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MICROFUNCTIONS WITH VALUES IN A CLIFFORD ALGEBRA 1 

F. Sommen (x) 

Abstract. Inspired by the theory of microfunctions on the real 

line, we introduce a notion of microfunction defined 

in an open subset of R m and taking values in a Clifford 

algebra jf, and this by making use of formal boundary values of 

left or right monogenic functions. Moreover we define a local 

Hilbert transform on the sheaf of ,A-valued microfunctions, which 

is useful in order to study singularities of ^-valued hyper-

functions in a purely algebraic way. 

In this way we obtain theorems relating the singular behaviour of 

an j-V-valued hyperfunction to its values and we give an electro­

magnetic interpretation of these theorems. 

Introduction. This paper is a continuation of our previous paper 

[8], in which Clifford algebra valued hyperfunctions 

in open subsets of R m were represented as formal boundary values 

of left or right monogenic functions in ft,m+1 \ |£m . Hereby /£.m 

is identified with a hyperplane in /R.m+ , which separates {Rm"Kl 

into an " upper half space " R + and a »• lower half space " 
Rm+1 ^ 

In the first section we define the space of ^-valued microfunc-

tions C(A;;40 in an open subset Si of JRj31 . Moreover, when 

n £ JR,m is open such that SI is relatively closed in IL , we 

show that t (II ; -A) coincides with the quotient of the space of 

left or right monogenic functions in fi\Si with respect to the 

space of those functions f in Si \ SL the restrictions of which 

to the upper and lower halfspaces admit monogenic extensions about 

each point of Pi . We thus obtain representations of & -valued 

microfunctions as boundary values of monogenic functions, general­

izing in this way the definition of microfunctions on the real 

line by means of boundary values of holomorphic functions 

( see [3],[5] ,[6J ,[7] ). Furthermore we define left and right 

Hilbert transforms SB -_ and S£r , acting on the space £ ( Jl; £) 

of jt -valued microfunctions, and having a local nature, i.e. 

<J£, and 3& commute with the restriction operators. 

(x) Senior Research Assistant supported by N.F.W.O. Belgium 



264 F. SOMMEN 

These transforms ^-, and 3& are in fact extensions of the 

Hilbert - Riesz transform introduced in f9j for the & -valued 

Lp-functions in & m , which itself is related to the classical 

Riesz transform ( see fit)] ). 

In this way, the four group of main involutions on the Clifford 

algebra together with % -, and 3& generate a finite group of 

thirty-two elements which enables us to express singularity pror 

perties of r£-valued hyperfunctions in an algebraic way., More­

over, as the Clifford algebra is a graded algebra, we may decom­

pose ck-j and <3£ into a sum of boundary operators 3C-, and 

#C and coboundary operators <L 7 and c& ~ • 

In the second section we introduce so called electric and magnetic 

projection operators £ , £_ and M- + /> U which are mutually 

orthogonal and which satisfy 1C-= £.+ &_ + H*+
 + f̂ - * 

They are constructed by means of the Hilbert transforms and they 

describe microfunctions which are simultaneously upper or lower 

boundary values of left or right monogenic functions. Furthermore 

we obtain a non trivial generalization of the following theorem 

( see [5] ) : " When a hyperf unction F on JR, is real valued, 

then for every representing holomorphic function f(z) in 

£ N KL •and every x € ]£, , f I <T admits a holomorphic extension 

about x if and only if f J C_ admits a holomorphic extension 

about x ". We thus establish a relationship between the singular 

behaviour of Jc -hyperfunctions and the nature of their values, 

a result which admits an electromagnetic interpretation as is ex­

plained at the end of the paper. 

In the third section we introduce the so called logarithmic micro-

functions A and %_ which are generalizations of the classi­

cal logarithmic microfunctions. 

In section four the convolution of microfunctions is calculated 

by means of intgrals of left and right monogenic functions over 

suitable orientable surfaces in a way which is inspired by [3] . 

