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CAUCHY-KOWALEWSKI EXTENSION THEOREMS AND REPRESENTATIONS
OF ANALYTIC FUNCTIONALS ACTING OVER SPECIAL CLASSES OF
REAL n-DIMENSIONAL SUBMANIFOLDS OF ch+!

John Ryan

INTRODUCTION

The study of holomorphic extension of real analytic functions
defined on real hypersurfaces of complex manifolds has been develop-
ed by a number of authors [3, 7 and 8]. In this paper we utilise
the invariance of the kernel of the differential operator d+d* ,
under orthogonal transformations, to provide Cauchy-Kowalewski ex-
tensions for the elements of complex Clifford modules of real ana-
lytic functions defined on special classes of real n-dimensional
submanifolds of Cn*l . Each of these extensions is a holomorphic
function in (n+l1)-complex variables and satisfies the operator
d'+d*'

In the cases where n=1 mod 2 , the manifolds are compact,
satisfy a further geometric restriction, we are able to use the
generalized Cauchy integral formula established in [10] to con-
struct a generalized Cauchy transform acting on the duals of the
modules introduced here. Using this generalized Cauchy transform
and the Cauchy-Kowalewski extensions obtained here, we are able to
present an integral representation of the dual space acting on
these Clifford modules.

The results obtained here generalize results obtained by
Sommen [;3] on representations of analytic functionals on the unit
sphere in R™! , by means of solutions to generalized Cauchy-
-Riemann equations. Our methods make use of a number of results
from Clifford analysis [4. 5, 11]. We begin by developing the ne-
cessary background on Clifford algebras, Clifford analysis and dif-
ferential forms that we require to establish our main results,
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PRELIMINARIES

For each positive integer n it is demonstrated in [ 9, Chap.
13] and [2, Part 1] that from the vector space R™1,  with ortho-
normal basis {ej g:i ., it is possible to construct a oM+l yinen-
sional, real, associative algebra An+1 , containing the space
R as a subspace., The algebra A 1 has an identity e, and

+
the basis vectors {ej};:i of RM*1 satisfy the relation
oo + o8y = ZLkaeo . (1)

where d,jk is the Kronecker delta, and 15-;] , kSns1 ,
The algebra has as basis elements the vectors

€011 seeer®n 100ee @@ Jreees@yeoeec®p g o (2)

The algebra An.y 1s called a Clifford algebra, but it is
not the most general example of such an algebra. A general basis
element of this algebra is denoted by ey oy with r<n+1 and
1'0! r

Jg< ¢ee<J,. . Also a general basis element of the algebra is
written as

um= X°O°+x181*oo.4Xn+1°n*1*o-.ijl...Jrejiaooejr*‘-to

-o.+X1...n31..-9n .

with xo,xlnxn+1'x31...Jr,xl".neR .

We denote the subspace of A
n+l
{e }n+1 by R?
3J3=2 ‘

From expressions (1) and (2) it may be observed that the vec-
tor space A_ ., is canonically isomorphic to J\(R"*l) . the
alternating algebra generated from the vector space RA*+1

We observe that each element

n+l
X = X,85%...4X, 10 CR -{o}gA'"l

n+l =
has a multiplicative inverse

spanned by the vectors

<1 Xg@qteeotX,,1%41

Xoteo¥x o
in the algebra A .4 .

By considering the real symmetric tensor product of the
algebra A, with the complex field An+1C)Rc we obtain the
complex Clifford algebra An+1(c) introduced in [9, Chap, 13].
Again this algebra is spanned by the basis elements (2). A general
element Z of this algebra is denoted by

zoeoi-zlei*. oo"znen’co 0"211. "Jreji. ..eJ r+...*z11 . .n*le1' OO.n’l [
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€C , and each =z

where Zor®1°%n %y, ..., %1 01 A PRPPS Pl
i , with d ER .,
e PRDRE il £ PRURE BRI 1 PUPTS PULSL R £ PRPPS BN
We define the norm of the vector Z to be
(Iz 12+ +z ]2+ +z |2)1/2
ol TeeetlZy iiugt Tt ®ainn .

