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WHY EXTENDED NUMBERS IN SUPERSYMMETRY

J. Hruby

One of the main goals of particle physics today is the unifica-
tion of the all interactions,including gravitational one.

It is believed that a neat way to solve these problems is to
have an extended supersymmetric theory as the fundamental unifying
theory (FERRARA S.).

The basic objects in supersymmetry (space-time symmetry which
embeds bosons and fermions) are Grassmann variables 8*, d=d.. 4.

It is known that in the N extended supersymmetric theories these
grassmanian variables have an internal symmetry index CL' i=1,e0, N

This is natural to ask on the physical motivation why extended
numbers in supersymmetry and to study the connection between exten-
ded system of the anticommuting gressmanian numbers and extended
supersymme try.

The first physical motivation is that for supersymmetry some
space~time dimensions D are special.Namely D=10 Yang~Mills theory
(N=1 extended supersymmetry) is connected with D=4 Yang-Mills(N=4)
and D=11 supergravity (N=1) is connected with D=4 (N=8) supergra-
vity (SCHERK J.).

The reason for these special dimensions is in the algebraic
properties of minimal spinors.

Supersymmetry in D dimensions is a theory invariant under simp=-
le supersymmetry algebra:

{Qz. 051 = 2(I%)g4 R

where the D matrices rwbhave dimensions 2rf]and satisfy the Clif-

ford algebra: { Pt‘*-l ”"V} . 2 ,7G*V= 2 J,‘d’, (rtf,,, +4I-4[..£’/,)

The Lorentz indices %,V run over all D while f'a are the indices
of the Dirac matrices obeying the Clifford algebra.

It is shown (GLIOZZI F.et al.) that the possible properties of
spinor Q't ¢ Majorana,Weyl,Dirac or Majorana-Weyl will depend on
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the dimension D:for and only for D=2,3,4 mod 8 there exists a Majo~
rana representation of the " matrices.Then CQ? can be defined as
massive or massless Majorana spinors.
A Weyl spinor A is defined by
D+dq -
[OHA = £ A,

where the matrix r‘* is glven by

FOM [4) ofM F04
We can have a Majorana-Weyl spinors if /70*4 is real,it is for
D=2 mod 8 and so we obtain in particular special dimension D=10.

For D=3 mod 8 we get special dimension D=11.
We can see from the following schema:
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( R-real,C-complex,H-quaternions),that transverse dimension
s-t is equal to the dimension of R,C,H.

Prom the Hurwitz theorem is known that the last extension gives
octonions.We can see the following pattern:

s=t =1, 2, 4, 8
R,C, H, O
D=s+t=3, 4, 6 ,10.
But the dimension D=10 is the last in the supersymmetric Yang-Mills
theories (maximal spin 1).

The analogical connection we obtain in the supergravity theory,
where the special dimension D=11 plays crucial role and after di-
mensional reduction to the D=4 this theory corresponds N=8 exten-
ded supersymmetry.N=8 is also the last step in the extended super-
gravity models,if we want to have maximal spin 2 for graviton.

In such a way we see that special dimensions D=10,11 in super-
symme try have deep connection with system of extended numbers.
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The second physical motivation for using hypercomplex numbers
in extended supersymmetries is the possibility for obtaining cons-
trains,which reduce the number of ordinary fields in supermultip-
lets.

For example if we have a scalar superfleld gbﬂX ) M d= 4_ )4
in N=8 extended supersymmetry we obtain 2 ordlnary flelds.
The problem is eliminating auxiliary fields in a realistic super=-
symme tric model.

One ,possibility for obtaining constraints is combination varia-
bles 911 i=l,...,N,into the complex (N=2) and the hypercomplex
(N=4,8) grassmanian numbers,These constraints are "analytical",
because they follow from the grassmanian analyticity (HRUBY J.):

Do(*e,8,) < 0,
Doprx,.,644)-0,

where
"I, D‘L £, —-quaternionic units,
= Do, D £, -octonionic units
are supercovariant derivatives.
The hypercomplex analyticity plays the following role of the
cgpst;gint: ~ = LRant -
qD(x,@ﬁ) = Olx uH;/@’“zg'zgfﬁ Eastee., O) .
It means in the quaternionic case the following: the quater-
nionic supersymmetry can be realized in a smaller superspace,
with hypercomplex Bose variable,but independently of .This gi-
ves for the Taylor‘s expansion in less indepedent coefficients.
The open problem is using octonions because they are nonassoci-
ative.There exists another way for N=8 extended supersymmetry:
we can use complex quaternions combining variables i=l,...,8
as follows

!
444
17 - éa +i0 ! v Aed by
9-—-'7‘-»1&, , oae1...,3
Then we use the complex super ymmetric Cauchy-Riemann eqs.
U(P(X'y'z) = D%%(x,7,%)
17/
¢ (%, 7) "'D"‘P‘{*r%? .
where Olx4) = ¢ (x,6,8! * cp*(x 6,0)

and the supersymmetric quaternionic Cauchy-Riemann egs.
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D, ,(x,6,0) + D@(XQAQK 0

a

0. 0., 0,00+ Dot 9)-cur B 568 < 0
where ¢(x,0,0) = ¢(x,79) Lo GO 5,9, 7).

The combination of this analytical constraints gives many su-
persymmetric constraints on 232 ordinary fields.

The last reason why to use extended numbers in supersymmetry is
deep connection between hyper-K#hler geometry and supersymmetric
KP(n) sigma models (LUKIERSKI J.,HRUBY J.).

On the end we want to say that the aim of this short communica-
tion wasVgive some attention on this interesting field in mathema-
tical physics.
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