This leads to a definition of micro-differential operators and we 

show that the micro-differential operator associated with the 

logarithmic microfunction ^ » A + ^ _ is equal to the inver­

se of the Dirac operator D in Jtm • 

In the final section we show that every microfunction (f may be 

decomposed into a unique sum (p = f̂e + fyu, » where G>- satis*--

fies the electric field equations 

-V*-1 -Vfe" %»o = 0 
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and where ^ satisfies the magnetic field equations 

{ W } =Vfr+ %Do - ° • 
Furthermore we establish the relations 

£+ + t_ = 1/2 {Do, . ) O ^ 

t++ r _ - V2 [ D 0 , •] O.D;1 

and 
« r t ^ = D"H DQ , <* €*(.£.;A) , 

thus relating the Hilbert transforms to the Dirac operator. 
Finally we show that, when F is a free magnetic field in R N R 
such that F I flP extends to a free magnetic field about the 
origin while F j R,_ does not, then F is not extendable to a 
magnetic field about the origin, i.e. there is a magnetic charge 
at the origin. This explains the above mentioned relationship be­
tween the singularities and the values of an ^x -hyperfunction. 

Acknowledgement The author wishes to thank Prof.Dr. R. Delanghe 
and Dr. F. Brackx for their constant interest 

during the preparation of this paper. 

Preliminaries. Let V be a complex m-dimensional vector space 

provided with a quadratic form and let 
{e^,..., e | be an associated orthonormal basis. Then a basis 
for the universal Clifford algebra A- constructed over V is gi­
ven by | e A s A c (1,..., m) J where eA = e^ ... e^h with 
A = !<<,,..., of^ and 1^c^<... <£oc i i^m. 
Obviously e)±K = e^ (i = 1 , . . . , m ) . 
The product in A: is defined by the relations 

ei ej * ej ei = "~2 ̂ ij eo ' ̂  i'3 = s %•••, m ) > 
e = e^ = 1 being the identity of A* . 

We define involutions in -re as follows. 
Let a = Z! aA eA e n , a A e { ; then we put a = 2 aA eA , 

a = 2 aA eA and a = Z &A §A , where eA = e ^ e^ 

e.j » -e.. .( a = 1,..., m ) , eQ = eQ , eA = e^... e^ and 
3A " eA 
The four group <| « |l,^,ij,Yl of main involutions on A: 
then given by °< (a) = a } /6(a) = a and ^(a) » a » a c A 

A norm on ^ is defined by |a|o
2 = 2m[a.aJ = 2m 2 |aA|

2 

where for be A we put \ b 1 = b 
•» -•« o 

1S 
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Notice that |a-,b |c ^ |a|0 j b/0 , a,b e A • 
Let a,b eA ; then we use the notations [a, b] for a b - b a? 
/a, bj for a b + b a 

Similar notations will be used for the commutator and the anti-

commutator of operators. 

An element a € A which is of the form a = --̂  aA eA w^*1 

& A 

a. = 0 whenever ^A ^ k , k ̂  m , will be called a k-vector. 
The space of all k-vectors is denoted by yfe, . Moreover, it is 
well.known that each element a £ A admits a unique decomposition 

m 
of the form a = 21 a

n* * w--^n a- € /t. . Hence there exist 
.j=o <J J 

projection operators 0. from ;A Onto A . which are given 
by 6-j (a) = a. • 
Let il C £ m 4r be open. Then M(r)(Jl;A) and M(1)(il;>40 
are the right and left A -modules of functions f e C^(fl \A) 

m 
satisfying respectively Df= JL e i ^ x

f = 0 anci fD ~ 
m m .j=o J ' j 
21 A) „ f e. = 0 , where 2. e-i 1 is a generalized Cauchy-
d=o xj a d=o J xj 
Riemann operator. The elements of M/ N(.U 5-̂ 0 an^- M f i ) ^ \**) 
are respectively called left and right monogenic functions in Jl • 
Moreover the A-modules M/ ^(ilj^t) and M/-x (il ; ;rt) are pro­
vided with the topology of uniform convergence on compact subsets 
of Jl ; in this way they become right (resp. left ) Freche.t 
/c -modules. 
By D we denote the operator 21 o. 0 , acting on ^t-^ Jm * valued functions in open subsets of K* 
In the sequel arbitrary elements of %m and Ĵ ra will be de­
noted respectively by *x = ( x^,..•, xffi) and x = xQ + x =-
( x , X/j,..., x ) while |.| denotes the Euclidean norm. 
Moreover x € fi+ and x €. m m will be identified with the 

m -• m A 
elements x = 2, x. e . and x = i x. e. in :/b • Hence we 

J=o ^ d j « l J J 
have t h a t x = x^ - x = ( x . -x , , , • • • , -x^) • 
For any open subset SI of R we put jQ = J x ^ i l : x ^ 0} 
and SQ(il ) = ( x ^ ftm+1 : -x e J l } . 
In the sequel we also use the notations B(x, r) = 
( y € ftm+1 s |y - x j < r ^ and Bm(3?, r ) - [ ^ fe f t m : | $ - l | < r } 
while for any subset U of R,m+ ' , the characteristic function 
on U is denoted by Q£TJ • 

The following A-modules will be used currently. 
Let S £ R m + 1 be closed. Then M(r\( S;A) denotes the right 
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AC -module of all left monogenic functions in an open neighbour­
hood of S . 