We denote the complex vector space spanned by the vectors
{ej};:i by c™?! | unlike the real case, not every element of

C"*i-{o} is invertible in the algebra An+1(C) . For example the
vector (e1+192) is an element of the set C"+1~{o} , and
(e;+1e,) (e +ie,) = O . For each point EOEEC"+1 the set S(z)) =

= {;GEC"+1 : (;—;o)(g-go) = 0} is called the singularity cone at
z, . Each element of the set c"*i-S(o) is invertible in the
algebra A  ,(C) .
+ n+1
For each set X Cc we denote the set U S(z) by S(x).

zec
For each pair of vectors z = Zg@q%4eeotZ 10 4 en§ z' =
= ziei+...+zé+1en+1 we define their Hermitian product to be
n+d
<z.z'> = 3 z.3! .
J-l 33

Using these algebraic preliminaries we may now develop the
differential calculus we require,

In [5] Delanghe introduces the generalized Cauchy-Riemann
operator

n+l

3-19317§; . (3)
This operator acts on pointwise differentiable functions de-
fined on subdomains of R"*1 . and taking values in the algebra
Anel ° The operator (3) may also be described in terms of differen-
tial operators acting on differential forms.
Construction: Using the canonical isomorphism © : An+1__* J\(R"’l)
we may [6], for each domain USR™?! , define an inner product

between smooth L2 integrable forms g,h : U— A (U) , We define

this inner product to be .fTrace {6(6'1(9).9'1(h))}dx"+1
U

Definition 1 [6]: For rEN* , for each smooth (r-1) form

(o) U-—'J\r(U) with compact support, and each smooth r form
g : U-—*l\r'i(U) we define the operator d* to be the adjoint of
the operator d arising in the inner product
{‘Trace {9(9‘1 (dd).e"1(g) )} dxh+l
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where d is the usual de Rham cohomology boundary operator

7
Eidx —
3=137%
It may now easily be deduced that for each pointwige differen-

tiable function f : U-—>An+1 we have

n+l
sz’iej%t.; = 071((dsd*)0(f)) . (4)

Definition 2: We define keru(d+d*) to be the set of pointwise dif-
ferentiable forms g : U-—>JL(U)C)RC which satisfy the equation
(d+d*)g(x) = O for each x€U ,

The set keru(d+d*) is a right module over the complex
algebra J\(Rn+1)C)RC . of alternating tensors,
Definition 3: We define

+1 9
ker e 5
U(Jgg 7% | (5)
to be the set of pointwise differentiable functions
n+l
f :U—A ,(C) such that for each xEU we have ZOJ"%-(X)'O-
n+l =1 3

0]
The set keru(52;911723) is a right module over the complex

Clifford algebra An+1(c) .

It follows from equation (4) that the complex vector spaces
keru(d+d*) and (5) are equivalent.

The space keru(d+d*) is independent of the choice of ortho-

normal basis in R™! | It thus follows that for each f 4in (5)
and each orthonormal basis {ei}g:iQR"*lgAmi(C) we have

n+l ]
Ze'wf(x) =0,
3=i 7%y
We now proceed to give some examples of elements of the space
(5).
Definition 4 [5:]: Let us consider, for 2S1=n+1 , the variables
31 = xleo - xielel .
(s-a); = (xl-al)eo - (x1-91)6191 P o
for a = aje +...4a, 40, 4 . For each (11,...,1m)€§{2.....n+1}
we may construct the following homogeneous polynomials of degree m:

v = Z ’

1.3, ) T(l...1) haeee®ly ©)
v -a) = 2~ - -a). . 7
1,...1,8) = {1, ...1 )(e=8), ., (5=8)y (7)

where the sum is taken over all permutations without repetition of
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the sequence (11,...,1 ) .

In [5] it is established that for each domain USRM*!

the

n+l
polynomials (6) and (7) are elements of the space keru(zzjejﬁ;l-) .

