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ON CENTERS AND STATE SPACES OF LOGICS

Pavel Pték

Abstract. Let C(L) ( resp. ¥(L) ) denote the center (resp.
the state space ) of a quantum logic L . Given two quantum lo-

gics P, Q , we consider the possibility of constructing a logie L
with C(L)= C(P) and ¥(L)= ¥(Q) . We succeed if ¥(Q) is com-

pact or if C(P) is of special type .

ndations of guentum physics , we identify the event structure of

a quantum system with a. (-orthomodular partially ordered set L
( called a logic ) . The set of states is then represented by the
set ¥(L) of all (“-additive (probability) measures on L ( see
e.g. [3] ' [7] ) « The events of the system which are "absolutely
comparable” correspond to the center C(L) of L .4s known, C(L)
is a (-Boolean subalgebra of L .

Suppose that we look for a system with a given interplay of
the center and the set of states . Expressed in the mathematical
language , we ask if for given two logics P, Q there exists a lo-
gic L such that C(L) is G-Boolean izomorphic to C(P) and

¥ (L) 1is affinely homeomorphic to ¥(Q) . We construct such & lo-
gic L if C(P) is a (-Boolean algebra of subsets of a set and

f(Q) is compact ( when understood as a subset of the topological
linear space RV ) . 1f f(Q) is not compact we have been able to
answer the question only for special types of C(P) .

Definition 1_: A logic is a set L endowed with a partial ordering
< and a unary operation ° such that

(i) 0,1eL ( L possesses a least and a greatest element ),

(ii) a £ b => b’¢a’ for eny a,b€L,

(iii)e = (a’)” for eny a€L ,

(iv) aVa'=1 and aAs’=0 for any a<€L ( the symbols V , A
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IN

),
a. for i % j,

IN

mean thf. lattice-theoretic operations induced by
(v) i‘=/1 a exists,in L whenever a;€L , a;
(vi) b =aV(bAa ) whenever a,b€L , a £ b .

For examples of logics may serve the (-Boolean algebras or
the lattice of projectors of a Hilbert space . In what follows we
reserve the symbol L for logics. One can prove essily ( see e.g.

(3] ) that if &,b€L , a £ b’ then aVb , aAb exists in L .
Definition_2_: Two elements a,b€L are called compatible if there
are three elements c¢,d,e€L such that c¢ £ d’, a £ e', e £ ¢ and
a =cVd, b=cVe . An element a€L is cslled central if a is
compatible with any element of L . We denote by C(L) the set of
all central elements of L and call C(L) the center of L .
Proposition_1l_: The set C(L) with the operations ’, V, A inheri-
ted from L is a (-Boolean algebra .

Proof : The set C(L) 1is contained in any maximal @ -Boole-
an subalgebra of L ( see [1] ) . Since C(L) is obviously the
intersection of 81l maximal (-Boolean subalgebras of L , we ob-
tain that C(L) is also a (-Boolean subalgebrs of L .

Definition 3_: Let {L loce1} be a collection of logics. De-

note by ‘;.:gT‘.LL‘,c the ordinsry Cartesian product of the sets L,
and endow the set “?;[Lm with the relation £ and the unary

3 ‘ = [ a =
operation as follows. If k {k‘xl °<€1}’ xEIL“ and h
f | <1} C“%ILN_ then k £h ( resp. k'=h ) if and only if
4 oy .
k. £ h, ( resp. k, = he ) for eny *€I ., The set “"éILoc with

T

the above defined £ , * is called the product of the collection
Proposition 2_: Let {L_ | x€I} be a collection of logics .

Then J L.  is a logic . If C(L) ={0,1} for eny €I
then C( ccgeTILoc) is @ -Boolean isomorphic to the G -Boolean
algebra of a2ll subsets of I .
The proof of Proposition 2 1is easy .
Definition_4_: A state on & logic L is & mepping s : L->¢0,1)
such that (i) 8(1) =1, (ii) if {ail ieNl is a gequence
of mutually orthogonal elements of L then 8('1‘-4181) = iéls(ai) .
Let us denote by ¥(L) the set of all states on L . Besic
facts and some deeper properties of ¥(L) may be found in [2],(5]
and [6] « In what follows we eallow ourselves to assume that the
reader is well acquainted with the results and the proof technique
of the paper [6] .
Definition 5_: A logic is called poor (resp. rigid ) if ¥(L) = ¢

( resp. l¥@W)=1) .
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It is known that there sare (finite) examples of poor snd ri-
gid logics ( see [2] ,[6] ) .

Proposition_3_: Supposer_that L 1is a poor logic . Put L =1L
for any €I . Then oc‘é'ILOC is also a poor logic .

