John Ryan

Cauchy-Kowalewski extension theorems and representations of analytic functionals acting over special classes of real n-dimensional submanifolds of $C^{(n+1)}$

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 3. pp. [249]–262.

Persistent URL: http://dml.cz/dmlcz/701318

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://dml.cz

CAUCHY-KOWALEWSKI EXTENSION THEOREMS AND REPRESENTATIONS OF ANALYTIC FUNCTIONALS ACTING OVER SPECIAL CLASSES OF REAL n-DIMENSIONAL SUBMANIFOLDS OF $\,{
m C}^{n+1}$

John Ryan

INTRODUCTION

The study of holomorphic extension of real analytic functions defined on real hypersurfaces of complex manifolds has been developed by a number of authors $\begin{bmatrix} 3 & 7 & 1 & 8 \end{bmatrix}$. In this paper we utilise the invariance of the kernel of the differential operator $d+d^*$, under orthogonal transformations, to provide Cauchy-Kowalewski extensions for the elements of complex Clifford modules of real analytic functions defined on special classes of real n-dimensional submanifolds of C^{n+1} . Each of these extensions is a holomorphic function in (n+1)-complex variables and satisfies the operator $d'+d^{**}$.

In the cases where n=1 mod 2 , the manifolds are compact, satisfy a further geometric restriction, we are able to use the generalized Cauchy integral formula established in [10] to construct a generalized Cauchy transform acting on the duals of the modules introduced here. Using this generalized Cauchy transform and the Cauchy-Kowalewski extensions obtained here, we are able to present an integral representation of the dual space acting on these Clifford modules.

The results obtained here generalize results obtained by Sommen $\begin{bmatrix} 13 \end{bmatrix}$ on representations of analytic functionals on the unit sphere in \mathbb{R}^{n+1} , by means of solutions to generalized Cauchy-Riemann equations. Our methods make use of a number of results from Clifford analysis $\begin{bmatrix} 4 & 5 & 11 \end{bmatrix}$. We begin by developing the necessary background on Clifford algebras, Clifford analysis and differential forms that we require to establish our main results.

PRELIMINARIES

For each positive integer n it is demonstrated in [9, Chap. 13] and [2, Part 1] that from the vector space \mathbb{R}^{n+1} , with orthonormal basis $\{e_j\}_{j=1}^{n+1}$, it is possible to construct a 2^{n+1} dimensional dimensional states $\{e_j\}_{j=1}^{n+1}$. sional, real, associative algebra A_{n+1} , containing the space R^{n+1} as a subspace. The algebra A_{n+1}^{n+1} has an identity e_0 the basis vectors $\left\{e_j\right\}_{j=1}^{n+1}$ of R^{n+1} satisfy the relation

$$e_{j}e_{k} + e_{k}e_{j} = 2 \sigma_{jk}e_{0} , \qquad (1)$$

where $\delta_{\mathbf{j}\mathbf{k}}$ is the Kronecker delta, and 1 \leq j , k \leq n+1 . The algebra has as basis elements the vectors

$$e_0, e_1, \dots, e_{n+1}, \dots, e_n e_{n+1}, \dots, e_1, \dots, e_{n+1}$$
 (2)

The algebra A_{n+1} is called a Clifford algebra, but it is not the most general example of such an algebra. A general basis element of this algebra is denoted by e_{j_1,\ldots,j_r} with $r \le n+1$ and $j_1 < \ldots < j_r$. Also a general basis element of the algebra is written as

$$u = x_0 e_0 + x_1 e_1 + \dots + x_{n+1} e_{n+1} + \dots + x_{j_1} \dots j_r e_{j_1} \dots e_{j_r} + \dots$$

with x₀,x₁,x_{n+1},x_{j1}...j_r,x_{1...n}∈R.

We denote the subspace of A_{n+1} spanned by the vectors $\left\{\mathbf{e_{j}}\right\}_{j=2}^{n+1}$ by \mathbf{R}^{n} .

From expressions (1) and (2) it may be observed that the vecis canonically isomorphic to $\Lambda(\mathbb{R}^{n+1})$, the alternating algebra generated from the vector space Rⁿ⁺¹

We observe that each element

$$x = x_1 e_1 + \dots + x_{n+1} e_{n+1} \subseteq R^{n+1} - \{o\} \subseteq A_{n+1}$$
 has a multiplicative inverse

$$x^{-1} = \frac{x_1^{e_1 + \dots + x_{n+1}^{e_{n+1}}}}{x_1^2 + \dots + x_{n+1}^2}$$

in the algebra A_{n+1} .

