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ЗYШETRIC p-ЮШED SPACES 

FOR 0 < p ^ l 

Nicolae Popa 

In this paper we introduce the notion of a symmetric p-normed 

space, 0<.p^:l, a natural extension of that of a symmetric normed 

space. (See [4]). 

For these spaces we extend (usually without proofs) pome re­

sults of [l] , \2\ , [4] • For instance we prove that for a symmetric 

p-normed sequence space E such that the Boyd indices p„ and q« are 

not trivial, the triangular projection T acts continuously on • the 

corresponding symmetric p-normed space C^ and conversly, if T acts 

'continuously on C
E
 then the Boyd indices of E are not trivial. Par­

ticularly the space C , for 0<p<rl<.q and 1 + l/q>l/p, has this 

property but C for 0---rp*cl has it not. 

Another interesting result is that the spaces C , for 0< .cp<rl, 

are primary, obtaining thus an extension of a previous result of J. 

Arazy [2j, As a general remark we point out that the proofs follow 

the lines of these of the papers (Yj , [2~| and [4] . 

§ 1 - General theory of symmetric p-normed spaces, O-cp^-1. 

As a general rule we use the terminology of [4] and [ll . 

First we introduce the notion of a symmetric p-norm. 

Definition 1.1. Let's denote B(-iL) "^
ne
 space of all linear bo­

unded operators on-£p» ^ positive function |XJ defined on an ideal 

C of B(-Up) is called a symmetric p-norm if the following properties 

hold: 

1) |X|Q = 0 if and only if X « 0. 

2) |?tx|B = |fl| • |Xls for X£C, |\e«. 
3) (p-convexity property). For every two sequences (lin)-;--! 1 

^2i^i=l °^ rea"*- numbers and for every orthonormal system (^)^li of 

elements of w> the following inequality holds; 



210 NICOLAE POPA 

oO 
i / p 

J—-*-

<(|J\J<-,VfJ|I + l£iy<--V>f,^>1/P-
(Here "??. means the real number | ?n .: ** sign <-,. ). 

4) |AXB|S^||A|| -|x|8- ||B|)[, for A,BeB(£2) andXeC. 

5) If X is a one-dimensional operator we have 

|x|s =||X|| = s^CX). 
If instead of 4) we have the following property: 
4') |UX|S

 = |XU|S
 s IX|s for all unitary operators U and all 

XeC; 
then |X| is called a unitary p-norm. 

Later we show that |X| satisfies the inequality 

CI) |X + Y |P< |X |P + | Y | J for a l l X,Y e C 

Thus the name of a symmetric p-norm for |x|Q in justified. 

It is easy to see that a symmetric p-norm is a unitary p-norm. 
In fact the converse is also true for the separable symmetric p-nor-
med spaces. 

It is possible to prove by standard methods (see [Y} pp. 68-69) 
the following result: 

Proposition 1,2, a) Let |x|s be a symmetric p-norm on C. Then 

M 8 = |X*18 = |UX*)1/2 |S - \(x\)1/2\a for all x e c . 
b) If the i nequa l i t i e s hold 

Sj(Y)<c.Sj(X) ; j = l , 2 , 3 , . . . 

where X£C, y is a compact operator and c>0 is a constant, then it 
follows that Y^C and moreover we have 

l-ls<clxl8-
It is an easy consequence of Proposition 1.2 that a symmetric 

p-norm |Xl depends only on the singular numbers (s.(X)) . -, of the o-
perator X. P.^ 

Thus on the ideal jf'of all finite rank operators a symmetric p-

-norm |x|,., defines a function <|> on the set of all decreasing sequences 

of positive numbers with at most a finite nonzero terms by the for­

mula 
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lXls = ^ )(s1(X),s2(X),.. .). 

The study of this function is useful to show that \x\ verifies 

the inequality (1). 

Let c be the space of null converging sequences of real num­

bers and let c the subspace of cQ consisting only of sequences with 

at most a finite number of nonzero terms. 

Definition 1.?. A function $ ; £ —** IR is called a p - normant 

function if the following conditions hold: 

I § (?)>0 if 0 ^ 6 c . 
I I $(<*?) -loCl.$(7) foroC^iR and }e*c\ 

III .$(O p +1p>1 / p)<($mp +$ ( t ) P ) 1 / P for ^ ^ ^ 
(This property i s cal led the p-convexity of the function <fe) 

IV { ( 1 , 0 , 0 , . . . ) = 1. 