Let C?C(Q>) and lb (il ) be respectively the space of analytic 
functions and the space of Sato-hyperfunctions in il C ^ m • 
Then the spaces of A -valued analytic functions and TX -valued 
Sato-hyperfunctions are denoted by Oc(Sl\A) and ~fo(H\A) 
respectively. The corresponding left ( resp. right) A?-modules 
are denoted* by £t,-^A£l',A) , l!h Q N (-# \A ) ( resp. 

#(r)(il;A) , fa(r)Ul;A) ) • 
By IZ(SL) we denote the space *&(/!) /-(St(-fl) • The elements 
of C(-fl-) are called <C -valued microfunctions. 
If Si is relatively compact in 1rvm , then (St (Jl) and 
6(J(£l ) stand respectively for the space or (C -valued analytic 
functions in a neighbourhood of Si and the space of C -valued 
analytic functionals on Si , while &(-\\(fl \A) is the right 
A -module of all left A -linear analytic functionals on il . 
Let A C 1Hm , -A £> lrlm+1 be open such that SI is rela­
tively closed in Si Then in [8] we used the notations 
^1(il;^t) ( resp. ~1&r(SL ;A) ) for the A -modules of formal 
boundary values in SI of left ( resp. right) monogenic functions 
in A. N jfl. . The elements of these modules were called left and 
right /t -hyperfunctions for short. For the definition of semi-
monogenic A -hyperfunctions and the corresponding A -modules 
& + -(J1;A) and U3 + r( il ; 4) we refer to [8] . 

— } -L mm , 1 . 

By (9i 0 m ( resp. "$ 0, m )
 we denote the space of A -valued 

analytic functions ( resp. hyperfunctions) in a neighbourhood 
of the origin. 
The definitions of the signature s(F) of F € HfS as well 
as the definitions of the singular spectra SS+ ,F , SS+ F , 
r±(F) , k±(F) , t+fl(F) , t±fP(P) and w(F)\ F * Tft 02 ; A ) 
may be found in [.8J • Moreover it was shown in [.8] that the 
image of s acting on ~fo consists of ten matrices 
|s ,..., SQ V , leading up to the definition of special subspaces 
% o f ^o»m < <- = 0,..., 9) . 
Recall that the Cauchy-kernel of the generalized Cauchy-Riemann 

1 x operator D is given by - — . —-> m+>] , Co . being the area 
m+7m+1 l

x» 
6f the unit sphere in % 
For the definition of the Cauchy-transform T of an analytic 
functional T £ ft/-^ (3 ; A ) we refer to pi ] , [2] and [8] . 
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1. Microfunctions with values in a Clifford algebra 

In this section we give the basic definitions and study the ele­

mentary properties concerning microfunctions with values in a 

Clifford algebra. 

Definition 1. Let il C R m and SI £ & m + 1 be open such 

that SI is relatively closed in il • 
Then by M(p) + (Jl,il) ( resp. M(1)±(iX-/2 ) ) the right ( resp. 
left) A -module is denoted, consisting of the left ( resp. 
right) monogenic functions in il + , which admit a left ( resp. 
right) monogenic extension about each point of SI 
By M(p)( Jl-.il) ( resp. M(1)(Jl,il) ) we denote the space of 
left ( resp. right) monogenic functions f in SI N il such that 
f|jl± 6 M ( r ) ± ( S , . X l ) ( resp. f J il + 6 M(1)±(-S f Jl) ) . 

Definition 2. The right ( resp. left) T4T -module of upper and 
lower left ( resp. right) /c -microfunctions is 

given by 

t ^ c i i i - t ) =M(r)( R£+1..4>/M ( r+ 1sDi2,/l) 
t±fr(A;A) - M ( 1 ) ( K r 1 ^ V M ( l ) i ( Rm+n^jl,A) . 

