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FLOWS IN INFINITE NETWORKS 

Michael M. Neumann 
Fachbereich Mathematik 
Universität Essen - GHS 
D-4300 Essen W.-Germany 

Introduction. The main result of this note may be viewed as a 

generalized version of Gale's celebrated feasibility theorem on 

flows in networks [1, p.38]. In our general context, flows will be 

certain biadditive set functions v: I x I -> x, where I is some 

algebra of sets and X i$ a Dedekind complete ordered vector space. 

In the classical situation, I is just the whole power set P(S) for 

some finite set S of nodes, while X is the real line ]R . There is, 

however, a considerable demand for a more general setting: For 

instance, infinite sets of agents arise quite naturally in modern 

Mathematical Economics, infinite commodity sets do occur as soon as 

one is interested in the dynamic behaviour of a given system, and 

last, not least one wants to handle the case of multi-commodity 

flows. The present approach to flows in infinite networks is comple­

tely different from the various known proofs in the finite case. 

Here, we shall make essential use of sublinear operators and the 

interpolation theorem due to Mazur-Orlicz. These techniques are 

close in spirit to those of Fuchssteiner [2; 3] and Konig-Neumann [6]. 

There are, however, some significant differences and simplifications, 

since neither disintegration tools nor localized order structures 

will be used here. A similar approach has been employed in [7] to 

produce a Ford-Fulkerson type theorem concerning maximal flows and 

minimal cuts in infinite networks. The following section contains 

the main result of the present paper. In the remaining sections we 

discuss some immediate applications from which our interest in 

generalized networks actually arose. 

An Extended Flow Theorem. In the following, let S be a non-empty 

set endowed with some algebra I of subsets. X stands for an ordered 

vector space which is assumed to be Dedekind complete in the sense 

that each upper bounded subset has a supremum. We add a smallest 

and a greatest element +«> to X and extend the algebraic operations 
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in the usual way, i.e. we define 0* (+ °°) = 0 , t* (+ oo) = + oo for all 

real t > 0 , x + «> = + <» for all x £ X. Finally let us fix a pair of 

biadditive set functions a,T : I x I -> x such that 

(1) a(A,B) < T ( A , B ) for all disjoint A,B € I 

and a pair of additive set functions A : I -> X U {-<*>} and 

y : I -* X U {+<»} such that X < y on I. Then we have: 

Theorem 1 . There exists a biadditive mapping v : I x I -> x such that: 

(2) a(A,B) < V(A,B) < T (A,B) VA,B G I with API B = 0 

(3) A(A) < v(A,S) - V(S,A) < y(A) VA € I 

if and only if the following condition is satisfied: 

(4) A (A), - y(A) < T(A,A) - a (A,A) VA £ I 

where A = S ̂  A denotes the complement. 

Proof. The necessity of condition (4) is obvious; so we only have to 

prove the sufficiency. According to the transformations 

a = 0, T = T - a , v = v - a 

X = A-a(.,S) + a(S,«), y = y - a(- ,S) + a(S,«) , 

we may assume that a = 0. Our basic assumption (1) then reads 

T(A,B) > 0 for all disjoint A,B G I. We now establish an appropriate 

functional-analytic setting for our problem. Let E denote the space 

of all I-measurable simple functions cp : S -* 1R , and let F consist 

of all lol-measurable simple functions cp : S x s -> 1R , where I o I 

is the algebra on S x s generated by I x I. Our theory will be 

dominated by the sublinear operator 9 : E -* F given by 

0 (tp) (u,v) : = max{cp(u) - (p(v) , 0} Vu,v € S, cp € E. 

The following properties of 9 can be easily checked. As usual, xA 

stands for the characteristic function of a given set A. 

(5) 9 (X A ) = X A x A . 6 ( - x A ) = X A x A V A € I . 

(6) 9(tp + t ) = 9 (cp) Vcp € E , t G ]R . 

(7 ) 9(cp - *) = 9(cp) + 9 (-!(;) Vcp,iJ; G E + w i t h cpij; = 0 . 

