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On WCG Banach spaces with norms
which are uniformly differentiable in every direction
by
D.N. Kutzarove and S.L. Troyenski ( Sofia )

1. Introduction. In fB] necessary and sufficient conditions
in terms of ialsh - Paley martingales are obtained for existence
of equivalent norms, uwniformly convex ( resp. uniformly differen-
tiable) in every direction,in Benach spaces. In the same paper
these results have been applied to obtain sufficient conditions
for existence of such equivalent norms in Banach spaces X with
total systems FcX" of arbitrary cardinality. In the present note
we prove that the sufficient condition [3] for existence of
equivelent norms, wifor.uly differentiable in every direction, is
elsgo iecessel; in  «0G  Denach snaces.

2. Derinitions and results. The norm of a Danach space X 1is
seid to be uniformly differentiable in every direction if for any
x,y €X with liyll =1,

1im  t™' sup  (Bxttyl + Nx=tyll - 2 ) = O.
t=>0 I xi=1

A Banaech space X is celled weakly compactly generated (VWCG)
if X conteins a weakly compact fundamental subset.

Let (; be a family of subsets of a set M, ile say that Ql
ig an uniformly finite covering of A<M if there exists an
integer k such that the union of any choice of different sets

{Gi} i51 < (2_ contains A. We say that qa is a G- uniformly
finite covering of A if g} cen be represented as a countable
union of families, each one being an uniformly finite covering
of A.

Proposition 2.1. Let X ©be a WCG Banech space whose norm
is uniformly differentiable in every direction. Then, there
exists a family Ca.in x* of symmetric convex weak™ neighbour-
hoods of zero with the following properties

(1) for each x* ¢ X" there exists & GEé€ (3 and &
number a>0 so that x”é aG,

(ii) q; is & 0 - uniformly finite covering of any bounded
subset of X .

Lemme 2.2. Let X be & Banach space end {x,;} ;L X witn

i
mex I 2
aj= bR | j::‘]

8%, I < €1
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Then, the conditions x¥*¢ X", |x*( xj)l 2 1, j=1,2,400,1, imply
[ENEX P
Lemme 2.3. Let Slxj} ji1cX be a basic sequence whose basis
constant is equel to one such that Ix;l= 1, j=1,2,+s.,1 &and
sup {471 Cllxtzgh + Ux-txll -2)5 Hxh=1) [$1€1<4,135%1] £ €/2 .
Then, the equality i < 4 implies
i

mex 2

a.x, I < €1,
a.= %1 j=1 94

The proof of Lemma 2.3 is essentially that given in [2] .
Lemme 2.4. Let X be & WCG Banach space whose norm is
uniformly differentiable in every direction. Then there exists a
subset Z of the unit sphere of X, total over X*, such that for
any £>0, Z can be represented as e countable union of sets
Zi(E so that the conditions {zj} ji1 c Zi(e), Zj* Zys J # Kk
Ix*(z,)l Z 1, j=1,2,...,1 for some x*eX*, imply 1x*1Z €~1,
Proof. We shall proceed by transfinite induction with
respect to dens X .
If dens X = H,, then the assertion is trivial. Let
dens X = N and suppose that Lemma 2.4 is true for each caerdinal
number less than H ., Since X is a WCG Benach space, then by a
theorem of Amir end Lindenstrauss ( c¢f. [1] ) there exists a
trensfinite sequence of linear projections Pp: X=X, 0 S A
so that Pox = 0, Pyx = x for ell x €X, Pyli= 1, 1 2 ¥ A,

PgPp = PPy = Pmin(P,Y‘)’ Ppx € ( }Er P§+1 x ) for all x €X

P <A

I\

and dens P‘X < % for O
Put
Yt=(Pr+1-Pr)X, O§r<A .
Since YT are WCG Banech spaces and dens Y? < ¥ , by the
inductive hypothesis there exist sets Zyc¥y, O £ p<A
with the desired properties. Put
Z = v Zr .
<
0= p<A
It is easily seen that Z is total over X¥*. Indeed,let x*(z)=0
for 2ll 2z €Z. By trensfinite induction we mey prove that
x*( Pyx ) = O for each x€X and pe[0,A] . Since Pyx = x ,
then x*(x) = O for each x €¢X , i.e. x*=0.
Let € > O. Denote by S +the unit sphere of X. Put
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si(£)= fxes; sup t—1(nu+tfll+lluzz§n ~2)<€/2,u € 8,0<t<4/ € i
/e shall prove that S = (U Si
i=1
Then there exist x €5, u; €8, t, € (0, 4/€61i ) so thet
7T Chugrt s =t x - 2 ) Z€/2 .
This, however, contradicts the fact that the norm of X is

. Suppose the contrery.

uniformly differentiable in every direction.
Let

k

where the conditions y*eé ¥, ly¥(z. ) 2 1, §=1,2,.0.,k,

{zj} jl_j1 C Zr’(i) imnly y* 2 6_1. Put

2,8 - ¢ y nyf{) yns, )
Obviously,
U g (€)

. i,k
i,k ’

Let x*¢ X* setisfy I=*(z,)1Z 1, j=1,2,...,ik, where

. ik (€) .
J # P, {zj_} 521 C Zi,k . If we assume that there

Z .

i}

2y # 2
exist ¥ and j.', j2,..., jk such that zj1,z. ,...,zj

é
Jdo Z’r !

k
then J y*I 2 €=, where y* is the restriction of x* to Y,. Thus,
b2 yz e .
Otherwise, for each p <A we have that
card ({J ;1% %1ik, z,¢ zr(i)} )<k .
’
Therefore, there exist 2\1,..., ri’ X‘p # x\m’ p # m; j1,...,ji

with 2z, € Y, , m=1,2,...,1i. Clearly, {z; 3 * is & basic
Im rm Im” m=1
sequence whose basis constant is equal to one. Hence, by the
definition of Si(S) end Lemma 2,3, we obtain that
i

mex Il 2

=t =
a,= 1 m=1

< .
e z'jm { €i .
In view of Lemme 2.2, this imply I x*IZ €', which concludes
the proof.

2.5+ Proof of Proposition 2.1. It suffices to denote by
g the family, consisting of the sets
{ ex™ 5 |x*(z )21},
where 2¢2Z and Z is the set, constructed in Lemma 2.4.
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