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NOTE ON CANONIZING ORDERING THEOREMS 

FOR HALES JEWETT STRUCTURES 

J. Nesetril, H.J. Prbmel, V. Rbdl, B. Voigt 

This note presents a continuation of the research at the Winterschool 1982, see 

[1 ] . 

Definition 

Let (A,<) be a finite totally ordered set. A lexicographic tree is a set T of 

intervals of (A,<) satisfying the following rules: 

(LI) A 6 T 

(L2) for a l l in terva ls I and J i n T i t follows that I n J = 0 or 

I c J or J c I . 

(L3) for e\/ery in terva l I in T which contains at least two elements there 

ex ist mutually d i s j o i n t subintervals I Q , . . . , I« i n T , where I > 1 , 

such that 

I = І 0 Ü . . . U І . 

Convention 

Let T be a lexicographic tree on (A,<) . For every interval I € T let 

i Succ[I) c T denote the set of immediate successors of I . 

Denote by T* = {I G T ; i Succ(I) ̂  0 } . 

Definition 

(1) A quasi -ordering < is a transitive relation such that each two elements 

are comparable, but possibly I < J and J < I for different elements I and J. 
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(2) Let T be a lexicographic tree on (A,<) . We say that a quasi -ordering 

< on T* extends the tree T iff J c l implies that I < J , but not J < I. 

Remark 

I f < is a quasi - ordering on T* , then < induces an equivalence re la t ion 

w on T* by I w J i f f I < J and J < I . The quasi -o rder ing < acts q J q -q -q M y - q 

as a to ta l ordering on the equivalence classes. 

Notation 

I f < is a quasi - ordering on T* , l e t T(0) , T ( l ) , T(2) , . . . be a monotonous 

(with respect to < ) enumeration of the equivalence classes of « . Thus T(0) 

is the least equivalence class and so f o r t h . Recall that T(0) = A . 

Def in i t ion (ordering - scheme) 

Let A be a f i n i t e set . A 3-tuple F = (<,T,< ) is an ordering scheme for A 

i f f 

(1) < is a to ta l ordering on A , 

(2) T is a lexicographic tree for (A,<) , 

(3) < is a quasi - ordering on T* which extends the tree T . 

Next we show how an ordering scheme F on A can be used in order to define a 

to ta l ordering on the set Am of m-tuples over the set A . 

Notation 

Let x € Am and let X be a set of subsets of A . Then x]X denotes the 

maximal subword of x consisting of all entries x which belong to some member 

of X . 

Notation 

Let x = (XQ, .. .»xm-1) € Am and let V = {IQ I^j} be a partition of A 

into mutually disjoint and nonempty subsets. Then 
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\ = (*o *-.-]) e p m 

denotes the factorization of x with respect to P , i.e. x = 1 iff x € I 
r V V 

for every I € P and v € {0,...,m-l} . 

Notation 

(1) if < is a quasi - ordering extending the lexicographic tree T then 

i Succ(T(s)) = U {i Succ(I)|l£T(s)} 

denotes the union of the sets of immediate successors of intervals in T(s) . 

As the intervals in T do not overlap (cf. (L2)) the ordering < on A can be 

extended to i Succ(T(s)) . 

(2) By <, we denote the lexicographic ordering on (i Succ(T(s)) with res­

pect to the extension of < to i Succ(T(s)) . 

Definition 

Let A be a finite set and let F = (<>T,< ) be an ordering scheme for A . The 

ordering <r on A , where m is a positive integer, is defined in the follow­

ing way: 

Let x and y be two different m-tuples in A . 

x <F y 1ff 

there exists a nonnegative integer s such that 

xlT(s)y <ly]r(s)/ 
/1Succ(T(s)) L /iSucc(T(s)) 

and for every i < s i t follows that 

x lT ( i ) , - y l T O ) , 
' i Succ(T(i)) '1 Succ(T(i)) 

<r is also called a canonical ordering of Am (induced by the ordering scheme 

F ) • 

We have the following results which solve the problem of the canonical set of 
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orderingsof cubes stated in [ 1 ] : 

Theorem 1 (irredundancy of <F) : 

Let A be a f i n i t e set . Then there exists a posi t ive integer m = m(A) with the 

fol lowing property: 

For every pair F and F' of d i f fe ren t ordering schemata for A there ex is t 

m-tuples x and y in Am such that 

x <F y and y < p l x 

Theorem 2 (necessity of <.-) : 

Let F be an ordering scheme for A . Let m < n be positive integers. Then 

there exists an ordering < on An such that for every f € [A](n) holds: 

~ * - * ' £ * £ - * £ -* 

x < v y i f f f • x < f • y 

for a l l m-tuples x and y in A 

Theorem 3 (suf f ic iency of <r) : 

Let A be a f i n i t e set . For every nonnegative integer m there exists a nonne-

gative integer n with the fo l lowing property: 

for every totoal ordering on A there exists an m-parameter word f € [A]( ) 

and there exists an ordering scheme F for A such that 

x < F y i f f f • x < f • y 

fo r a l l m-tuples x and y i n Am . 

I t is in te res t ing to note that the re l a t i ve l y complicated structure of unavoidable 

orderings of An appears only for larger alphabets A . For small alphabets the 

canonical set of orderings was determined e a r l i e r in [ 1 ] and i t represents 

simpler resu l t s . 

The f i r s t non - t r i v i a l example appears at A = {0 ,1 ,2 ,3 ,4 ,5} and can be depicted 
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as follows: 

{0,1,2,3,4,5} 

{0,17 {2,3} {4,5} 

/ \ / \ / \ 
{0} {1} {2} {3} {4} {5} 

< : 0 < 1 < 2 < 3 < 4 < 5 

< 
-q 

{ 0,1} « {4,5} < q {c -.3} 

( a l l othe r pa i r s are determined д S <q is an extension of T ) • 

Consequently: T(0) = {0,1,2,3,4,5} 

T ( l ) = {0,1,4,5} . T(2) = {2,3} 

The structure of the standard ordering <r may be indi cated by the f o l l owing 

2 
pairs of A 

50 - ^ -

40 

30 

20 

10 

00 

00 01 02 03 04 05 

The proofs of the above theorems will appear elsewhere. 
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