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SOME REMARKS ON THE COHOMOLOGY OF THE 

POISSON ALGEBRA 

by P.B.A. LECOMTE 

Introduction 

1. In this paper, we illustrate in the case of the Poisson al-

gebra a method designed for computing the Chevalley cohomology of 

the Lie algebras associated to manifolds. 

We will insist more on some tools of the method rather than on 

the results. For instance, we will digress a little on the symbols 

of multilinear differential opárators which are not only basic in 

the computation of the cohomology but also are useful in other 

questions. 

The cohomology of the Poisson algebra is far from being known. 

The more general result has been obtained by Vey [ 6 ] : the cohomology 

is isomorphic to the tensor product of the de Rham cohomology of 

some principal bundle whose structure group is a maximal compact 

subgroup of the symplectic group and of some cohomology related to 

the formal symplectic vector fields on ЗR and which is not com-

pletely known. Another important result, because of its use in the 

theory of *-products, is the description of the second and the third 

cohomology spaces [ 3 ]. Here, we will indicate how to compute the co-

homology of the 2 and 3-differentiable cochains. 

The method and the results in this paper have been obtained 

together with M. De Wilde. A detailed version including proofs will 

appear elsewhere [ 2 ]. 

Symbols of differential operators 

2. For simplicity, we define only the symbol of a p-linear dif­

ferential operator on the space N of C^-functions of a manifold 

M. Such an operator is a p-linear mapping C : N
P
 -> N whose local 

1 Ttl 

expression in any chart (U, (x s...9x )) of M reads 

a a 

C(u
ni
...

<
,u .) I, - I c _, D u

n
...D

 p
"

1
u , 

0 p-i !u loy+^+la |<k V - ' V i x ° x P
"* 

where the C 's are C^-functions on U, and, for 

0* ' p-1 
a = (t ,....t ) , 

1 m 
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<* 1 m 
D u means D „ ...D u . 
x 1 m 

x x 

Under a change of coordinates, the above local expression beha­

ves according to a rather complicated rule which has no useful mean­

ing except for the sum of the terms whose order I. | a m | is maximal. 

Indeed, to perform in that sum substitutions of the form 

D^U + £,* = (£1)tl...(Cm)tm a e T*M) 

gives a well-defined intrinsic homogeneous polynomial in 

£n'-' e« 1 G T * M : 
u p-i x 

V'""'.-.' - ,„o|ł,4 ,.. ч-. V l #-&' 
which is called the total symbol of C. It will be also useful to 

consider the symbol O* of C, which is defined as the component 

of O of maximal lexicographical degree. Recall that the lexico­

graphical degree of 

a a 
C r 0 . p-1 

V " ' V i ° p _ 1 

"*• i i i i •*• •+ 
is r = (r = a ..... r

 4
 = a ) and that r > r* means 

o ' o ' p-1 ' p-1 ' 

3 i < p : r- = (r^.-.r^.r-,...,^.) and r' < r. 

3. An important feature of the notion of symbols is the compo­

sition formula which allows easy manipulations of differential ope­

rators : as easily seen the total symbol of 

C = C ( C Q ( u l J . . . ) J . . . J C ( v ^ . . . ) ) 

i s g i v e n by 

V - v z ei'--'z V a c (5i*">-°c (ni--°-
i j o p-1 

Let us illustrate the use of this formula by computing the de­

rivations of the Poisson algebra (see § 5 for notations), that is 

the linear operators D : N -• N such that 

D{U_,V} = { D U , V } + {u,Dv}. 
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The symbol of {,} be ing A(£ , r . ) , i t f o l lows for O the e q u a t i o n 

o D ( 5 + n ) A ( 5 3 n ) = A(5,n)a D (5)+A(S 3n)o D(n). 

which means that o (£) is linear in £ and thus of the form 

<Xj^> for some fixed vector field X on M. Hence D is of the 

form u •+ L u + au for some a G N. It is now an easy job to show 

that a £ 3R and that X is an infinitesimal conformal transforma­

tion of the symplectic structure. 

4. Let us illustrate another useful way of using the symbol 

with the following simple example. Let V be a covariant deriva­

tive on M and let V . u -*• V u be the differential operator of 

order r mapping a function u on a r-covariant tensor field de­

fined inductively by V u = du and 

(V ru) (xlJ...,xr) = x r ( V
r _ 1 u ) (x2J...Jxr) - I ( V r _ 1 u ) (x2J...3Vx x£,...,xr) . 

Then in any local chart of M, the components of V u are of the 

form 

(V u) . = 3 . •••<&, u + lower order terms in u 
i.-i i. i 
1 r 1 r 

and its total symbol is K ® - ® £. Thus, for a given polynomial 

O(^0J,"':,^p-l) ° f d e 9 r e e r' 

r i 

obtained by contracting each V u. with the polarization of O 

with respect to £., defines a p-linear differential operator of 

symbol 0. 

For instance, starting with O = 0 , where C is supposed to 

-* V -V c V 
be of order r, we obtain C^ = 0 and the degree of C - C^ is 

r r 

strictly less than r. By induction, this gives the canonical de­

composition 
C = E CV 

of C with respect to V. [ 4 ] 
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Cohomology of the Polsson algebra 

.4. Structure of the symbols of the cocycles 

5. We now suppose that M is equipped with a symplectic form 

F. We denote by y the canonical extension of the isomorphism 

X e TM -*• -i (X)F e 1 

bracket defined by 

• . -1 
X e TM -*• -i(X)F e T M and we set A = u F. Recall the Poisson 

(u.v) = A(dUjdv) , u.v € N , 

and recall that (N,{3}) is a Lie algebra : the Poisson algebra of 

(M,F). 