From [{] it may be established that for each element
n+l
fe keru(ZeJ-;‘?x—-) and each point a€U there is a subneighbour-
hood Ua . containing the point a , and there is a series
o)

S 27 Vi,...1 (8)ey 1 . (8)

m=0 110001 m,a

with each c; 1 E‘An+1(0) . which converges uniformly on U

1."
to the function f(x)

In [;2] Scmmen observes that for the case where
a = ajey+...+a, 1€ .4 the series (8) restricted to the variable
Xp@ote..+X, s0. ., becomes
Efi > (x; =8y )e..(xy ~a, )c .
meo 1,...1 1,71, 1,771,771 ... m, e
Using this fact Sommen establishes [12]:
Theorem 1: For each domain U‘CR"™ and each real enalytic function
r:Ut—AL(C) (9)
there is a domain Ur__C.l”\""":l and a unique function f: U —A_ ,(C)
such that:

i u'Qur .
t€ ker,, (3o 2
11 -5) .
erur(3=1ej xJ)
111 fl =r . U
U'

The function f is called the Cauchy-Kowalewski extension of

the function r with respect to rR" .
In this paper we shall also consider the following type of

functions:

Definition S [10]: For each subdomain U(C) of ™! we say that
a holomorphic function : U(C)——*An’l(C) is complex left regular

if for each zEU(C) we have Zﬂe 7?—-(2) =0 , A similer defini-

tion is given 1in [10] for complex right regular functions.

Examples:
1, The holomorphic extension of the series (8) is a conpiex left
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regular function. It follows that the holomorphic extension of the
~ Cauchy-Kowalewski extension of the function (9) is @ complex left
regular function,

2, The function

6 : c™i s(o)—>c™ICA i (€) : B(2) = z(z.2) (M2,
defined for nal mod 2 , is a complex left regular function., More-
over, this function is a complex right regular function.

The class of complex left regular functions defined on an open
set U(C) 1s a right module cver the algebra An+1(C) . We denote
this module by f}r(U(C),An+1(C)) . The class of complex right re-
gular functions defined on U(C) 1is a left module over An.1(C) .
We denote this module by !ll(U(C),An+1(C)) .

Using the complex isomorphism BQDRid : An*I(C)-—’J\(R"*lx:)RC
where id stands for the identity map, we observe that for each
complex left regular function F : u(c)—=A, 4(C) the holomorphic
form (9®Rid)F : U(C) —>A(Rn" )@Rc satisfies the equation
(d*+d**)((6(®xid)F) = 0 , where d* 1s the holomorphic extension

n+l

> 7dz 7§L- of the operator d , and d** s the holomorphic ex-
=1 J
tension of the operator d* .,

We shall require the following classes of manifolds in our
analysis,
Definition 6 [i]: A smooth, real (n+l)-dimensional submanifold, M
of c"*I is said to be without complex etructure if for each
ZEM the tangent space ™, 1is spanned by vectors {z (z)}g:i .
where for each z.(z) we have iz (z)¢'n1 . We shall refer to
such manifolds as manifolds of type a .
Observation 1: If M 1is a manifold of type a then it follows from
Definition 6 that for each zEM the complex extension of the
tangent space TMz is isomorphic to the space C"'"1 . If M 1is
not a manifold of type a , then for each zEM the complex ex~
tension of the tangent space TM is isomorphic to a proper complex
subspace of c™1 ,
Definition 7: In the cases where nsl1 mod 2 a smooth, real,
(n+1l)-dimensional, compact submenifold, M , of ch+t , with boun-
dary, 1s called a manifold of type b 4if it is a manifold of type
a , and for each zEM

1 ™, N s(z) = Ezi .

i1 M Ns(z) ={z} .
Definition 8: In the cases where n=1 mod 2 a smooth, real
(n+l1)-dimensionel, noncompact submanifold, M , of c"*1 is called
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a manifold of type c¢ if each smooth, compact, (n+1)-dimensional
submanifold of M 1is a manifold of type b .

An example of a manifold of type c¢ is the real vector space
Rn+1gcn+1

For each manifold, M , of type a , and each z&EM the
vectors spanning the tangent space, TMz ., are orthogonal with
respect to the Hermitian structure of Cn*l . Thus, each manifold
of type a is a Riemannian manifold, inhériting its Riemannian
structure from the Hermitian structure of ch+l . It follows [ﬁ]
that for each manifold M of type a we can construct an adjoint,
d* , to the differential operator d . Thus, the operator d+d* is
well defined over each manifold of type a . In fact, for UM(C)E;
Ccn+t a domain containing a manifold M of type a , and
H : Uy(C)— A  ,(C) a holomorphic function, we have for each zEM

(d+d*) ((6@g1d)H(2)) = (d*+d**)((6@gid)H(2)) . (10)
where the operator d+d* is acting over the manifold M .
Definition 9: For M a connected manifold of type b we denote the
component of c*i. S(7? M) containing the interior of M by U(M).