By considering the real symmetric tensor product of the algebra A_{n+1} with the complex field $A_{n+1} \otimes_R C$ we obtain the complex Clifford algebra $A_{n+1}(C)$ introduced in [9, Chap. 13]. Again this algebra is spanned by the basis elements (2). A general element Z of this algebra is denoted by

where $z_0, z_1, z_n, z_{j_1, \dots, j_r}, z_{1, \dots, n+1} \in C$, and each $z_{j_1, \dots, j_r} = 0$ $= x_{j_1 \cdots j_r}^{+iy_j} \xrightarrow{\text{ind}} y_{j_1 \cdots j_r}^{-iv_j} \text{ and } y_{j_1 \cdots j_r}^{-iv_j} \in \mathbb{R}$ We define the norm of the vector Z to be $(|z_0|^2 + \ldots + |z_{j_1 \cdots j_r}|^2 + \ldots + |z_{1 \ldots n+1}|^2)^{1/2}.$

We denote the complex vector space spanned by the vectors $\left\{e_j\right\}_{j=1}^{n+1}$ by C^{n+1} . Unlike the real case, not every element of C^{n+1} - $\{o\}$ is invertible in the algebra $A_{n+1}(C)$. For example the vector (e_1+ie_2) is an element of the set C^{n+1} - $\{o\}$, and $(e_1+ie_2)(e_1+ie_2)=0$. For each point $\underline{z}_0\in C^{n+1}$ the set $S(\underline{z}_0)=0$ = $\left\{\underline{z} \in \mathbb{C}^{n+1} : (\underline{z} - \underline{z}_0)(\underline{z} - \underline{z}_0) = 0\right\}$ is called the singularity cone at \underline{z}_0 . Each element of the set $\mathbb{C}^{n+1} - \mathbb{S}(0)$ is invertible in the

algebra $A_{n+1}(C)$.

For each set $\chi\subseteq C^{n+1}$ we denote the set $\bigcup_{z\in\chi} S(\underline{z})$ by $S(\chi)$.

For each pair of vectors $\underline{z}=z_1e_1+\ldots+z_{n+1}e_{n+1}$ and $\underline{z}'=z_1'e_1+\ldots+z_{n+1}'e_{n+1}$ we define their Hermitian product to be

$$\langle \underline{z},\underline{z}' \rangle = \sum_{j=1}^{n+1} z_j \overline{z}'_j$$
.

Using these algebraic preliminaries we may now develop the differential calculus we require.

In 5 Delanghe introduces the generalized Cauchy-Riemann operator

$$\sum_{1=1}^{n+1} e_{j} \frac{\gamma}{\gamma x_{1}} . \tag{3}$$

This operator acts on pointwise differentiable functions defined on subdomains of R^{n+1} , and taking values in the algebra A_{n+1} . The operator (3) may also be described in terms of differential operators acting on differential forms. Construction: Using the canonical isomorphism $\theta:A_{n+1}\longrightarrow \bigwedge(R^{n+1})$ we may $\begin{bmatrix} 6 \end{bmatrix}$, for each domain $U\subseteq R^{n+1}$, define an inner product between smooth L^2 integrable forms g,h : $U \rightarrow \Lambda(U)$. We define this inner product to be $\int_{\Omega} Trace \left\{ \Theta(\Theta^{-1}(g),\Theta^{-1}(h)) \right\} dx^{n+1}$.

Definition 1 [6]: For $r \in N^+$, for each smooth (r-1) form $\Phi: \mathsf{U} \! o \! \bigwedge^\mathsf{r} \! (\mathsf{U})$ with compact support, and each smooth r form $g:U\longrightarrow \bigwedge^{r-1}(U)$ we define the operator d* to be the adjoint of

where d is the usual de Rham cohomology boundary operator

$$\sum_{j=1}^{n+1} dx_j \frac{\partial}{\partial x_j} .$$

It may now easily be deduced that for each pointwise differen-

Definition 2: We define $\ker_{H}(d+d^*)$ to be the set of pointwise differentiable forms $g: U \longrightarrow \Lambda(U) \otimes_{p} C$ which satisfy the equation $(d+d^{\times})g(x) = 0$ for each $x \in U$.

The set ker; (d+d*) is a right module over the complex $\Lambda(\mathbb{R}^{n+1}) \otimes_{\mathbb{R}} \mathbb{C}$, of alternating tensors. algebra Definition 3: We define

$$\ker_{\mathsf{U}}(\sum_{j=1}^{n+1}\mathsf{e}_{j}\frac{\mathcal{O}}{\mathcal{O}_{x_{j}}})\tag{5}$$

to be the set of pointwise differentiable functions

f: U $\rightarrow A_{n+1}(C)$ such that for each $x \in U$ we have $\sum_{i=1}^{n+1} e_i \frac{\partial f}{\partial x_i}(x) = 0$.

The set $\ker_{U}(\sum_{i=1}^{n+1} e_{j} \frac{0}{\sqrt{2} z_{i}})$ is a right module over the complex Clifford algebra $A_{n+1}(C)$

It follows from equation (4) that the complex vector spaces $ker_{i,i}(d+d^*)$ and (5) are equivalent.

The space $ker_{II}(d+d^*)$ is independent of the choice of ortho- \mathbb{R}^{n+1} . It thus follows that for each f in (5) normal basis in and each orthonormal basis $\{e_j'\}_{j=1}^{n+1} \subseteq R^{n+1} \subseteq A_{n+1}(C)$ we have

$$\sum_{j=1}^{n+1} e_j' \frac{\partial}{\partial x_j'} f(x) = 0.$$

We now proceed to give some examples of elements of the space (5).

