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ABSTRACT : In these notes we present a number oi results which concern the ab­

sence of ordered phases at low dimensions for systems having a con­

tinuous rotation symmetry and long range interactions. The cases 

of classical spin systems and spin glasses in two dimensions and of 

lattice gauge systems in three dimensions will be considered. 

1. INTRODUCTION 

The mathematics involved in classical equilibrium statistical mechanics 

concern well known structures of probability theory. Thus, random fields with dis­

crete argument correspond to spin systems in statistical mechanics. 

Let <<f *".2> be a d-dimensional integer lattice. To each site JC-5O£ we as­

sociate a N-dimensional vector S^ 3{$<£,...,£*/of unit length called spin. We assume 

that the spins have as a priori distribution the uniform measures do2^f on the 

sphere 3 and interact through the hamiltonian 

H ^-2LHJ'(x^y)5L
xsl -H-SJL (1) 

*>$ H ' ' X 
r* rV -> JSl 

whereU,...,v are real valued interaction potentials and h ^ R represents 

the external magnetic field. 

The configurations of the system are functions on 00 with values on 

o . On the set K g of configurations we introduce the product topology 

and the corresponding Borel <T -algebra. Let ^G K/VA ^e a &iven configuration 

on eC\A where A is finite. The Gibbs measure, at the inverse temperature 

A s 4/T of the finite system restricted to the box A with boundary condi­

tion ^ outside A. , is 
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where ^-*A (the partition function) is the normalization constant chosen so that 

/ cLjAft**^ , and the configuration \$x,} coincides with ^ on°vl/l. 

A probability measure \L on K* is a Gibbs measure or an equilibrium 

state if for all finite A its conditional probability given ^ outside /\ is 

given by (2). 

For N = 1 we have the Ising model, for N = 2 the plane rotator and for 

N = 3 the classical Heisenberg model. Ferromagnetism corresponds to positive in­

teractions. These systems are isotropic if J s...sa\I . In this case the hamil-

tonian at zero magnetic field 

H = -X. J(x-y)?xTy (3) 

is invariant under simultaneous rotation of all spins. 

SPIN SYSTEMS 

In (3) 0(N) is the symmetry group. For N ̂  2 , the Mermin and Wagner 1J 

result is well known and implies that there is no long range order in such systems 

for dimension d = 2 (except if the interaction is very long range). Then the spin-

spin correlation function ^JiSv/ of any Gibbs state decays to zero at large dis­

tances 

Itin <Sx^y> =s° (4) 

which is equivalent to saying that the one point correlation functions are inva­

riant under 0(N), and therefore the magnetization <S-c-
>" 0. 

This is reinforced by the Dobrushin and Schlosman result J_2_J according to 

which, under very general assumptions, there is no breaking of a continuous symme­

try in 2-dimensions, an interesting physical question for which optimal results 

are now available [3*41 • In this case all Gibbs states are invariant relative to 

the symmetry group of the hamiltonian. 

If the converse case occurs-as for the Ising ferromagnet if d ̂  2 or for 

N ^ 2 if d ^3 |51 where (4) does not hold at low temperature- one says that the 

symmetry is spontaneously broken. 

For N-> 2 in d = 2, upper bounds on the decay of <Sj£**} were established 

in [6,7>8J if the interaction is finite range, and recently the case of long range 

interactions has also been discussed [9,101. Our results on this problem will be 

now briefly described. 
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Proposition 1 : Let d = 2 and N-^ 2 . We assume that the in teraction verifies 

iJM\4A\xr* (5) 

where A is some c o n s t a n t . If gc> 4? then the sp in - sp in correlation functions 

associated to any Gibbs state are bounded according to 

|<£ŠV>| * B Ix-yr^ (6) 

where A((&) is a strictly positive non decreasing function of /3 behaving as 

%(&)- K//3 for large p (B and K are constants). 

The upper bound (6) is of the same type as that previously established by 

McBryan and Spencer 7J in the case of finite range interaction and improves the 

results of refs.|9,10j. We notice also Frohlich-Spencer's result [11} , proving that 

for the plane rotator ferromagnet with nearest nei&nbour interactions, the corre­

lation functions <ŝ .Sy> have precisely a power low decay at low temperatures. 

Proposition 2 : Under condition (5) with oi = 4 an upper bound on <Sjcsy>' holds, 

which decays at infinity as an inverse power of loglx-y/. 

For ferromagnetic systems with an interaction such that J(x) = 1x] for 

large |x) , with c< such that 2 < tx < 4 , one knowns [\ 1,12J that the 0(N) is 

spontaneously broken and the limit (4) is strictly positive at low temperature 

(the condition OC >£ is needed for the existence of a thermodynamic behaviour). 

On the other hand under condition (5) with OC %, A all Gibbs states pre­

serve the 0(N) symmetry. This result can be recovered from Propositions 1 and 2 by 

using correlation inequalities |14|. 