In [11] we establish that U(M) 1is an open subset of c™*1 ,

Using Definitions 7 and 9 we establish the following generali-
zation of the classical Cauchy integral formula [1, Chap. 4J.
Theorem 2 [11, 14]:Suppose F : U(c)'*'An+1(c) is a complex left
regular function, and suppose MQ;U(C) ., 18 a connected manifold of

type b , then for each point z_ in U(M)NU(C) we have
<o

F(zy) = ;,1-n gMG(z-zo)DzF(;) .

where w, 1is the surfaca area of the unit sphere lying in R

and Dz is the complex n-form

n+l

n+1
Z:J 1(..1)1*1ej¢:z1/\ ceehdzy g Adzg g A .. Adz . U
L

j-1 n+1

CAUCHY~-KOWALEWSKI EXTENSIONS OVER
MANIFOLDS OF TYPE a

All manifolds of type a considered in this section will be
real analytic, Riemannian manifolds.,
Definition 10: Suppose MCc™! 5 a manifold of type a , without
boundary, and M’ 1s a real analytic, (n+1l)-dimensional, Riemannian
submenifold of M , with boundary. Then the manifold M’ is called
a manifold of type d .
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Any type b real analytic submanifold of a real analytic mani-
fold of type ¢ is an example' of a manifold of type d .,
We denote the set of real analytic, Ane1(C) valued functions
defined over 72M°’ by
Aam A L,(C)) . (11)
The set (11) is a right A _,(C) module. For each element of this
module we may deduce the following extension theorem,
Theorem 3 (A Cauchy-Kowalewski Extension Theorem): Suppose M’ 1is
a manifold of type d 1lying in a type a manifold, M , without
boundary., Suppose also the function g 1s an element of the module
A9 M’,A_ 4(C)) . Then there is a domain U (C)QC"“’ containing
the manifold /M’ , and there is a complex left regular function
f: Ug(C)—r-Ami(C) such that F|OM' sg.
Proof: As the manifolds M and M’ are real analytic and Rieman-
nian there exist real analytic chart maps
{vg : U, CR™I—M}®, (12)
such that each chart, Y, . preserves the Riemannisn structure of
the manifold M , and for
RT']' = {x = X054, 004X, .0 er™?! x, 2 0} .

n+l
ER : xiéo}

n+1
RI* a {x = X192 0o+ X0,1%041
we have for each m&EN
Yp
Y+ Y NRM — (MM ) UM
We shall restrict our attention to the subset
{wp : UP—->M , YUy R" ¥ (D} of the set (12). It may be observed
that the set of maps {yp : UpﬂR"—> M} is a set of real analytic
charts for the manifold # M’ , We shall denote each chart map
wp : Uan"—:-/JM' by (up .
Suppose now that g 1s an element of the set WA(7 M',Aml(C)).
Then it follows from Theorem 1 that for each real analytic function
n
e o et A A it
P : P.g" "P.g N+l

satisfying the conditions

n+l
: Unn R+ - M,

i fp ge"aru (%9 TO ) .
! P.g =1 3 xj
11 fo.g U MR = g( @) -

As the kernel space of the operator d+d* , acting over a Rie-
mannian manifold, is invariant under diffeomorphisms which preserve
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the Riemannian structure of the manifold we have that the real ana-
lytic form

-1 -1 — n+l
DY (e@p1d) (F, ((L51)) ¢ (U, ) ~ARTHDC  (13)
satisfies the equation
(d+d¥)0 ¥ {(6®Rtd) (f, (Y71} =0, (14)

where nyp is the complex vector bundle transform
pr : _A(Up)®RC ——A(wb(up))@Rc

induced by the diffeomorphism v _ .
As the form (13) is a real analytic form (over an (n+l)-dimensional
manifold without complex ‘structure it follows from Observation 1
that there is an open set Up' (C)Q;Cn+1 containing the set
wp(up'g) , and there is a complex left regular function
F : U (C)—A__.(C) which satisfies the condition
P.g g P.g n*: {(9@ 1d)'10w'1(6@ 1d)}(f (w-l))