Definition 4 [5]: Let us consider, for $2 \le 1 \le n+1$, the variables

$$s_1 = x_1 e_0 - x_1 e_1 e_1 \ ,$$

$$(s-a)_1 = (x_1-a_1)e_0 - (x_1-a_1)e_1 e_1 \ ,$$
 for a = $a_1e_1+\ldots+a_{n+1}e_{n+1}$. For each $(l_1,\ldots,l_m)\in\{2,\ldots,n+1\}^m$ we may construct the following homogeneous polynomials of degree m:

$$V_{1_{1}...1_{m}}(x) = \sum_{\pi(1_{1}...1_{m})} s_{1_{1}...s_{1_{m}}},$$
 (6)

$$V_{1_1...1_m}(x-a) = \frac{\sum_{\#(1_1...1_m)} (s-a)_{1_1...(s-a)_{1_m}}}{\#(1_1...1_m)}$$
 (7)

where the sum is taken over all permutations without repetition of

the sequence (l_1, \ldots, l_m) .

In $\begin{bmatrix} 5 \end{bmatrix}$ it is established that for each domain $U \subseteq \mathbb{R}^{n+1}$ the polynomials (6) and (7) are elements of the space $\ker_U(\sum_{j=1}^{n+1}e_j\frac{\partial}{\partial x_j})$. From $\begin{bmatrix} 4 \end{bmatrix}$ it may be established that for each element $f \in \ker_U(\sum_{j=1}^{n+1}e_j\frac{\partial}{\partial x_j})$ and each point $a \in U$ there is a subneighbour-

 $f \in \ker_{U}(\sum_{j=1}^{n+1} e_{j} \frac{\partial}{\partial x_{j}}) \quad \text{and each point } a \in U \quad \text{there is a subneighbour-hood } U_{a} \text{, containing the point } a \text{, and there is a series}$

$$\sum_{m=0}^{\infty} \sum_{1,...,1_{m}} v_{1,...,1_{m}} (x-a) c_{1,...,1_{m},a}$$
 (8)

with each $c_{1,...,1_{m,a}} \in A_{n+1}(C)$, which converges uniformly on U_a to the function f(x) .

In [12] Sommen observes that for the case where $a = a_2 e_2 + \dots + a_{n+1} e_{n+1}$ the series (8) restricted to the variable $x_2 e_2 + \dots + x_{n+1} e_{n+1}$ becomes

$$\sum_{m=0}^{\infty} \sum_{1,...,1_{m}} (x_{1_{1}}^{-a_{1_{1}}})...(x_{1_{m}}^{-a_{1_{m}}})^{c_{1}}...1_{m,a}$$

Using this fact Sommen establishes [12]:

Theorem 1: For each domain $U' \subseteq \mathbb{R}^n$ and each real analytic function $r: U' \longrightarrow A_{n+1}(C)$ (9)

there is a domain $U_r \subseteq R^{n+1}$ and a unique function $f: U_r \longrightarrow A_{n+1}(C)$ such that:

1
$$U' \subseteq U_r$$
,
11 $f \in \ker_{U_r} (\sum_{j=1}^{n+1} e_j \frac{\partial}{\partial x_j})$,
111 $f \mid_{U'} = r$.

The function f is called the Cauchy-Kowalewski extension of the function r with respect to \mathbb{R}^n .

In this paper we shall also consider the following type of functions:

Definition 5 [10]: For each subdomain U(C) of C^{n+1} we say that a holomorphic function $f: U(C) \longrightarrow A_{n+1}(C)$ is complex left regular

if for each $\underline{z} \in U(C)$ we have $\sum_{j=1}^{n+1} e_j \frac{\sqrt{F}}{\sqrt{Z_j}} (\underline{z}) = 0$. A similar definition is given in $\begin{bmatrix} 10 \end{bmatrix}$ for complex right regular functions. Examples:

1. The holomorphic extension of the series (8) is a complex left

regular function. It follows that the holomorphic extension of the Cauchy-Kowalewski extension of the function (9) is a complex left regular function.

2. The function

 $G: C^{n+1}-S(o) \rightarrow C^{n+1} \subseteq A_{n+1}(C): G(\underline{z}) = \underline{z}(\underline{z},\underline{z})^{(n+1)/2}$, defined for n=1 mod 2, is a complex left regular function. Moreover, this function is a complex right regular function.

The class of complex left regular functions defined on an open set U(C) is a right module over the algebra $A_{n+1}(C)$. We denote this module by $\Omega_r(U(C),A_{n+1}(C))$. The class of complex right regular functions defined on U(C) is a left module over $A_{n+1}(C)$. We denote this module by $\Omega_1(U(C),A_{n+1}(C))$.

Using the complex isomorphism $\theta \otimes_R id : A_{n+1}(C) \to \Lambda(R^{n+1}) \otimes_R C$, where id stands for the identity map, we observe that for each complex left regular function $F: U(C) \to A_{n+1}(C)$ the holomorphic form $(\theta \otimes_R id)F: U(C) \to \Lambda(R^{n+1}) \otimes_R C$ satisfies the equation $(d'+d^{*'})((\theta \otimes_R id)F) = 0$, where d' is the holomorphic extension $(d'+d^{*'})(\theta \otimes_R id)F$ of the operator d, and $d^{*'}$ is the holomorphic extension of the operator d^* .

We shall require the following classes of manifolds in our analysis.