3. GAUGE LATTICE SYSTEMS 

Gauge theories on a lattice were introduced by Wilson I15 J as a discrete 

space-time approximation to a quantum theory of gauge fields. In the case of a 

U(1) invariance they can be described as follows : 

To each ordered link (x,y) of neighbouring sites |x-yj = 1 an element 

^.ry3^Vx e U(i) is assigned (where U(1) is the group of complex numbers of 

modulus 1). A con f i gu ra t i on on c& is specified by g iv ing the values of kXy at 

each l i n k . Given a closed path on the lattice T , formed by the l i n k s (xitxx)tfcItx£ 

-..jtenP*) we denote by A (T) the product 4^x24czx ^>^xkXi * b y T r A ( ) ^ t h e r e a l 

part of A(T) and by lYl*n> the perimeter of the path If . We cons ider the hamil-

ton i an (which should be called euc l idean action in the context of a field theory) 

CPT-83/P.1497 
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H - -T.*(r)A(Y) (7) 
r 

where the J Of") are real valued interaction potentials and the sum extends over 

the set of clased paths of <& .We assume that the variables kXy have as priori 

distribution the uniform measure on the circle. The corresponding Gibbs states of 

the system are then defined as in Section 1. 

The system defined by (8) has a local symmetry property. Namely, if we 

introduce extra variables Kc€\J(l) at each site jcecC , and replace A^y by 

A'xy*KxAxyK'4 (8) 

the hamiltonian (7) remains invariant. As a consequence of this locality it fol­

lows that the Gibbs states are always invariant under the symmetry operations (8). 

Due to the local invariance the choice of an order parameter is not 

straightforward. Wilson I 15 1 has however suggested that the average 

w(r) = <A(r)> (9) 

may be used to define ordering. One takes I as the contour of a rectangle with 

sides of length L and T parallel to the coordenate axis of the lattice. The 

decay properties of the quantity 

/tL)= iim IW(V)iyT (10) 
T-***> 

are related to the problem of quark confinement. 

In a pure gauge field theory only the terms corresponding to the plaquet-

tes or elementary squares of the lattice contribute to (7)- If the dimension 

d = 3 an upper bound on f(t*) which decays to zero when L~* 0° , has been proved 

by Glimm and Jaffe L16j i n this case. On the other hand it is known that if d%4 

the order parameter f(l) does not tend to zero if B is large enough [j7j- The 

same is true for d ^ 3 in the Z£ theory (in which the variables A Xy are res­

tricted to take the values -1,+l). 

The generalized form (7) of the euclidean action appears in a theory of 

gauge and Fermi fields on a lattice after integrating over the Fermi variables. 

In this case we have the following result. 

Proposition 3 : Let d = 3 and assume that the interaction potentials verify 

IJCrJ! * Aexf>-lylfc9lrl (ID 

fo r some A > 0 . Then 
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I wiT) J ^ 3 ^ p -.Yp)T-fy L (12) 

where MP) is a stricly positive non-decreasing function of /& , behaving as 

-3(p) =- K/jS for large fi> ( B and K are constants). 

This proposition extends the decay property proved in [_l6j to long range 

interactions. 

4. SPIN-GLASS SYSTEMS 

A spin glass is a dilute magnetic alloy where magnetic impurities are di­

luted in a non magnetic metal. It is believed that the physical behaviour of such 

systems comes from a spin-spin interaction of the impurities which is long-range 

and rapidly oscillating. It appears that this oscillating property, which is es­

sential to produce a spin glass, can be modelled, according to the ideas of Edwards 

and Anderson I l8j, by a spin system in which the interaction potentials J(x,y) are 

random variables. 

Let <.>(J) denote expectation with respect to a Gibbs state correspon­

ding to a given configuration of the interaction potentials J(x,y). Let E denote 

expectation with respect to the random variables J. Since the mean magnetization 

£ i t «-\l->fJ .)/ is assumed to be zero according with the assumed probability dis­

tribution for the variables J, one considers the following order parameter Il71 

<l- E(<fx>(j)<rxxz)} (13) 

which should be strictly positive in a spin glass phase. 

Few rigorous results are known for these systems. Let us mention a first 

study by Vuillermot |l9j , the proof of the existence of the thermodynamic limit 

by Khanin and Sinai 20 J, and the results on the absence of phase transitions in 

one dimensional Ising systems by Khanin I 21J and by Cassandro, Olivieri and 

Tirozzi R-2j. We notice that in refs. [20,21,221 the random character of the in­

teraction plays a crucial role since long range interactions are considered for 

which the corresponding statements should be false in the deterministic case. This 

is also the case for the following result. 

We consider a plane rotator spin glass in d = 2 dimensions. The hamilto-

nian is given by 

H . - Z - ^ & S (i3) 
*sY /*-//* ' 

We assume that J ( x , y ) for {x,y> C (£ are independently distributed random va-
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riables with mean zero. For the sake of simplicity we take J(x,y) =44 with proba­

bility | . Under these conditions we have : 

Proposition 4 :_ Let P(J) be any Gibbs state corresponding to the system defined 

by the hamiltonian (13) for a given configuration of the J(x,y). We assume that 

the dimension d = 2 and that <X> 3 . Then, for almost all J , P(J) is invariant 

by rotation of the spins. 

One remarks that this statement implies 

<s]c>(j) =0 (14) 

for almost all J and in particular that the mean magnetization and the order para­

meter (13) are zero. In the deterministic case (that is, if J(x,y) = 1) there is 

a breakdown of symmetry as has been mentioned in Section 2. 
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