The space of 7\, -valued microfunctions is defined by 

£(il; A) - %(il;A) / (2(il;4) , 
while the space of /t -microfunctions at the origin,called 

A -micros for short, is given by 

*o,m = ^o»m / ^o»m * 

Throughout this paper, monogenic functions will be denoted by 

letters f , g , h ...; hyperfunctions by capital letters 
F , G , H ..., and microfunctions by Greek letters Cp , ^ ,... . 
As in the one dimensional case one may easily show 

Theorem 1. £ ±^(SL \A ) * M(p)( ft + ;A ) / M(r) + ( 5, il ) 
and ""• "" 

£+,r(4;A) S M(1)( 2L± -tA) / M(1)±(XfJl) . 

Furthermore we have 

Theorem 2. The following isomorphisms of rC -modules hold t 
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(i) 6+,M(i-;4) = aS/ij(-Q;4)/ #_ju(il;>4) , 

while the following isomorphisms of vector spaces hold : 

(ii) (S(il;A)^ C + , / i j ( - G ; 4 ) 0 e_,/i^C i 2 ; A ) 

(iii) fcU ;A) = M(r)(2tsil ;/4) / M ( r ) (
3 f r , .a) 

= M(1)(jlvJl ;A) / M(1)(Z,yi) 

(iv) 6(11 ; * ) * Z © £(-1) eA , t 0 , m * I® tf0,m«.)aA/ 

i.e. for every (p £ E(il;A) there exist unique <pA £ d!(Jl ) 
such that {? = 2Z. (bA eA . 

Proof. Define operators '^ + ,T_ from B-,(i2;n) into 

t + f l(A;A) as follows. 

Let F £ ^(ilsA) be represented by f 6 M(p)( JlN.il ;/4:) . 
Then we p u t 

n ± i l ( F ) = f | i i + + M ( r ) ± ( 2 , i i ) . 

Notice that the operators fl + -, are well defined and surjecti-
ve. Moreover, F"l+ ,-_(-?) = 0 if and only if F 6 73«,-_(/!; A ) , 
which implies the isomorphism (i) . 
(ii) follows from (i) . Moreover for any F e^3(J2;n) we de­
note 11(F) = F + 6t(£l\A) , while for F e $0^m we put 

R(F) = F + c5t0,m . 
As to (iii) , notice that by Mittag-Leffler's theorem ( see £2j), 
< # U ;A) * M(r)(il,il) . 
Furthermore in view of [8] , 

^(il;4) = M(r)( ilvil ;A) / M(r)(A;/t-) 
whence 

C(A;A) = Tfc(4;/4) / <5fc(Jl;A) 
* M(r)(?l\-a ;A) / M(r)(l,il) . 

As to (iv) , let f> * £ Cfl ; A ) • T n e n f or some F € S (Jl ; A ) , 

11(F) =<p or (p = F + ft (Jl ;A) • 

Now, let FA <L $(jl ) , A c /1 ,..., m) , be the unique hyper-

functions such that F = -2T FA eA ^ see f8^ and p u t 

^A = FA + & ( A ) . Then obviously <pA £ £(n) and 

<p = F + <SKJ1;A) = 2 ( FA + ft(-O-)) eA = H <pA eA . 
A p . A 

Moreover, as the maps <p—»- £>A from C(i2;A) into C (i2 ) 

are well defined by the above construction, it follows easily 

that fc admits a unique decomposition (p = Z (pA eA with 

<pA € fe(A) • •
 A 
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The spaces fe+ 1Tc(J2;A) and C (J2 ; A) have the following 
sheaf properties.1 

Theorem 3. The A* -modules C + , i ii(~Q ;/4 ) and the spaces 

C(J1;A) , II £ /Rm open, are flabby sheafs in R m . 

In view of Theorem 3 it is clear how the supports of the micro-
functions under consideration are defined. 
One has that for every F e $ ( SI ; A ) 

SS+ 1 F = supp n + i(F) and sing supp F = supp H(F) , 
— ' r — r #•—i r~-i 

where the definition of R + is similar to the one of fl + -,. 
Furthermore when F 6 23 , then for every a 6 (5? , 
s(F + a) = s(F) ( see £8] ), whence it makes sense to define the 
signature of an A* -micro as follows. 

Definition 3. Let (f 6 (S0,m and let F e ltiQ be such that 
ri(F) = £ . Then we put s(fo) = s(F) . 