Pg|y (u ) R p R p.gtTp ! -

P P.9
It now follows from equations (4), (10) and (14) that each function
is an element of the right module I)r(up‘g(C).An*l(C)) .
If for some Py 32d P.EN" we :ave that
‘upi(upirm )N w, (U, NR"M ¢ d

then it follows from the uniqueness of the Cauchy-Kowalewski extens-

ions f and f , and the invariance of the operator de+d*
Psy.9 PJOQ

under the chart maps {wp} , that the function

E
P.g

f
Pogl -1
1 Upi'gﬂwpi(ijupj'g)
ie identical to the function .
-1 -1 -
(6®g1d)™ DY - DY (8®gid)f (v (¥
p P R Py.9° " P p -1
vt I 3 Y%, N ¥p, (M Y, )
(C) the functions

)).

Thus on the open set (c)ynu

F
Upy.0 Py.9 Py:9
end F, o are identical, On placing Ug(C) - L“)up'g(C) we may
now congtruct a complex left regular function Fo: U (C)— A_,,(C)

by placing F = F for each peEN' ,
vy placing Fq Uy g©) P8

fi th ditio F R
The function Fg satisfies e con n 9|’7M' =g []

We call the function F_ , constructed in Theorem 3, the
Cauchy~-Kowalewski extension-of the function g .



258 JOHN RYAN

REPRESENTATIONS OF ANALYTIC FUNCTIONALS OVER
CLASSES OF TYPE d MANIFOLDS

We begin by introducing, for the case where 7 M’ is compact,
the dual to the right A__,(C) module A9 M*,ALL1(C)) .
Definition 11: For M’ the compact boundary of a menifold of type
d we call a map
T A(OMLALL(C))—>A 4 (C)
a bounded, right A  ,(C) 1linear, analytic functional over M’
if -

i for each g,h€ A(? M*,A ,4(C)) and a€A _,(C) we
have
T(ga+h) = T(g)a + T(h) ,
ii there exists a positive real number C(T) such that for
each g€ A(?M*',A _,(C)) we have
| T(g)|=C(T) eup  |g(z)
2ED M.
Definition 12: The set of bounded, right An+1(c) linear analytic
functionals over 7/ M’ is called the dual space of
£(D M AL,4(C)) .
We denote this space by
A¥ (DM AL (C)) . (15)

For each T,,T, € 4*(% M*,A ,1(C)) , each a€A__, and each
geEA(?IM A ;1(C)) we have (aT;4+T,)(g) = a(T,(g)) + Tr(g) . It
follows that the dual space (15) is a left An+1(c) module,

For a special class of manifolds M’ of type d , with compact
boundary, we can transform the dual space (15) into & space of
complex right regular functions, We now introduce this special
clases of manifolds,

Definition 13: A type d manifold, M’ , with compact boundary, 1s
called a manifold of type e if for each zE// M’ we have
AnNnsz) ={z} .

For each manifold, M’ , of type e we may introduce the
following transform on the dual space (15):

Definition 14: For M’ a manifold of type e and T an element
of the module A¥*(% M’,Aml(c)) we call the transform

T6 : C™i s(A M )—=A,,,(C) : TG(z) = T(G(z-2,)) .
where the complex vector z, varies over the manifold /M’ , the
G-transform over /7 M*‘ of the functional T .

The G-transform is a generalization of a transform introduced
by Sommen [13] and [4, Chap. 4] + in his study of representations

.
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of analytic functionals over the unit sphere in R+,
Theorem 4: For each manifold M’ of type e , and each element T
of the module *(/? M*,A ,1(C)) the G-transform, TG , defines a
complex right regular function on the open set ch+i. S(7 M) .
Proof: For each point ;GEC"+1 we consider the spaces

1(zg) = €2 s(7M))N (R™ e 2)

Y(zg) = (€™1- s(aM )N (R™Es zg) .
Suppose O : X(24)—>A,,1(C) 1is an An+1(C) valued test function,
Then it may be observed that the integral

[ 6z-z)® (z)ex™t

x(24) - -

where is the Lebesgue measure of X(El) ., gives a well de-
fined real analytic function on the manifold #Z M’ ., As T is a
bounded analytic functional it follows that the transform, TG ,
restricted to the set x(z;) , is a well defined An,1(C) valued
distribution, Similar arguments reveal that the transform, TG
restricted to the set Y(z,) is also a well defined A__,(C)
valued distribution. We shall call these distributions TGy , and
TGY,  respectively. =1

dxn+1

.