A p-normant function $ Q ) is called a symmetric p-normant func­

tion (briefly s.p.n.) if 

v f(?lf?2»''-'?n»0'̂ -) s ^ ^ ( l ) * fIV(2)l ••••»IV(n)l ̂ '"^ 
for all "J = (?.). ., e £ and for all permutations <5T of the set 

{1,2,...,n]. 

The following proposition is an easy consequence of the defini­

tion 1.3 and of the considerations made in [A\ pp.71-74. 

Proposition 1.4. a) If l7j|<|^-j| J^ I J 2 ^ . . hold for the vec­

tors 7= ( f j ) ^ , 1* (^)j!i 2£ c , then 

b) (The extension of Kv Fan's lemma). Assume that 

?= <ty£l. ̂ = ( V ? i e ^ - Tl>72>"->0' tll>fl2^"-^0 

and 

then we have 

$()) <$<V 
for each s.p.n.ib. 

Easy examples of s.p.n. functions are^p^t?) = max |) I and 
nelN .go 

§ p Q ) = ( X I | t y p ) 1 / p -"o-" Tfe"S. It i s also clear that a s .p .n . 

function $ i s continuous and that 

$ o o ( P ^ ^ ( ? > < * p Q > f o r a l l ^ e S . 
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Theorem 1.5. Let |AV a unity p-norm on ;f . Then the equality 

$(s(A)) = |A L for A e ? and s(A) : = (s.(A)) . - ; defines a s.p.n. 
S J j-x 

function §(}). Conversely, if $(?) is a s.p.n. function, then the 

equality 
|A|^ = <£> (s(A)) for A e £ 

defines a uni tary p-norm on (f% 

Sketch of the proof. I f |A| i s a uni tary p-norm then s.(A) = 

= s,(B) for j = 1 , 2 , 3 , . . . implies tha t |A|S = |B | f l . 

Let $(f) = \JZ?l (# > H>j )vPjls ' where ^ j ^ l i s a f i x e d 

J 

orthonormal system in u, and (?•)• -i is the decreasing rearrangement 

of a sequence (f.). -, € c . 

Then $ is a s.p.n. function. Let's verify the property III 

#Q)p+^)p = lg?*(. . ^ M g ^ c ,fj)fjis = 

= i lZ ?j(- .fj)?jls + ' Z - - V * »4o) fj I s > ( b y t h e P-convexity) 

^ I I c i s * ^ 1 ^ (• .*fj>*&is --^ccp +e>iyip>-
The converse is also true using the property III for £ . m 

Corollary 1.6. Every unitary p-norm on the ideal ^ is a sym­

metric p-norm. 

Now we justify that |A|Q is a p-norm on ̂ . 

Corollary 1.7* Every unitary p-norm | A| on ^ verify the fol­

lowing inequality 

|A + B|§<|A|P+ |B|P for A.BE?. 

The proof is based on the very important Theorem 2.8-{jf), which as­

serts that 

Y~ 8? (A+B) < 2 Z s3? (A) + JZ aPiW f o r a11 A.B^y. 
Indeed 

|A+B|p. = $ ( s (A+B) ) p <§( ( s p (A)+s p (B) ) 1 / p > P <$(s (A) ) p + §>(s(B))P = 

f = | A | | + |B|P . _ 

Definition 1.8. An ideal C of B(^) endowed with a symmetric 

p-norm, such that C becomes a p-Banach space is called a symmetric 

p-normed ideal (briefly a s.p.n. ideal). 
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For instance .each C : = JX£B(£ 2); [x\ = ( ̂ > s?(X) ) 1 / p< °°j 

for 0<rp<c.ocis either a symmetric p-normed space for 0<rp<rl, or a 

symmetric normed space for l<p<:oo. 

We present now a general method to generate symmetric p-normed 

ideals. 

Let fl$)be a s.p.n. function and let Q A = ? | e c Q>
 SUP &\ )<€>°\ 

where fU) = (]-_,... Jn,0,...) for j 6 c Q . 

We extend c|> to the space c*- by the formula 

$(?) = liiricJ>Q(n)) for |£c. . 
n 9 

Definition 1.9. For a s.p.n. function ̂  we consider the set C<$> 
of all compact operators X such that s(X) = (s«(X)) • -* £ c^ . 