Hence it also makes sense to introduce the decomposition of the 
support of an sx -valued microfunction as has been done for 
hyperfunctions in [8j . 
We have 

Definition 4. Let <p fc £(Jl ;/4 ) and let F e ib(Jl ; A) be such 

that (1(F) = <p . Then we put r+(£) = r+(F) , 
k+((p) = k+(F) , t/+ !x(^) = t ( + Xv(F) and wfy) = w(F)~. 

Furthermore the group ^ = ( 1 [ , ^ J , V J of main involutions 
on 7X acts on £(Jl;A) as follows. We put ^({O = ri(o<(F)) 

/S(fr) = n(t4(F)) and |(£) = nC]f(F)) . 

Notice that when ^ = ZI <pA eA with (fA £ t(Jl) , <\(£) = 

2 ^ A h » /* <{>> - ̂  <fA *A and T((f> = £ *>A 
Moreover the operators 

A± = -i (n i « ) , B+ = .1 (it i f> ) , 0+ = .J ( i i y ) 
are projection operators such that 

A '+ A_ = B + B_ = C + C_ = 1E 
and 

A A = B B = C C = A .: A^ = B B^ = C C » 0 . + — + — + / — — . f — 4. - - 4 . 

These operators will play an essential role in describing the re­
lation between the values and the singularities of an /x-valued 

0 

ГA
 e
A 
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hyperfunction or microfunction. 
Another essential tool is the notion of left ( resp. right) 
Hilbert transform ^ i W ( resp. $£ ((f) ) of an T{ -valued 
microfunction (jp . 

Definition 5* Let <p £ b (-0. ; A) be represented by f € 
M(r)(ix\ il ;/() ( resp. by f € M ^ } ( Jl ^ S\ ; A ) ) . 

Then the left ( resp. right) Hilbert transform $-»-,(</?) ( resp. 
<-& (<p) ) of (J is the microfunction associated to the left 

( resp. right) monogenic function h , given by 

h(x) = / f < x > > if x e Л 

{ -f(x) , Іf x e J 
+ 

3L 

Clearly "<&, = & = •_ , whence the operators 

Q
+ v 1

 =_L (1+ St,) , Q, =_. (11+ ^ ) 
I>1 2 "" 1 i'r 2

 r 

are projection operators satisfying 

H = Q _ + Q _ = Q + Q , ^+>1 ^->1 ^+>r ^->r ' 

Q -, Q -i = Q_. Q = 0 . 
i'

1
 +'

1
 i»

r
 :p

r 

Furthermore, it is easy to see that 

Q+ M I t C-fl; A) = t + , ; H ( - - ; ^ ) > 

so that R
+
 Mi may be identified with Q

+
 In o H 

Notice that Q
+
 -, and Q

+
 in fact correspond to the upper 

( lower) boundary values in microfunction sense of the left and 

right monogenic representations of (p 

Notice also that, when (p is represented by an Lp -function f 

in JR, , db -I (p is the microfunction associated to ^ f , 

where dfe is the Hilbert-Riesz transform for Lp -functions in­

troduced in [9] • So ck-i and cte are natural extensions of 

the Hilbert-Riesz transform of Lp -functions, with the supplemen­

tary advantage that they are defined locally. A similar extension 

of the Hilbert-Riesz transform of Lp -functions would not be 

possible in the hyperfunction setting since such a definition 

would depend on the choice of the representation of hyperfunc-

tions as formal boundary values of monogenic functions. 

The operators "5C -, and (R? admit decompositions of the form 

3* = ov>, -j- l\o 7 and. ô__ = !fe"!" +: 3&~ , 1 1 1 r r r ' 

where the operators ™°n_\ (
 r
esp. ^)7i )

 a r e
 boundary 

( resp. coboundary) operators. 
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As to the oonstruction of Җ T L
 an(

-̂ "Җfïl » w e î-7-3"̂  decompose 

<f в t(Л; A) into <p = ZZ ЄЉ) • 

Hence it is suf f icient to consider the action of 3&
 n
 and *3ţ> _ 
1 r 

on each (fc) ; ü =0,..., m , and Ъy Theorem 3 we may restrict 
ourselves to the case where Jł is relatively compact. 