(8) 9( I t xA ) = 21 t . 9 ( X A ) V t r . . . , t > 0 
i = 1 ! A i i = i x Ai i n 

and A- , . . . ,A G I with A. 3 . . . 3 A . 
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Thus, in a precise sense, the operator 0 behaves almost linearly. 

Next, let T : I o I -* X denote the additive mapping corresponding 

to T via the formula 

A
 n n 

T( U A. x B. ) = I T(A. ,B. ) 
i=1 1 X i=1 x 1 

for every finite system of pairwise disjoint rectangles 
A. x B. € I x 
l l 

we may define 

A. x B. € I x i. Using an elementary notion of an X-valued integral, 

P(iJ0: = J 6(i|;(urv)) (u,v)dT(u,v) V* e G, 
SxS 

where G denotes the space of all lol-measurable simple functions 

\p : Sx S -• E. If T > 0 on I x I and hence T > 0 on I o I , then 

p : G -* X is certainly a sublinear operator. But a more careful 

calculation shows that p is sublinear even under the present weaker 

assumption on T. Finally, let K, and K consist of all ip € E which 
A y + 

are integrable with respect to X and y, respectively. Now, le t 
<P £ K. and i|> £ K be arbi t rar i ly given. We put (p : = (cp - \[») and 
~ A - ^ ~ ^ ~~ ~ ~ 
ijj : = (cp - i|0 so t h a t cp— i p = c p — ip*, cpip = 0 , cp 6 K. , ty £ K , and 

~ ~ A y < p - < p = i p - t J j £ K , f l K . From X < y we conc lude A y — 
J cpdX - J \Jjdy < J (pdX - J $ d y . 
S S S S 

We now consider representations of the type 

~ n ~ m 

<P = z siXA and $ = I t .x B 
i=1 1 i j=1 D Bj 

where s.,t. > 0 and A. ,B. G I with X(A.) ,y(B .) € X such that 

A. => . . . z> A , B. c . . . c B , and A. n B = 0 . From the properties 1 n 1 m 1 m ^ r r 
(5) - (8) of 0 and from our assumption (4) for the case a = O we 

conclude that 

} 6(tp -i|))dT = J 8($-?)dT 
SxS SxS 

= J (9(5) + 0(-*))dT = J 6(«p)d$+ J 0(t + ... + tmi)dx 
SxS SxS SxS 
n __ m _ 

= I s T(A ,A ) + Z t T(B ,B ) 
i=1 X X 1 j=l J J J 
n m 

> I s.X(A ) - I t.y(B.) = J tpdX - J #dy 
i=1 x x j=1 D D S S 

Identifying E with the space of all constant functions in G, we 

thus arrive at the estimates 

P(<P - •) > J cpdX - J i|>dy V cp € Kv ty € K . 
"~ S S A y 
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Hence a vector-valued version of the Mazur-Orlicz theorem supplies 

us with a linear mapping v : G -* X satisfying 5 < P on G as well as 

J (pdA < £(<p) Vcp € K, , / cpdu > £ (cp) Vip € K . 
S A S y 

see for example [8f p.79]. By means of this mapping, we define 

V(A,B) : = C(*A/B) VAfB € Zf 

where \pA _ € G denotes the function being constant to xA on S x B 

and to 0 on S x B. The set function v : Z x z -* X is certainly 

biadditive. Moreover, from £ < p on G one easily deduces that 

-T(A,A (1 B) < v(AfB) < T(A,A 0 B) VAfB € Z. 

This implies 0 < v(AfB) < T(AfB) for all disjoint AfB € Z as well as 

v(SfA) = O for all A € Z. Finally, given any A G Z such that 

X(A) G X resp. u(A) G Xf we obtain 

A(A)< £(<I>A s) = v(AfS) = v(A,S) - v(SfA)f 

y(A)> £(*A'S) = v(AfS) = v(AfS) - v(SfA)f 

respectively. Note that the resulting estimates are obvious if 

X (A) = - OP , resp. u (A) = +» . Thus v has the desired properties. 