Proof : Take the mapping f: L — T L_  such that f(k)=
(k,k,k,+..) for any k€L , If s € y(x‘fxl‘m) then sf e 9(L) .
Definition_7_: A mepping f: L, L, 1is called an embedding if f
injective 2nd the following requirements are satisfied
(i) f£(1) =1,

(ii) £(a’) = £(a)” for any ac€kL ,

(iii) @ £ b if and only if f(s) £ £(b) ,

(iv) if a £ b” then f(aVb) = f(a) VFf(b) .

Froposition_4_: Any logic can be embedded in a poor logic with tri-

vial center .

Proof : Let Ll be a logic . Take a poor logic M end form
the disjoint union L, UM . If we identify the 0, 1 in L,
with the 0 , 1 in M , we obtain the desired logic .

We are now ready to state our first result .

Theorem ) z Let P , Q be logics . Let C(P) be a (" -Boolean al-
gebra of subsets of a set and let ¥(Q) be compact . Then there
exists a logic L such that C(L) = C(P) and (L) = P .

Proof : Since ¥(Q) is compact , we mey find a logic R
such that f(R) = ¥WQ) , c(R) ={0,1} end any G-Boolean
subalgebra of R is finite ( see [6] ) . Denote the poor exten-
sion of R by T (Proposition 4 ) . Write C(P)= (A, £ ) end
take a point a<€A . Put L, =T if c€A - {a} , Ly =R . Con-
sider the logic V = dZTALd « The required logic L will be a su-
blogic of V . We are going to describe the elements of L . An
element r €V belongs to L if(and only if)there exists a coun-
table partition @ of & , @ = {Ail i€N} , such thet A;€B
for any i€N , and r, = Tq provided {p,q}CAi for an index
i€N . We must show that L is a logic with the property C(L) =
C(P) = (o, £) eand P = YMRI(= Q) .

Let us first show that L 1is a logic . Evidently , 1€L
end if k€L then k€L . If kheL end k *h then k = hV
(kAh") . Indeed, if ®, ® are partitions corresponding to k,h
then ®n ®R is the ( countable ) partition correspnding to kA h.
It remains to show that any sequence {ki | i€N} of mutually or-
thogonal elements has the least upper bound in L . This rather
technicel but essentially simple part of the proof is left to the
reader . ( 6ne uses the fact that any (¥-Boolean subalgebra of R



228 PAVEL PTAK

is finite ) .

Let us now check that C(L) = (4, £) . Since C(Ly) ={0,1}
for any d €A , we see that any central element of L has only
the elements O , 1 for the coordinates . One can show easily that
k ={k;|deA} , where any k; is either O or 1, belongs to
L if and only if D = {d [ kq = 1}€£ . This implies that C(L)
= (a, £) .

It remains to show that L) = P(R) . To this end, we
need to exhibit an affine homeomorphism g : 1L — ¥(R) .
Assume thet s € P(L) . For any r€R we denote by k' the el-
ement of L which has r for all its coordinates . Define g(s)
such that g(s)(r) = s(k") . We heve to show that g is injecti=-
ve .

Assume that g(sl) = g(sz) . Take an element k€L end as-
sume that @ is the partition corresponding to k . Let Al be
be such an element of @ that aEAl « Denote by h ={hd| d &
A} the element of L with hy =0 if d€4A; , hy =1 other-
wise . It follows from Proposition 3 thet s;(kAh) = s,(kAh) =
0 . Since we have g(s;) = g(s,) , we see that s (k) = s5;(kA
h') = sz(k) . Therefore the mepping g 1is injective and the pro-
of is complete .

The method of the above proof , applied with complete succes
in [4] for the case of finitely additive states, requires herethe
assuption of compactness of ¥(Q) . What may go wrong in the con-
struction is the ¢“-completeness of L . The assumption on the
compactness of ?(@) is of course very restrictive - if e.g.

¥Y(Q) does not have enough extreme points then Q) is not
compact ( Krein-Milman theorem ) . We do not know if (how) one can
alter the construction to obtain the theorem for general Q).
What can be seen quite easily is that the method works if we rest-
rict ourselves to certain special centers of P . Let us mention
two situations .
Theorem 2_: Let P , & be logics . If C(P) = expS for a set S
then there is a logic L such that C(L) = C(P) and ¥(L)= ¥(Q).

The next theorem says that the countable-cocountable-type-

- F-algebras may be also allowed for C(P) .

Theorem 3_: Let P , Q be logics. Let C(P) has the following
property : If G)n = {An s Bn} is & sequence of two-element-
partitions of C(P) then there exists 8 counteble partition of
C(P) which refines any ‘?n . Then there exists a logic L

such that C(L) = C(P) end 9w = ¥Y@Q) .
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Let us observe in conclusion an amusing corollary of Theo~

rem 1 - the existence of poor (resp. rigid) logics with sarbitrary
centers .
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