In this case one may find T. e Ã Q \ ( Й ;Л) of the form 

# ? . Tá,A eA > Tj,A e CЯЧЛ) , such that 

đ(Ц) = T̂  + Ä^íЪfl;/) + Ä(r)(-fl;Л) . 
We now have that, when Л = 1Hm+i

 \ ̂ il , 

T.(x) = -1- / T . --> , JL + JL. * Ъ 

is a representing left monogenic function in Л\-XІ of the hy-

perfunction T. + Ф m C ђ Л ; Å) and of .(<p) itself. 
Hence ^S-( Q.((p)) is represented by 

7 T (u) , u € Ц
 + 

ţ̂  -Ţj(u) , u Єil - . 

Now let £ >0 and put Iít = JҐÏ + B (0,£) . 

Then for every g £ M Q Ч ^ Д ^ ; A) there exists ^ > 0 such 

that r 

< AДf) , g > = _ У g(u) d Г f ( u ) 
i s defined. Чг(Л£ * [ - > ? . ] ) 
Furthermore Ъy Cauchyf

s theorem, the above integral does not de-

pend on j ł whence it defines an analytic functional Ag(f) in 
&l\\)(&t \Л) and so a hyperfunction S = A

g
(f) + Єtf

(1lЋ^Л;A) 
in Л . 

Lemma 1. X^Q ^(p)) = S + « ( Л ; A) . 

Proof. In view of [8^ i t i s sufficient to show that f - ІL (f) 
has an analytic Ъoundary value in Л . 

To that end notice that in R m + 1 , 
( f - A Д Í Ж X ) 

X - u 
m+1

 d r u < V U > - f ( u > ) ^m+1 1 ( i l t x[-1, x o/2]) |x - u | 

*m+1 fc*+1n ^( 5 t x[-1,x 0/2]) |x - u|m+^ u J 

which immediately yields an extension of ( f - A£(f) ) | TR. m+'1 to 
1&.m+1 \ C(5 t x H ) « ( o 5 t x [-1 , o])) . 
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As a similar property holds for ( f - A£(f))| %^ , f - Ae(f) 
has an analytic boundary value in -Q. . 0 

Lemma 2. S is of the form S. ̂  + S. . , where 

s._i = e . - i ( s a - i ^ *nd S.+1 =
 e . + i

( s o + i
) • 

Proof. Let % > 0 . Then we put 

f / f (x+f ) , x 0 > 0 
° \ f(x-í ) , xn< 0 . 

Now it is easy to see that A-(f<-)—*• A (f) in ^ d ^ ^ i / l ) 
if % ->0+ . 

Hence we only have to show that A-(fj ) takes values in 

But we have that 

V f S > = ^ O - " ) • ( f ( * +J ) - f(3T -*8 ) ) 

= ^ ( u ) . ( T^CS + . ) - T_(u - S ) ) 

• A^-'-k^^ T/-V.i^>; 
and the r i g h t hand s ide c l e a r l y takes values in yt . ,̂ © T̂T-i+'T 

J "* I J + ' 

Notice that by Lemmas 1 and 2, ^f-,(0 -i(̂ p)) takes values in 

;t.___/| ® ^i+1 » which leads to 

Definition 6. The operators <%> -, and <h 7 &re given by 
m-1 x x 

a _ - ѓ в^.чs,. e. 
and d=o 

»ï • g ed_. . *_. e. • 
In a similar way "3b ̂  and cjb~ may be introduced 

By the Lemmas 1 and 2, m ̂  

____ 
d-1 m 

_ + &_ = e- o a__ o eo +2z (Gd+1 + e ^ ) o a__ o e . 
^ o č ^ o ^ - Ä ^ o ,- * _ + W 

m- . - _- 1 = 0 
and analogously 

^ r + ^ r = ^ r * 
Moreover 

Theorem 4 • * r • *_ - *_ - *_ -« 
and 

IE = *_ *_ + X_ &_ = £_ ЗЬ_ +
 %_ 36_ 
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P r o o f . We have t h a t 

1E = tJfc.2 » 3£ + + 3& ~ + "3&* 3 £ ~ + 3&J[ X>^ 

or 

c *- * j « - + a- i j ) o e . . ^ ^ o e. + "£-2 o G. , 
which leads to p 

«J2 - £ e.+2o 3_f o e. 

o o 

- °_2-
Simi la r ly $ 7 = 0 and so H = <3S | ^ 7 + "3_?7(?S| . • 

Corollary. Let .0. £ 'R.m be open. Then the following sequences 

are exact: 