For each X e C , put 

|X|$ = $(s(X)). 

Now we can state a similar result to that of pH p.80. 

Theorem 1.10. Let <|>(?) be a sp.n. function. Then the set C^ is 

a s.p.n. ideal with respect to the symmetric p-norm. 

|A| = |A|C = ф(s(A)) foг A Є C ^ 

For the ideals C^we can extend almost all the statements pro­

ved in [4"] pp.80-90. 

Let's denote by C° the closure of the space j- in C ^ . Then the 

following theorem is true. 

Theorem 1.11. Every separable s.p.n. ideal coincides with a cer­

tain ideal C^. 

We have already shown that a unitary p-norm on .f verifies the 

generalized triangle inequality. An important role in the proving 

of this fact is played by the p-convexity of the p-norm. 

Bjy Corollary 1.7 it follows, in the case p=l, that the set of 

properties l)-5). Definition 1.1 is equivalent to the same set of pro­

perties, where instead of property 3) we put the usual triangle*& ine­

quality. 

In the case 0<p<:l the situation is quite different. 

The russian mathematician Y.Rotfeld shown in |6l that C : = 

= fT£B:(£>); |T|_ = sup k 'p«sv(T) <oo] has an equivalent p-norm, 
i *- p I oo V 

but cannot be renormed such that it becomes a symmetric p-normed ideal. 

This fact shows us the importance of the property 3)of Definition 1.1. 
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§ 2 - Interpolation theorems for s.p.n. ideals and applications 

We show some extensions of the results of J.Arazy |Y| , [2] . As 

a general rule we dont give proofs. 

Let E be a separable symmetric p-normed space of sequences . 

Then C £ = [T€B(^); S ( T ) £ E J endowed with the p-norm ||T|| = ||s(T)||E, 

is a separable s.p.n. ideal. 

We define now the triangular projection T : C^ — > C-g by the 

formula 
J a(i,j) i<j 

T(A)(i,j) = | 0 otherwise, 

where the matrix (a(i,j))^° • -_ gives the operator A e C £ with respect 

to two fixed orthonormal bases (e )^-. » ̂ n^n=l ^n ̂ p* 

It is natural to ask about the continuity of T. We need the de­
finition of Boyd indices for sequende spaces. 

For every me IN, let D and D-,/̂  be the operators defined on the 
symmetric p-normed space of sequences E by: 

Dmx = (x(l),...,x(l), x(2),...,x(2),...,x(n),...,x(n),...) 

m terms m terms 
m 2m 

Dl/rr* = ( C— xd)/m> C ... x ( i ) / m , . . . , ) ^ 
1/m i = I i=mTT i = ( n - l ) m + l 

The Boyd indices of a symmetric p-normed space E are given by 

p = sup -iSBJSL , « = inf l oS V m 

E me[N log||Dj E melN log||D1/ml| 

7/e remark that pp = qp = r. 

Let's recall that a p-Banach space E is called interpolation 
space for the pair (F,G) if every linear operator which is bounded 
on these both spaces is also bounded on the space E. As in the Co­
rollary 3»4 -I"1] we can prove the following result. 

Proposition 2.1. Let p*cP 1 <:q 1 ^ . .oo and let E be a symmetric 
p-normed space of sequences. If Px<cPE and Qj;

<cll ^ e n C E ̂ 3 a*1 in­
terpolation space for the pair (C , C ). 

pl ql 
Now we can prove the main result. 

Theorem 2.2. Let E be a symmetric p-normed space of sequences. 

The triangular projection T is bounded on C£ if and only if l < p E . ^ 

<.qE<oo • 

Proof. If l<PE<^qE<:<>of
 l e t Pi- <-x s u c n that 1 < pl <^ )E^ qE< 
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<<-l^<oo • Since T is bounded on C . and on C (see Proposition 4.2 

-[l] ) and since, by Proposition 2.1, C E is an interpolation space for 

the pair (Cn , Cfl ), it follows that T is bounded on C-, . 
-̂ 1 ^1 •" 

Let now T be bounded on C £ and let M = ||TH<C°°# We show that 
1 < P E (the other inequality can be proved likewise). If P E < 1 , by 

Proposition 4.2 -[YJ it follows that there exists a matrix 

y = (y(ifj))f°i-i
 s u c h that l|y||n

 = 1> llTylL > 4 M and y(i,j) ̂  0 for 

a finite number of indices (irj). Let neIN be such that y(i,j)= 0 if 
max(i, j)>n. 