 $\begin{array}{lll} \underline{\text{Definition 6}} & \boxed{7} : \text{A smooth, real (n+1)-dimensional submanifold,} & \text{M ,} \\ \hline \text{of } & \text{C}^{n+1} & \text{is said to be without complex structure if for each} \\ \underline{z} \in \text{M} & \text{the tangent space } & \text{TM}_{\underline{z}} & \text{is spanned by vectors } & \left\{ \underline{z}_{\underline{j}}(\underline{z}) \right\}_{\underline{j}=1}^{n+1} & \text{where for each} & \underline{z}_{\underline{j}}(\underline{z}) & \text{we have } & \underline{i}\underline{z}_{\underline{j}}(\underline{z}) \notin \text{TM}_{\underline{z}} & \text{. We shall refer to such manifolds as manifolds of type a .} \end{array}$

Observation 1: If M is a manifold of type a then it follows from Definition 6 that for each $\underline{z} \in M$ the complex extension of the tangent space $TM_{\underline{z}}$ is isomorphic to the space C^{n+1} . If M is not a manifold of type a , then for each $\underline{z} \in M$ the complex extension of the tangent space $TM_{\underline{z}}$ is isomorphic to a proper complex subspace of C^{n+1} .

Definition 7: In the cases where n=1 mod 2 a smooth, real, (n+1)-dimensional, compact submanifold, M , of C^{n+1} , with boundary, is called a manifold of type b if it is a manifold of type a , and for each $z \in M$

i
$$TM_{\underline{z}} \cap S(\underline{z}) = \{\underline{z}\}$$
,
ii $M \cap S(\underline{z}) = \{z\}$.

Definition 8: In the cases where $n=1 \mod 2$ a smooth, real (n+1)-dimensional, noncompact submanifold, M , of C^{n+1} is called

a manifold of type c if each smooth, compact, (n+1)-dimensional submanifold of M is a manifold of type b.

An example of a manifold of type $\,\,c\,\,$ is the real vector space $\,R^{n+1} \!\subseteq\! c^{n+1}$.

For each manifold, M , of type a , and each $\underline{z} \in M$ the vectors spanning the tangent space, $TM_{\underline{z}}$, are orthogonal with respect to the Hermitian structure of C^{n+1} . Thus, each manifold of type a is a Riemannian manifold, inheriting its Riemannian structure from the Hermitian structure of C^{n+1} . It follows [6] that for each manifold M of type a we can construct an adjoint, d^* , to the differential operator d. Thus, the operator $d+d^*$ is well defined over each manifold of type a . In fact, for $U_M(C) \subseteq C^{n+1}$ a domain containing a manifold M of type a , and $H: U_M(C) \longrightarrow A_{n+1}(C)$ a holomorphic function, we have for each $\underline{z} \in M$ $(d+d^*)((\Theta \otimes_{\underline{P}} id)H(\underline{z})) = (d'+d^*)((\Theta \otimes_{\underline{P}} id)H(\underline{z}))$, (10)

In [11] we establish that U(M) is an open subset of C^{n+1} .

$$F(\underline{z}_0) = \frac{1}{W_0} \int_{\partial M}^{-G} G(\underline{z} - \underline{z}_0) D\underline{z} F(\underline{z}) ,$$

where w_n is the surface area of the unit sphere lying in R^{n+1} and Dz is the complex n-form

$$\sum_{j=1}^{n+1} (-1)^{j+1} e_j dz_1 \wedge \dots \wedge dz_{j-1} \wedge dz_{j+1} \wedge \dots \wedge dz_{n+1} .$$

CAUCHY-KOWALEWSKI EXTENSIONS OVER MANIFOLDS OF TYPE a

All manifolds of type a considered in this section will be real analytic, Riemannian manifolds.

Definition 10: Suppose $M \subseteq C^{n+1}$ is a manifold of type a , without boundary, and M' is a real analytic, (n+1)-dimensional, Riemannian submanifold of M , with boundary. Then the manifold M' is called a manifold of type d .

Any type b real analytic submanifold of a real analytic manifold of type c is an example of a manifold of type d.

We denote the set of real analytic, $A_{n+1}(C)$ valued functions defined over OM'

$$A(\mathcal{T} M', A_{n+1}(C)) . \tag{11}$$

The set (11) is a right $A_{n+1}(C)$ module. For each element of this module we may deduce the following extension theorem.

Theorem 3 (A Cauchy-Kowalewski Extension Theorem): Suppose M' is a manifold of type d lying in a type a manifold, M , without boundary. Suppose also the function g is an element of the module $\mathcal{A}(\mathcal{O} \text{ M'}, A_{n+1}(C))$. Then there is a domain $U_{\alpha}(C) \subseteq C^{n+1}$ containing the manifold OM', and there is a complex left regular function $f: U_{\alpha}(C) \longrightarrow A_{n+1}(C)$ such that $F|_{\alpha M} = g$.