Corollary 2. Assume that a < T holds on Z x z. Then there exists a 

biadditive set function v : Z x z -+ X satisfying a < v < T on Z x z 

and (3) if and only if condition (4) is_ fulfilled. 

Proof. It suffices again to show the sufficiency for the case o = 0. 

Thus we suppose that T > O on Z X z. Hence the mapping v from the 

preceding proof satisfies v < T on Z x z and v(AfB) > O for all 

disjoint AfB G Z. Let v : IoI-*X denote the corresponding additive 

set function, and consider its positive part given by 

T (V) : = sup{ v (U) : U € Z o Z w i t h U c V } € X V V G Z o Z . 

Obviously, y : Z o Z -* X is well-defined and additive. And it is 

easily verified that 0 < Y < _ T o n ZoZ as well as r (A x A) = v(A,A) 

for all A G Z. Hence the definition v(A,B): = Y(Ax B) for all 

A,B € Z yields a biadditive mapping v : Z x z -> X with the desired 

properties. 

Let us state an immediate consequence: There exists a biadditive 

mapping v : Z x z -* X satisfying o* < v < T and (3) if and only if 

there is a pair of biadditive mappings v..,v2 : Z x z -• X satisfying 
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a < v. ,v2 < T as well as A (A) < v.. (A,S) - v. (S,A) and 

\k(A,S) - v2(S,A) < u (A) for all A € I. A similar characterization 

holds in the situation of theorem 1. 

We finally note that the preceding result admits an important measure 

theoretic interpretation. Let us assume X = 1R , for simplicity, and 

consider a pair of finite measures a,T : I ® I -> HR with a < T , 

where I ® I is the usual a-algebra on S x s generated by I x I. Then 

a and T give rise to biadditive set functions a and T on IX I via 

a(A,B) = a(AxB) and T(A,B) = T ( A X B ) for all A,B € I. Conversely, 

by standard measure theory, every biadditive mapping v : I x I -> JR 

satisfying a < v < T o n ! x i canonically induces a finite measure 

v : I ® I -> ]R such that a < v < ~ o n I ® I and v(A,B) = v (A x B) 

for all A,B £ I. Thus corollary 2 contains a feasibility theorem for 

finite measures on I ® I as a special case. 

Biadditive mappings with given marginals.Let S1 and S2 be sets 

endowed with algebras I- and I 2 of subsets, respectively, and 

consider biadditive set functions a,T : L x L •• X such that a < T. 

Moreover, for i=1,2 let X. : I, -» X U {-«} and y : I± -• X U {+<»} 

be additive such that A. < u.. 
I — *i 

Theorem 3. There exists a biadditive mapping v : L xl 2 -* X such 

that 

A.- < v(*/S2) < y1 and A2 < v(S .1 ,«) < y2 

if and only if the following condition is fulfilled: 

A.-tA,.) - y2(A2), A2(A2) - u . . ^ ) < T(A1fA2) - a(A..,A2) 

for all A. 6 I.. 

Proof. We may assume that S- n S2 = 0. Now endow S: = S.. U S2 with * 

the canonocal algebra I coming from I- and I 2 and consider the 

trivial extensions of a and T to IX I being 0 on I- x l1, i2 xI , 

I x I Finally, let A be = A., on I., and = -p2 on I2, and define 

p to be = p. on L and = -A2 on I2. Then the assertion can be 

easily deduced from corollary 2. 

This theorem is closely related to results of Kellerer [4;5] 

concerning functions and measures on product spaces with given 
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marginals, but the technicalities are rather different. The present 

approach avoids, for instance, the weak compactness of order inter-

1 

vals in L and the Radon-Nikodym theorem. Of course, by the conclu­

ding remarks of the last section, theorem 3 immediately includes 

the case of finite measures and can also be extended to the case of 

a-finite measures [4]. 

An Economic Application. In this section, we consider a triplet 

(P,I ) , (Q,I n), (R,IR) of sets endowed with certain algebras of sub­

sets. For the sake of interpretation, P will stand for the producers, 

Q for the consumers, and R for the goods of a given economic system. 