As the integral

n+1
j G(§¢5°)§;;ej%%%%(g)dxﬂ+1

%(z4)
vanishes it may be deduced from [4, Chap. 3] that the distribution
Tze is a real analytic fuaction TGX,Z 2 x (29)—>A,,1(C) which
£ 31
satisfies the equation
n+l mGX._z_l o (16)
e = . .
COCETIIRE
Similar considerations reveal that the distribution TGY, is
=1
a real analytic function TGY, : Y(51)’*'An+1(°) which satisfies
the equation neg 7T6Y,

> =l e =0,

=1 vy 3
It follows that the G-transform of the functional T is a real
analytic function in the variables XgeYgeeeesXn qe¥n,q ¢ O the

open set cm+i, S(”M*) , As the function G(z) 1is holomorphic it
may be observed that the integrals

Xé )7,;?‘—1‘;(5-5‘,)@(z)ci:(""'1 . %(£ )' %}G(a-zc)b(z)dxmi
£1 =1
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are equivalent for each j, 1=3Sn+1 . It follows from the clas-
sical Cauchy-Riemann equations [1, Chap. 1] that the G-transform
T6 : c™i. s(omM)— A (C) (17)

is a holomorphic function in the variables Z4s000eZ,, 4 - Moreover,
it may now be observed from equation (16) that the function (17) is
a complex right regular function,

In fact the G-transform, TG , given in Theorem 4 is the fol-
lowing type of complex right regular function,
Definition 15: From M’ a manifold of type e we say that a
complex right regular function F : c™1l. s(» M )—>A_ _,(C) 1
complex right regular at infinity with respect to /M’ if for
each unbounded, continuous function s : (O,+m)—>cm1- s(7 M) ,
which is not asymptotic to the set S(7 M’) , we have

lim F(s(t)) = O ,
t->
We denote the set of complex right regular functions at infi-
nity with respect to /7 M’ by

A e s(a M)A, (C) . (18)

It may easily be deduced that the set (18) is a left A _,(C)
module, and the set of G-transforms over /7 M’ 4is a submodule of
the module (18)., In fact, by using similar arguments to those used
in [4. Sec. 28] we may obtain the following isomorphism,

Theorem 5: For M’ a real analytic manifold of type b , lying in
a real analytic nanifoldhgf type e , the left An+1(c) modules
AYD M A 1(C)) end O (7M',A _,(C)) are isomorphic.

In the cases where M’ 1s a manifold of type b we can use
the G-transform to give an integral representation of an analytic
functional acting on an element of the set /(7 M*,AL.(C) . .
Theorem 6: For M’ a real analytic manifold of type b , lying in
a manifold M of type ¢ , for T an element of the module
A*(PM°,A _1(C)) and for g an element of the module
A(9M A _,(C)) there exist a manifold Mg . of type b, a
complex right regular function Fr ¢ ch+il S(2 M')—'—Aml(C) and
a complex left regular function Fg : Uggcn”—’l\ml(C) such that

T(g) = ofm Fr(z)bzF,(2) .
Proof: For each g& A(% M',Aml(c?)' we take the Cauchy-Kowalewski
extension F_ : U (C)—>Am1(C) constructed in Theorem 3,

As the manifold M’ is a submanifold of a manifold M of type
¢ , there exists a manifold MQQM , of type b which satisfies the
conditions
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i MgCu ©) .
i1 QM'CM ,
iii MNIM =9 .

Thus, for each vector §°€’7M' we have from the generalized

Cauchy integral formula, given in Theorem 2,

o(z,) = == [ 6(z-z,)0zF (2) .

“n M g
g

Thus, for T an element of #A*(/ M*,A . ,(C)) we have

T(g) = T( .f G(z-zo)DzF (z)) «

/DMg -Tot T e

From Fubinni‘’s theorem we deduce

) = J T0(ivzr () (19)

On placing the function TG(z) = FT(E) we obtain our result, []

The integral (19) generalizes an integral representation obtain-
ed by Sommen [13], and [3, Sec. 28], for analytic functionals act-
ing on analytic functions over the unit sphere in Rn+1 .
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