Proof: As the manifolds M and M' are real analytic and Riemannian there exist real analytic chart maps

$$\left\{ \boldsymbol{\mathcal{Y}}_{\mathbf{m}} : \mathbf{U}_{\mathbf{m}} \subseteq \mathbf{R}^{\mathbf{n}+1} \longrightarrow \mathbf{M} \right\}_{\mathbf{m}=1}^{\mathbf{m}} , \qquad (12)$$

such that each chart, $~\underline{\boldsymbol{\mathcal{V}}}_{\mathbf{m}}$, preserves the Riemannian structure of the manifold M , and for

$$R_{+}^{n+1} = \left\{ x = x_{1}e_{1} + \dots + x_{n+1}e_{n+1} \in R^{n+1} : x_{1} \ge 0 \right\} ,$$

$$R_{-}^{n+1} = \left\{ x = x_{1}e_{1} + \dots + x_{n+1}e_{n+1} \in R^{n+1} : x_{1} \le 0 \right\}$$

we have for each m∈N

$$\Psi_{\mathbf{m}}: U_{\mathbf{m}} \cap \mathbb{R}^{n+1}_{+} \to M'$$
,
 $\Psi_{\mathbf{m}}: U_{\mathbf{m}} \cap \mathbb{R}^{n+1}_{-} \to (M-M') \cup \mathcal{T} M'$.

 $\Psi_{\rm m}: \, U_{\rm m} \cap \, R_-^{n+1} \longrightarrow ({\rm M-M'}) \cup \, {\it O} \, \, {\rm M'} \, \, .$ We shall restrict our attention to the subset $\left\{ \begin{array}{l} \Psi_p \,:\, U_p {\:\rightarrow\:} M \ , \ U_p \quad R^n \neq \overline{\Phi} \, \right\} \quad \text{of the set (12). It may be observed} \\ \text{that the set of maps} \quad \left\{ \begin{array}{l} \Psi_p \,:\, U_p {\:\cap\:} R^n {\:\rightarrow\:} M \, \right\} \quad \text{is a set of real analytic} \\ \text{charts for the manifold} \quad \partial M' \, . \ \text{We shall denote each chart map} \end{array} \right.$

 $\Psi_{\rm p}: {\rm U_p}\cap {\rm R}^{\rm n} \longrightarrow {\rm O}\,{\rm M}'$ by $\mu_{\rm p}$. Suppose now that g is an element of the set ${\mathcal A}({\rm O}\,{\rm M}',{\rm A}_{{\rm n}+1}({\rm C}))$. Then it follows from Theorem 1 that for each real analytic function $g(\ \boldsymbol{\mu}_p): \ \mathbf{U_p} \cap \mathbf{R^n} \to \mathbf{A_{n+1}}(\mathbf{C}) \quad \text{there is an open set} \quad \mathbf{U_p,g} \subseteq \mathbf{U_p} \quad \text{containing the set} \quad \mathbf{U_p} \cap \mathbf{R^n} \quad \text{, and there is a function} \quad \mathbf{f_{p,g}} \colon \mathbf{U_{p,g}} \to \mathbf{A_{n+1}}(\mathbf{C})$ satisfying the conditions

$$f_{p,g} \in \ker_{U_{p,g}} \left(\sum_{j=1}^{n+1} e_j \frac{0}{\sqrt{2} x_j} \right) ,$$

$$f_{p,g} |_{U_{p} \cap \mathbb{R}^n} = g(\omega_p) .$$

As the kernel space of the operator d+d*, acting over a Riemannián manifold, is invariant under diffeomorphisms which preserve the Riemannian structure of the manifold we have that the real analytic form

$$D\Psi_{p}^{-1}(\Theta \otimes_{R} id)(f_{p,q}(\Psi_{p}^{-1})) : \Psi_{p}(U_{p,q}) \longrightarrow \Lambda(R^{n+1}) \otimes_{R} C$$
 (13)

satisfies the equation

$$(d+d^*)D\Psi_p\{(\Theta \otimes_R id)(f_{p,g}(\Psi_p^{-1}))\} = 0$$
, (14)

where Dyn is the complex vector bundle transform

As the form (13) is a real analytic form (over an (n+1)-dimensional manifold without complex structure it follows from Observation 1 that there is an open set $U_{p,g}(C) \subseteq C^{n+1}$ containing the set $\Psi_p(U_{p,g})$, and there is a complex left regular function

It now follows from equations (4), (10) and (14) that each function Fp.g is an element of the right module $\Omega_r(U_p,g(C),A_{n+1}(C))$. If for some p_1 and $p_j \in N^+$ we have that $\mu_{p_1}(U_p \cap R^n) \cap \mu_{p_1}(U_p \cap R^n) \neq \Phi$ then it follows from the uniqueness of the Cauchy-Kowalewski extens-

$$\mu_{\mathbf{p}}(\mathbf{U}_{\mathbf{p}} \cap \mathbf{R}^{\mathbf{n}}) \cap \mu_{\mathbf{p}}(\mathbf{U}_{\mathbf{p}} \cap \mathbf{R}^{\mathbf{n}}) \neq \Phi$$