In modern economics, the emphasis lies on the coalitions the agents 

may form and on the submarkets which may be built up by the given 

goods. Thus I p, I Q, I R rather than P,Q,R will be of decisive im­

portance. Suppose that we are given biadditive set functions 

p1' p2 : Z R x Z P "* X W i t h P1 - P 2 ' 

°1'a2 : Z R x L 0 ~* X with a.. < a2-

These mappings will serve as lower and upper raw-material bounds 

for the producers and as lower and upper saturation bounds for the 

consumers, respectively. We also assume that there are lower and 

upper supply and demand functions, i.e. additive mappings 

a1 : I p -> X U {-°o}, a 2 : I p -• X U {+«>} with a.. < a 2, 

b 1 : I -* X U {-o° } , b 2 : I -* X U {+°° } with bq < b2« 

Of course, in concrete applications some of these mappings will be 

identical to 0, + <», or - », which will considerably simplify some 

of the subsequent formulae. Now, the obvious problem is to find a 

production and a consumption plan which are compatible with the 

given situation. To be more precise, we are looking for a pair of 

biadditive set functions f : I_ x I -> x and g : I_x I -> x such 
R P R Q 

that the following conditions are satisfied: 

P1 < f < P2 , a1 < f(R,«) < a 2, 

(9) o1 < g < a 2 , b.j < g(R,«) < b 2 , 

g ( • ,Q) < f(• ,P) . 

This problem will not have any solution unless the given data fit 

together in a suitable way. In order to give the appropriate 

conditions, we introduce for each A € I R the following notations: 
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IT (A) : = inf{a2(U) - p..(Â,U) 4- p2(A,TJ) : U € Zp} 

= [ (a2 - Pl (Â,.)) A p2(A,.)] (P) 

n(A) : = sup{b1(V) - a2(A,V) + a.- (A,V) : V e ZQ} 

= [ (b1 - a2(A,.)) v a., (A,.)] (Q) 

inf{p2(R,U) - a1 (U) : U e Zp} тт 
0 

= [(p
2
(R,.) - â .) л 0](P) 

n
Q
 : = sup{a

1
(R,V) - b

2
(V) : V € ZQ} 

= [(a1(R,.) - b2) v 0](Q) 

Here, TT (A) may be viewed as the maximal supply for the submarket 

A e ZR, whereas n fA) is just the minimal demand for this submarket. 

Indeed, every production plan f certainly satisfies f(-,P) < TT , 

whereas n < g(#rQ) holds for every distribution plan g. Hence the 

condition n < TT on Z R turns out to be necessary for the feasibility 

of our problem. A similar reasoning leads to the condition no < TT 

which actually means n = n = 0. We shall see that these con-
o o 

ditions suffice. This generalizes a result of Fuchssteiner [3, p.67] 

concerning a more restrictive situation. The interested reader will 

find a lot of further information and background material in [3]. 

Theorem 4. There exist biadditive mappings f and g satisfying the 

conditions stated in (9) if_ and only if n < n on Z R and n = TT = Q. 

Proof. We may assume that P,Q,R are pairwise disjoint and endow 

S : = P U Q U R with the canonical algebra Z coming from Zp, ZQ, 2L. 

Further, let T : Z x z -• X be given by p2 on Z R x i , by a2 on 

Z0x z R modulo an obvious change of variables, and by 0 on the re­

maining parts. The mapping a : Z x z -> X is similarly defined by 

means of p1 and a-. Finally, the additive set inunctions A and u on 

Z are given by 

A = -a2 on Zp , A = b- on ZQ, A = 0 on Z R, 

u = -a. , on Z p , u = b 2 on ZQ, u = °° on ZR. 

Then some elementary calculations reveal that the present conditions 

are exactly those of corollary 2. The desired set functions f and g 

are now obtained by the restriction of some flow v to Z R x z p and 

to Z Q x ZRf respectively. 
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