 0,0^0^0. of the lattice. We shall use the markings 

of the fig. 2. We may suppose that the angle at the vertex 0-. is 

not abtuse. We give a new sphere-lattice. Put on top of the layer 

S a second layer (S') of the same kind so that S and S' will 

have a distance a(T,r) and the projections of the centres of the 
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layer S onto S correspond to the midpoints of the parallelograms. 

The translation which transfers the first layer into the second, 

transfers the second into the third and repeated translations of the 

same kind in both directions produce a sphere-lattice which is a 
2 

covering. Since (2ar-r )/T have decreased, we can restrict our 

consideration to such coverings. More exactly we have not to deal 

with the property of covering, but to find the parallelogram 

T = 01°2
03°4 s o t n a t 

d(T,r) : = 2 a( T^)r - a 2^,r) 

should be minimal. 

2 We may assume that T is a rhombus. 

Proof. 

Otherwise let we move the point 0-. parallel to the side e 

as far as it will fall on the normal bisector of e. 

While moving a(T,r) decreases. Since T do not change and 

x,R decrease, it is enough to prove that the function 

f (v) := /c - Mzvlf±H! + JC - Mi.d!±h! 

is decreasing - where y denotes the distance between 0-. and the 

normal bisector of e; h denotes the altitude of O-jÔ O-A belong

ing to the vertex 0-. ; finally, C is a suitable constant. 

f - ( y ) = I d-v + I -(a+y) 
2 /c*-(d-y)2

 2 /c*_(d+y)2 

After some computation we obtain that the inequality f'(y) < 0 is 
2 2 

equivalent to (d-y) < (d+y) which is true. 

3 We may assume that 

im \ / 2 D 2 _,_ /~2 2 
a(T,r) = r = vr -R + vr -x 

Proof. 

We shall need 

i/ if r decreases, then d(T,r) decreases 

ii/ if r decreases, then a
 r decreases. 
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By some computation we obtain 

d
r
(T,r) =

 2 a
^

r )
(p-r)(q-r) 

and 

fa(T,r)\
 =

 a(T,r) r
2
-pq 

V
 r

 /
r
 P<3

 r

2 

where the pair (p,q) is equal to one of the pairs 

( / 2 r>2 H2 2\ , I 2 , 2 /~2 2 , 
( vr -R , vlr -x ) , (Vr -b , vr - c ) . 

Since p,q ^ r (and one of them is less than r), the derivates 

are greater than 0. In view of ii/ we may decrease r so that 

one of the equalities comes true 

( 9 Г r = / r 2 - R 2 + / r 2 - x 2 

(10) r = 2\Zr - b 2 

If (10) comes true first, then let us increase the side e leaving 

the sides b = c unchanged. Thus d(T,r) decreases. It is impossi

ble that T become to rectangle before (9) become true. Otherwise 

it would be true the ineauality 

2v l r 2 -b 2
 < r + /:

2
-2b

2
 , 

from which would follow b < 0. 

4° We want to minimize d(T,r) among all (T,r) which satisfy 2 

and 3 . 

This exercise agrees with the extremal-exercise mentioned in 2.2. 

The inequality e > b corresponds to 0.85 £ x £ 1. By some 

computation we obtain 

T(x) = x ( / з + 2 x 2 - x 4 + / з - 2 x 2 - x 4 ; 

Thus 
T ' ( x ) = / з - 2 x 2 - x 4 ( 3 + 4 x 2 - 3 x 4 ) + / з + 2 x 2 - x 4 ( 3 - 4 x 2 - 3 x 4 : 
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2 4 
The eauation T'(x) = 0, in view of 3-4x -3x < 0 for x6 (0.85,1), 

is equivalent to the eauation 27x -46x +3x = 0. 

Solving this eauation for x E (0.85,1) we have 

4 l„±Л 46-/16 -324
 = 0

.
8 8 4 2 3 7 < 

Since T'(x) is negative in the interval (x
0
/l) and it is positiv . 

(0.85,x ), the function T(x) attains its minimum for x . Then 

the minimal-density n/T(x
Q
) = 1.2266888 . ® 

5. Let us return to the Corollary 4.3. According to the propositions 

4.2. and 4.4. we have only to deal with the case a e (0.954,1). 

Let IT a plane containing the face IT of a fundamental 

parallelepiped of r. 

Denote f the lattice IT D r. 

Denote IT, and 1T
9
 to IT parallel planes such that the 

a 
distance between IT and IT, is -j and the distance between IT 

and n
2
 is a. We call the coverings arising on IT, IT, and IT 

basic-, middle- and tangential-covering. 

Æ"* 2 
1./ basic-covering. It contains circles of radii 1 and vl-a 

The centres of the congruent circles form a lattice congruent with 

f. Reflecting one of them in the midpoint of a fundamental-paral

lelepiped of it we get the other lattice. 

ii 67* . 
centres of the circles form two translated lattices- congruent to f. 

2./ middle-covering. It contains circles of radii v1 --5- . The 

3./ tangential-covering. It contains circles of radii /l-(l-a) 

and /l-(2a-l)2 . The centres of the congruent circles form a 

lattice congruent with f. 

(11) We suppose that the lattice f satisfy the inequality 

S (1) 
a < d 
T o 

Proposition 5.1. 

Any lattice-vector of 
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