 $f_{P_1,g}$ and $f_{P_1,g}$, and the invariance of the operator d+d*under the chart maps $\left\{ \boldsymbol{\varPsi}_{\mathbf{D}} \right\}$, that the function

$$f_{p_{\mathbf{i}},g}|_{U_{p_{\mathbf{i}},g} \cap \mathcal{V}_{p_{\mathbf{i}}}^{-1}(\mathcal{V}_{p_{\mathbf{j}}}U_{p_{\mathbf{j}},g})}$$

is identical to the function
$$(\Theta \bigotimes_{\mathsf{R}} \mathsf{id})^{-1} \mathsf{D} \Psi \overset{-1}{\mathsf{p}_1} \mathsf{D} \Psi \overset{-1}{\mathsf{p}_1} (\Theta \bigotimes_{\mathsf{R}} \mathsf{id}) \overset{f}{\mathsf{p}_1}, g^{\left(\underbrace{\Psi} \overset{-1}{\mathsf{p}_1} (\underbrace{\Psi} \overset{-1}$$

Thus on the open set $U_{p_1,g}(C) \cap U_{p_1,g}(C)$ the functions $F_{p_1,g}(C)$ and $F_{p_1,g}$ are identical. On placing $U_g(C) = \bigcup_{p,g} U_{p,g}(C)$ we may now construct a complex left regular function $F_g: U_g(C) \longrightarrow A_{n+1}(C)$ by placing $F_g|_{U_{p,g}(C)} = F_{p,g}$ for each $p \in \mathbb{N}^+$.

The function F_g satisfies the condition $F_{g|_{\partial M'}} = g$.

We call the function $F_{\mathbf{q}}$, constructed in Theorem 3, the Cauchy-Kowalewski extension of the function g .

REPRESENTATIONS OF ANALYTIC FUNCTIONALS OVER CLASSES OF TYPE d MANIFOLDS

We begin by introducing, for the case where \mathcal{O} M' is compact, the dual to the right $A_{n+1}(C)$ module $\mathcal{A}\left(\mathcal{O}\text{ M'},A_{n+1}(C)\right)$. Definition 11: For M' the compact boundary of a manifold of type \overline{d} we call a map

 $T: \mathcal{A}(\mathcal{D} M', A_{n+1}(C)) \longrightarrow A_{n+1}(C)$ a bounded, right $A_{n+1}(C)$ linear, analytic functional over $\mathcal{D} M'$ if

i for each $g,h \in \mathcal{A}(\mathcal{D} \text{ M'},A_{n+1}(C))$ and $a \in A_{n+1}(C)$ we have

$$T(ga+h) = T(g)a + T(h)$$
,

ii there exists a positive real number C(T) such that for each $g \in \mathcal{A}(\mathcal{O} \text{ M',A}_{n+1}(C))$ we have

$$|T(g)| \le C(T) \sup_{\underline{z} \in \mathcal{O} M} |g(\underline{z})|$$
.

Definition 12: The set of bounded, right $A_{n+1}(C)$ linear analytic functionals over $\mathcal{I}M'$ is called the <u>dual space</u> of $\mathcal{I}(\mathcal{I}M',A_{n+1}(C))$.

We denote this space by

$$\mathcal{A}^{*}(\mathcal{O} \,\mathsf{M}',\mathsf{A}_{\mathsf{p}+1}(\mathsf{C})) \ . \tag{15}$$

For each $T_1,T_2\in \mathcal{A}^*(\mathcal{D}\,M',A_{n+1}(C))$, each $a\in A_{n+1}$ and each $g\in \mathcal{A}(\mathcal{D}\,M',A_{n+1}(C))$ we have $(aT_1+T_2)(g)=a(T_1(g))+T_2(g)$. It follows that the dual space (15) is a left $A_{n+1}(C)$ module.

For a special class of manifolds M' of type d , with compact boundary, we can transform the dual space (15) into a space of complex right regular functions. We now introduce this special class of manifolds.

Definition 13: A type d manifold, M', with compact boundary, is called a manifold of type e if for each $z \in \mathcal{O}$ M' we have $\frac{\mathcal{O} \text{ M'} \cap \text{S}(\underline{z})}{\mathcal{O} \text{ M'} \cap \text{S}(\underline{z})} = \left\{ \underline{z} \right\}.$

For each manifold, M', of type e we may introduce the following transform on the dual space (15):

Definition 14: For M' a manifold of type e and T an element of the module $\mathcal{A}^*(\mathcal{O} \text{ M',A}_{n+1}(C))$ we call the transform

TG: C^{n+1} - $S(\mathcal{O}M') \rightarrow A_{n+1}(C)$: $TG(\underline{z}) = T(G(\underline{z}-\underline{z}_0))$, where the complex vector \underline{z}_0 varies over the manifold $\mathcal{O}M'$, the G-transform over $\mathcal{O}M'$ of the functional T.