By Theorem 3.28 -Hfl it follows that -t (n) are uniformly con-
PE 

tained (modulo the constants 1-6., 1+1) in E, £ (n) being generated 
PE 

by n disjoint functions having the same distribution function. 
Consequently there exists n normalized vectors (x.)3? , of E 

J *}""•*• 
having the same distribution, which satisfy the inequality: 

(*) (2/3) < fllaj |? E^l&0X0 l lE<^/3)( I J a / V ^ 
J~" •*- J""J- J"~l 

for all the scalars (a-)^-,. 

Define now, for l<^i,j<^n the matrix z. . which is a n x n ope-
•*-> J 

rator-matrix and whose unique nonzero entry is the element of the co­
ordinates (i,j) equal to x, (where x, is identified with the diagonal 
matrix (xi(i) )i=i) • Let a = (a(i, j))?°- -̂  a n x n matrix. 

We claim that 

a % • (**) < 4 / 3 > H P B > I | I I =<i.J>Si,jll oE>(2/3)ll 

where the norms are calculated in the space C . 
PE 

Indeed, let u = (u(i,j)). . , and v = (v(i,j)). . , two uni-
l,J-i J.,J-.L 

tary n x n matrices such that b = uav = diag (s.(a)) • ^. 

Let u, v the n x n operator-matrices whose (i,j)-entries are 

respectively u(i,j)«I and v(i,j)*I. It is clear that u, v are uni­

tary operators and that, for a = > a(i,jjz^ ., then 
i f j , J 

u a v = d iag(s . (a jx - j^ )^^ . 

It follows that ||a|L= \\u a v|lc = ||diag ( S j t a ) ^ ) * \ \ Q = 
£ E E 
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n 

= (since (x.)1? , have the same distribution) = || ) s-(a)x.| „ , 
J j—J- T=T 

*L- p i/p *!_ 
(4/3)||a||n = (4/3) ( 2— (s-(a)) E) E >(by (* ) )^ |1>_ s.(a)x.|L = 

PE J^I J
 JFT

 J J E 

= 1! YZ a ^ ^ i J C >(2/5)( H ! (s .(a))PE) ?E = (2,3) ||a|l . 
ITJ

 1 , J CE ^7 E 

Thus (**) i s proved. 

Let now y = / y(i>3)zi A* Then y e C E and 
l ^ i , J < n , J 

(***) Ty= Z3 y(i,J)Zi i = f y . 

Hence 
-1 - . - 1 

M =||Tl|>||Tyilc . | |y| |c ^(by (**) and (***))>(£) ||Ty|| ||y|| = 2 M , 
E E E hi 

tha t i s we obtained a c o n t r a d i c t i o n . m 

We present now an example of a non locally-convex space of 

type Cg such tha t l < P E ^ q E < oo. 

Let 0 < q < l < p , 1 + l / p > l / q and l e t £ : = J x £ c : |xl = 
p,q L ° P*q 

= ( ̂ й * * ^ • п^Р"
1
)

1
^ .<<*,], 

Then c „ : =ui 

Indeed A is a non locally-convex space, thus C is also a 

p>q p>q 

non locally-convex space. 

Using the elementary inequalities k ^
p
- (k-D^'P^lk*

3
'

p
 and 

(km+D^P - [(k-l)m+l]
q/p
>(q/2p).k

q/p
""

1
 m^P for k,m>l, we get that 

d / 2 )
1
/ ^ m

1
/P^||D

m
||

p > q
<m

1
/P(p/

q
)

1
^ . 

Consequently p. = p. It is sufficient now to show that 

^p,q 
q, < ^ , But IIDT_A.II

 n n
<m

1 / q
"

1 / p
""

1
 for every m>l, that is 

^Pjq '
 p , q 

UVmllp.q^
1
'
 H e n C e

%
> q
 ' 

Recall now that a topological vector space X is called a prima­

ry space of X = Y © Z implies that either Y ^ X or 2 s^X. 

Using essentially the same proof as in [2j we can state; 

Theorem 2.3• The spaces C , where 0 < p < l , are primary. 
ir 
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