We now restrict ourself to skew symmetric p-linear differential 

operators C : N p -> N which vanishes on the constants (i.e. 
c (u n.»-.»u -) = 0 if Up € nR for some t < p) . We call such an ope­

rator a p-cochain. Its ooboundary is by definition the (p+1)-cochain 

(3C) (un,...,u ) = £(-l)
1{u.,C(ufV,...i...,u )} + I (-l)1+jc({u.,u.}Jun,...i...j...Ju ) 

o p i l 0 p i j U p 

where i stands for the omission of u..If 3c = 0, C is said to 

be a v-oooyole and since 3 o 3 = 0, one introduces the space 

HJ..C.F (N) = {p-cocycles}/{p-coboundaries} 
ui11jn c 

which is called the p-th Chevalley oohomology space of N for the 

differentiable cochains vanishing on the constants. 

6. It turns out that using the composition formula of §3, 

one easily computes 0~ in terms of o* and then 6\ in terms 

of O . The last relation may be written down in the form 

a„ = ± 3 a 
3c P C 

where 3 denotes the coboundary of the Chevalley cohomology of a 

finite dimensional representation P of the symplectic Lie algebra 

spfn^IR ) . Such cohomology is completely known [ 1 ] according to 

which the symbols of the cocycles of the Poison algebra can be com­

pletely described, as they satisfy 3 0' = 0. 

Let P denotes the algebra of polynomials invariant under 

the natural action of the symplectic group Sp(n,yIR). Due to this in-
• 

variance, a P (5. . .-j 5 ) e rn induces a polynomial on each T M, 
1 s U x 

which will'still be denoted by P. 

Let also denote by C the algebra of Sp (n3 .JR)-invariant 

scalar forms on sp(n.,]R). Then 
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k e r 3 p = im 8 p e (?Q®CQ). 

Let T denotes the space of contravariant skew-symmetric tensor 

fields on M. Then, OC denoting the skew-symmetr izati on : 

Theorem. Adding a ooboundary if necessary> the total symbol of a 

oocyole C of total degree k may be given the form 

\ = Jj «(PJ , P +e P0 ® CQ e T. 
IrI=k r r 

B. T/ie 3-diffeventiable cohomology 

7. Due to the above theorem, it would be interesting to cons­

truct oocyoles having prescribed symbols £ ^n ® ^n because such 

operators should have some chance to represent classes generating 

the cohomology. In view of §4, it is easy to construct cochains 

having a given symbol. As we need cocycles, we have to modify that 

construction. We do not know how to proceed in general but we shall 

indicate how to work for the elements of P- of degree 3 in each 

argument, the space of which we denote by P . 

Let r be a connection on M and V be its covariant deri­

vative. Define then £ V by 

JCUT : (X.Y,Z) + H(L V)(X,Y),Z) 
u 

where X = U (du) and L V denotes the Lie derivative of V in 

the direction of *. If T is symplectic (i.e. torsionless and 

such that VF = 0), £ T is a covariant symmetric 3-tensor field on 
u 

M. As easily seen, given p G P . 

s r ( p ) ( « , . . . , « > = P ( X r , . . . , x u r> 
e 0 p-1 

obtained by contracting £ T with the polarization of P with 

i 

respect to £.(0<i<p), defines a cocycle of symbol P whose coho­
mology class does not depend on T. 

For C n, the situation is not so clear. There is no cocycles 

of prescribed symbol in C except for a flat manifold M. How­

ever, given T, there is a canonical way to construct cochains 

T_(k) (0<k<m) of order 2 in each argument, whose symbols gene­

rate the algebra C and whose coboundaries are of order 1 in 

each* argument. 

Let I (N) be the space generated by the cochains 
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sr(P) A T
r(k 1) A...A T

r(k £) A fi 

(P e P 0<k <-...<k̂ <m _. fl € A(M)), where 

0 P"1 

and observe that 3l-.(N) C I (N) . 

8. Let us say that a cochain C is t-differentiable if it is 

of order < t in each argument, that is if 104 _ | < t for each 

i < p, in the notations of §2. It is easily seen that 3c is t-

differentiable if so does C so that the t-differentiable cohomo-

logy H ..„ _. (N) is defined. 
t-diff_,nc 

For t = 1, it is known to be isomorphic to the de Rham coho-

mology of M [ 5 ]. 

The computation of HL ,._._- (N) for t = 2,3 follows from 
t-diff_,nc J 

the following (observe that the elements of I-, (N) are 3-differen-

tiable) : 

Theorem. Let T be a symplectic connection. Then 

H3-dif f jnc
( N ) " H(Ir(N).3). 

Using that theorem, one can indeed show that 

Theorem. H O .._.. (N) E p <S> H. 
3-diff3nc 3 2-diffjnc 

and that 

2 m 

Theorem. H„ _.._.__ (N) = H ( A ( H ) ,6) where 
2-dif f., nc 

í(ß. . ,i, <...<!.) 

= ((-l)kdft. . + Z Z (-1)*~1TP A fi. , o, . ) 
i „ — i . . . _-,?^. -»-• i , - i , .-Ci.—i. 
1 k _j i . „ <£<i . 1 j-1 _j k 

where T« denotes the representative of the £-th trace class Of M 
obtained by the canonical construction of the Chern-Weil homomor-
phism of TM associated to V. 
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