The G-transform is a generalization of a transform introduced by Sommen $\begin{bmatrix} 13 \end{bmatrix}$ and $\begin{bmatrix} 4 \end{bmatrix}$, Chap. $4 \end{bmatrix}$, in his study of representations

of analytic functionals over the unit sphere in \mathbb{R}^{n+1} . Theorem 4: For each manifold M' of type e , and each element T of the module $\mathcal{A}^*(\mathcal{O} \text{ M'}, A_{n+1}(\mathbb{C}))$ the G-transform, TG , defines a complex right regular function on the open set \mathbb{C}^{n+1} - $\mathbb{S}(\mathcal{O} \text{ M'})$. Proof: For each point $\underline{z} \in \mathbb{C}^{n+1}$ we consider the spaces

$$\chi(\underline{z}_1) = (C^{n+1} - S(\mathcal{D}M')) \cap (R^{n+1} + \underline{z}_1) ,$$

$$\Upsilon(\underline{z}_1) = (C^{n+1} - S(\mathcal{D}M')) \cap (1R^{n+1} + \underline{z}_1) .$$

Suppose $\Phi: \chi(z_1) \to A_{n+1}(C)$ is an $A_{n+1}(C)$ valued test function. Then it may be observed that the integral

$$\int\limits_{\chi(\underline{z}_1)} G(\underline{z} - \underline{z}_0) \Phi(\underline{z}) dx^{n+1} ,$$

where dx^{n+1} is the Lebesgue measure of $\chi(\underline{z}_1)$, gives a well defined real analytic function on the manifold \mathcal{O} M'. As T is a bounded analytic functional it follows that the transform, TG, restricted to the set $\chi(\underline{z}_1)$, is a well defined $A_{n+1}(C)$ valued distribution. Similar arguments reveal that the transform, TG, restricted to the set $Y(\underline{z}_1)$ is also a well defined $A_{n+1}(C)$ valued distribution. We shall call these distributions $TG\chi_{\underline{z}_1}$ and $TGY_{\underline{z}_1}$ respectively.

As the integral

$$\int_{\chi(\underline{z}_1)} G(\underline{z} - \underline{z}_0) \sum_{j=1}^{n+1} e_j \frac{\partial \overline{\Phi}}{\partial x_j} (\underline{z}) dx^{n+1}$$

vanishes it may be deduced from [4, Chap. 3] that the distribution TG_{χ} is a real analytic function $TG_{\chi}:\chi(\underline{z}_1)\to A_{n+1}(C)$ which

satisfies the equation

$$\sum_{j=1}^{n+1} \frac{\sqrt{TG} \chi_{z_{j}}}{\sqrt{x_{j}}} e_{j} = 0.$$
 (16)

Similar considerations reveal that the distribution $TGY_{\underline{z}_1}$ is a real analytic function $TGY_{\underline{z}_1}: Y(\underline{z}_1) \to A_{n+1}(C)$ which satisfies the equation $\frac{\bigcap_{\underline{z}_1} Y_1}{\sum_{\underline{z}_1} Y_1} = 0.$

It follows that the G-transform of the functional T is a real analytic function in the variables $x_1,y_1,\ldots,x_{n+1},y_{n+1}$, on the open set C^{n+1} - $S(\mathcal{O} M')$. As the function $G(\underline{z})$ is holomorphic it may be observed that the integrals

$$\chi(\underline{z}_1)^{\frac{2}{\sqrt{2}x_j}}G(\underline{z}-\underline{z}_0)\Phi(\underline{z})dx^{n+1}, \quad \int_{\chi(z_1)}-\frac{12}{\sqrt{2}y_j}G(\underline{z}-\underline{z}_0)\Phi(\underline{z})dx^{n+1}$$

are equivalent for each j, $1 \le j \le n+1$. It follows from the classical Cauchy-Riemann equations [1, Chap. 1] that the G-transform TG: C^{n+1} - $S(\mathcal{O}M') \rightarrow A_{n+1}(C)$ (1)

$$TG: C^{n+1} - S(\mathcal{D}M') \rightarrow A_{n+1}(C)$$
 (17)

is a holomorphic function in the variables z_1, \dots, z_{n+1} . Moreover, it may now be observed from equation (16) that the function (17) is a complex right regular function.

In fact the G-transform, TG , given in Theorem 4 is the following type of complex right regular function. Definition 15: From M' a manifold of type e we say that a complex right regular function $F: C^{n+1} - S(\partial M') \rightarrow A_{n+1}(C)$ is complex right regular at infinity with respect to OM' if for each unbounded, continuous function s: $(0,+\infty) \rightarrow C^{n+1}$ - $S(\mathcal{O} M')$, which is not asymptotic to the set $S(\mathcal{O} M')$, we have

$$\lim_{t\to\infty} F(s(t)) = 0.$$

We denote the set of complex right regular functions at infinity with respect to ${\mathcal O}$ M' by $\widetilde{\Omega}_1({\mathbf C}^{{\mathbf N}+1}-{\mathbf S}({\mathcal O}\ {\mathbf M}'),{\mathbf A}_{{\mathbf N}+1}({\mathbf C}))\ .$

$$\widetilde{\Omega}_{1}(C^{n+1}-S(\mathcal{O}M'),A_{n+1}(C))$$
 (18)

It may easily be deduced that the set (18) is a left $A_{n+1}(C)$ module, and the set of G-transforms over AM' is a submodule of the module (18). In fact, by using similar arguments to those used in [4], Sec. 28] we may obtain the following isomorphism. Theorem 5: For M' a real analytic manifold of type b , lying in

a real analytic manifold of type e , the left A_{n+1}(C) modules $\mathcal{A}^*(\mathscr{O}\;\mathsf{M'},\mathsf{A_{n+1}}(\mathsf{C}))\quad\text{and}\quad \widetilde{\Omega}_1(\mathscr{O}\;\mathsf{M'},\mathsf{A_{n+1}}(\mathsf{C}))\quad\text{are isomorphic.}$

