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On V/CG Banach spaces with norms 

which are uniformly differentiaЪle in every direction 

Ьy 

D.N. Kutzarova and S.L. Troyanski ( Sofia ) 

1. Introduction. In [3] necessary and sufficient conditions 

in terms of Vlalsh - Paley martingales are oЪtained for existence 

of equivalent norms, uniforľnly convex ( resp. uniformly differen-

tiaЪle) in every direction,in Banach spaces. In the same paper 

these results have Ъeen applied to oЪtain sufficient conditions 

for existence of such equivalent norms in Banach spaces X with 

total systems P c X of arЪitrary cardinality. In the present note 

we prove that the sufficient condition [З] for existence of 

equivalent norшs, unifor.jly differentiaЪle in every direction, is 

also uecessaf-; in ..'CG Danach spaces. 

2. Бefinitions and results. The norra of a Ľanach space X is 

said to Ъe uniformly differentiaЪle in every direction if for any 

x , y 6 X with llyll = 1, 

lim t~
1
 sup ( llx+tyll + llx-tyll - 2 ) = 0. 

t-*0 II xl| = 1 

A Banach space X is called weakly compactly generated (\7CG) 

if X contains a weakly compact fundamental suЪset. 

Let û Ъe a family of suЪsets of a set M. V/e say that Q. 

is an uniformly finite covering of A <-M if there exists an 

integer k such that the union of any choice of different sets 

{G.} .
= 1

 C (X contains A. V/e say that f. is a <Г- uniformly 

finite covering of A if (À. can Ъe represented as a countaЪle 

union of families, each one Ъeing an uniformly finite covering 

of A. 

Proposition 2.1. Let X Ъe a V/CG Banach space whose norm 

is uniformly differentiaЪle in every direction. Then, there 

exists a family U i n X of symmetric convex weak* neighЪour-

hoods of zero with the following properties : 

(i) for each x* £ X* there exists a G 6 CJ and a 

numЪer a > 0 so that x * p aG, 

(ii) U is a (Г- uniformly finite covering of any Ъounded 

suЪset of X . 

Lemma 2.2. Let X Ъe a Banach space and {x-jj .- X with 

max II -Z- a,x, II * ř i . 
a,= ±1 j = 1 D ű 
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Then, t h e c o n d i t i o n s x*£ X*, | x* ( x . ) l = 1, j = 1 , 2 , . . . , i , imp ly 

\x*ae~\ т 
Lemma 2.3. Let -jx. } .^.^X be a basic sequence whose basis 

constant is equal to one such that |lx.||= 1, j=1,2,..,,i and 

sup {t~
1
( II x+tx.tf + llx-tx.H -2); »x|J=1, I tl £ i < 4,1=j=i} = £/2 . 

3 r J 
Then, the equality ri ̂  4 implies 

i 

max II 2l a .x. II < £ i . 
a = ± 1 j = 1 J J 
J 

The proof of Lemma 2.3 is essentially that given in [2j . 

Lemma 2.4. Let X be a WCG Banach space whose norm is 

uniformly differentiable in every direction. Then there exists a 

subset Z of the unit sphere of X, total over X , such that for 

any £>0, Z can be represented as a countable union of sets 

k Z. ' so that the conditions {z.\ .\ £ Z. , z.+ z,, j $ 

|x*(z.)l 5 1, j = 1,2,...,i for some i?eT*, imply IIx*K = £""1. 
J 
Proof. We shall proceed by transfinite induction with 

respect to dens X . 

If dens X = #S0 , then the assertion is trivial. Let 

dens X = S' and suppose that Lemma 2.4 is true for each cardinal 

number less than N . Since X is a WCG Banach space, then by a 

theorem of Amir and Lindenstrauss ( cf. [1] ) there exists a 

transfinite sequence of linear projections Pj.: X-*X, 0 = f = A 
so that P0x = 0, PAx = x for all x €X, l(Pyll= 1, 1 = Jf= A , 

PpP, = P ^ = P m i n ( M ) , Pfx * ( Uf P,+1 x ,) for all x*X 

and dens PjX < ft f o r 0 = jf < A 

Put 
Yf = ( p f + 1 - p f ) x, o = jr < * 

Since Y-> are WCG Banach spaces and dens Y^ < H , "by the 

inductive hypothesis there exist sets Z*cY^ , 0 = $ <A 
with the desired properties. Put 

Z = U Zy . 

0=Jf-<A 

It is easily seen that Z is total over X*. Indeed,let x*(z)=0 

for all z£Z. By transfinite induction we may prove that 

x*( P*x ) = 0 for each x6X and £ * [0,A] . Since PAx = x , 

then x*(x) = 0 for each x 6X , i.e. x* = 0 . 

Let £> 0. Denote by S the unit sphere of X. Put 
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S. ( £ ) = f x 6 S ; sup t~1 (llu+tx l| + l| u-txl | -2 )<£ /2 ,u e S,0<t<4/ € i 
°° (i) 

Me shall prove that S = (J Si " S uPP o s e "the contrary. 

i=1 

Then there exist x 6S, u.eS, t± 6 ( 0, 4/£ i ) so that 

t±~
1 ( \\ û +t.jX II + \\ u.j-t.jX II - 2 ) = e/2 . 

This, however, contradicts the fact that the norm of X is 

uniformly differentiable in every direction. 

Let 

k 

where the conditions y* € Y , |y*(z.)l^ 1, j-1,2,...,k, 

{z.\ .^ C Z ( ^ i::ipiy »y*l-5 £
_1 . Put 

i,k u y,k i 
Obviously, 

U z.(,e) - z . 
i,k 1 » k 

Let x*6 x* satisfy |x*(z.)|? 1, j = 1,2 ik, where 

z. ± z , j * p, {z. J .̂ f C Z. A . If we assume that there 

exist ^ and j 1 f j 9 , . . . , j, such that z. , z. ,...,z. £ Z« , 
1 <- K J -j J 2 J ^ 

then ]/ y*ll = £"" , where y* is the restriction of x* to Y». Thus, 

Ix*l| = l| y*|| = £~1 . 

Otherwise, for each ^ < A we have that 

card ( {j ; 1 = j = ik, z.- € Z (* } } )< k . 

Therefore, there exist ]f-,,..., J*if )f * Jfm, p * m; J1, ... ^ 

with z. 6 Y .. , m=1,2,...,i. Clearly, fz. ] 1 is a basic 
Jm * m Jm m=1 

sequence whose basis constant is equal to one. Hence, by the 

definition of S ^ ' and Lemma 2.3f we obtain that 

i 

max l( -2L a z, II *- £ i . 
a = ± 1 m=1 m 3m 

m 

In view of Lemma 2.2, this imply II x*|| = £ , which concludes 

the proof. 

2.5. Proof of Proposition 2.1. It suffices to denote by 

M. the family, consisting of the sets 

{ x*<X* ; |x*( z ) | - 1 J , 
where z£Z and Z is the set, constructed in Lemma 2.4. 
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