In the cases where M' is a manifold of type b we can use the G-transform to give an integral representation of an analytic functional acting on an element of the set $\mathcal{A}(\mathcal{O}\,\mathsf{M'},\mathsf{A}_{\mathsf{n+1}}(\mathsf{C}))$. Theorem 6: For M' a real analytic manifold of type b, lying in a manifold M of type c , for T an element of the module $\mathcal{A}^*(\mathcal{O} \text{ M'}, A_{n+1}(C))$ and for g an element of the module $\mathcal{A}(\mathcal{D}\,\mathsf{M}',\mathsf{A}_{n+1}(\mathsf{C}))$ there exist a manifold M_{g} , of type b, a complex right regular function $\mathsf{F}_{\mathsf{T}}:\mathsf{C}^{\mathsf{n}+1}$ = $\mathsf{S}(\mathcal{D}\,\mathsf{M}')$ \longrightarrow $\mathsf{A}_{\mathsf{n}+1}(\mathsf{C})$ and a complex left regular function $F_g: U_g \subseteq C^{n+1} \longrightarrow A_{n+1}(C)$ such that $T(g) = \int_{\partial M_G} F_T(\underline{z}) D\underline{z} F_g(\underline{z}) .$

$$T(g) = \int_{M_{-}} F_{T}(\underline{z}) D\underline{z} F_{g}(\underline{z}) .$$

<u>Proof:</u> For each $g \in A(\mathcal{D}M',A_{n+1}(C))$ we take the Cauchy-Kowalewski extension $F_q: U_q(C) \longrightarrow A_{n+1}(C)$ constructed in Theorem 3.

As the manifold M' is a submanifold of a manifold M of type c , there exists a manifold $M_a \subseteq M$, of type b which satisfies the conditions

i
$$M_g \subseteq U_g(C)$$
,
ii $\partial M' \subseteq M_g$,
iii $\partial M' \cap \partial M_g = \Phi$.
Thus, for each vector $\underline{z}_o \in \partial M'$ we have from the generalized

Cauchy integral formula, given in Theorem 2,

$$g(\underline{z}_0) = \frac{1}{w_n} \int_{\partial M_q} G(\underline{z} - \underline{z}_0) D\underline{z} F_g(\underline{z})$$
.

Thus, for T an element of $\mathcal{A}^*(\mathcal{O} \text{ M',A}_{n+1}(C))$ we have $T(g) = T(\int\limits_{\mathcal{O} \text{M}_Q} G(\underline{z} - \underline{z}_0) D\underline{z} F_g(\underline{z})).$

From Fubinni's theorem we deduce
$$T(g) = \int_{\partial M_g} TG(\underline{z})D\underline{z}F_g(\underline{z}). \tag{19}$$

On placing the function $TG(\underline{z}) = F_T(\underline{z})$ we obtain our result. The integral (19) generalizes an integral representation obtained by Sommen [13], and [3, Sec. 28], for analytic functionals acting on analytic functions over the unit sphere in $\,\mathbb{R}^{n+1}\,$.

REFERENCES

- [1] AHLFORS L.V. "Complex Analysis", McGraw Hill, 1966
- [2] ATIYAH M.F., BOTT R. and SHAPIRO A. "Clifford Modules". Topology 3, 1965, 3-38
- 3 BOGGES A. and POLKING J.C. "Holomorphic extensions of C.R. functions", Duke Maths Journal 49, 1982, 757-784
- 4 BRACKX F., DELANGHE R. and SOMMEN F. "Clifford Analysis", Pitman Research Notes in Mathematics, No. 76, 1982
- 5 DELANGHE R. "On regular analytic functions taking values in Clifford algebras", Mathematische Annalen, 185, 1970, 91-111
- 6 EELLS J, and LEMAIRE L, "A report on harmonic maps", Bulletin of the London Mathematical Society, 10, 1978, 1-68
- [7] HUNT L.R. and WELLS R.O. Jr. "Extensions of C.R. functions", American Journal of Mathematics, 98, 1976, 805-820
- 8 KOHN J.J and ROSSI H. "On the extension of holomorphic functions from the boundary of a complex manifold", Annals of Mathematics, 81, 1965, 451-472
- 9 PORTEOUS I. "Topological Geometry", Van Nostrand Company, 1969

262 JOHN RYAN

- [10] RYAN J. "Complexified Clifford Analysis", Complex Variables: Theory and Application, 1, 1982, 119-149
- [11] RYAN J. "Special functions and relations in complex Clifford analysis", to appear in Complex Variables: Theory and Application
- [12] SOMMEN F. "A product and an exponential function in hypercomplex function theory", Applicable Analysis, 13, 1981, 13-26
- [13] SOMMEN F. "Spherical monogenics and analytic functionals on the unit sphere", Tokyo Journal of Mathematics, 5, 1982
- [14] SOUČEK V. "Complex-quaternionic analysis applied to spin 1/2 massless fields", to appear in Complex Variables: Theory and Application.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK, HESLINGTON, YORK, YO1 5DD, BRITAIN