C(ii;A) *fa ^ t ( - l M ) -5--J-* t(__;A) 

CU;A) *«*> > CUl.A) 5 i - ^ t ( J M ) 
Proof. Clear ly i m ^ / i t . ker % i / « 

Let (f>£ ^(J2 ; A) be such t h a t 5Sni <p = 0 . Then by Theorem 4 , 

fc= &vJll^*Jl\fa Qjn-^i s ° 9* belongrto im ^V/ii • 

Notice t h a t &°)\\ transforms j - v e c t o r s i n t o (.j+1)-vectors and 
r<\p- » r » 
<*&-. transforms j-vectors into (j-1)-vectors. 
>rf 

Hence we have long exact sequences 

_ tu ;A)) -55-v. • • emc.(n;4)) ----Uo 
7__l"" TKL"" 

0-> flm(t(il; A)) --->.. • eo(^(J2;A)) -^->0. 

Furthermore, *(£., and <ST are related to each other by 

Theorem 5. We have that for each i e iKT , 0*c. i < _E. , 

m a * i • «2i - < ; ° e 2 i , Z{. e a + 1 . . _ j . e2i+1 

*" S ; « i a - - i ; » e21 , %i» e2i+1 . * ;» a2 i t 1 . 
Proof. Let us check the case where (p«£ K. (SI ; A ) is a test-

function. By a standard density argument this is sufficient 

in order to prove the theorem. 

Let ©2i(<p) «-£ . 
Then i 
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' - -§_ J L. A fc(5)jL-_u_ J d ? 
->m+1 Hlm 2 1 + 1 L ̂  13?- u | m + l J 

= & r <p(*) 

while / 

The case ^ 2 i + 1 ^ ^ = fc ~ s s : L m :^la r # • 

Remarks. (1) Theorem 5 yields the ident i t ies 

~*1 <£~ ~ < £ p ^ ~ ar-cL X" $ + = ~*r ^ r * 
Furthermore, 

« x %r, . ( -K>l + 36 - ) ( ^Cv + * ; ) 
-a 3o- "v"" + "3© 7 72 

= ( -36" # + - X + ̂ " ) o tf 

= ^ + o ^ o ^ - _ 7C- o f o £ + 

= X + ft" + X; £ + 

- "5Sr ̂ 1 . 

(2) The relations in Theorem 5 are equivalent with the following 
ones: 

^ 1 ° C+ " ^r ° C+ > * 1 ° C- = " ̂ r ° C-

^1 ° C+ = " ̂ r ° C+ » ̂ 1 ° C- " ^r ° C- * 
Hence 

%^ = 36 + o c+ - "3£+ o c_ - % ~ o c+ + 36" o c_ . 

From which we obtain that 
£+- 1( *1 + *.pof) 

and 

(3) The following relations hold: 

[^,«J]of . "^ *p. 
Furthermore it is easy to see that 

Z{ oe< = /i. o & + , * " o * . _^!o 3g- , 
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3s+o/3 =,_ * 0 -5+ , at- o/3 - ^ V o ^ - . 
Analogous relations hold for ^£* and 3G?~ .> 
Furthermore we have that 

a ^ o * = _ * 0 ^ f J , « ( i j o ^ . /io ^ . 
(4) The group generated by {°^>A >"^1» <^r } contains thirty-
two elements which may be written in the form + ĝ  g^ with 
Sn 6 {^ 1 *Xi *r> ̂ ! &r} and g2 £ / H , <* , ̂  , y £ . 

In the following theorem we investigate a relation between the va­

lues of a microfunction and its singularities . 

Theorem 6. We have that 

(i) ker A+. n ker ( A__ o QJ+I ill ) -" k e r QJ+J , jZLV 

(ii) ker B + f\ ker ( B__ o Q|+j Jll ) £ ker Q/ + i Jll 

Proof. As (ii) is similar to (i) , it suffices to prove (i). 
Let Cp € L(!2 ;/t) and consider the case Im (f> = 0 only. 

Then <f - £ ( 6 ^ ) + e^i^f)- ^ + 2«f)+
 64j+3

(<f^ • 
whereby 6 .(<p) = 0 if j > m . 

As (p e ker A+ , for every 16 U" , ® 4 i ^ ) = ®4l+3^) = ° • 
Furthermore, 

Hence, A Q+ -,<jp = 0 implies that for every .3 € XN/ , 

\ " + i ( ^ ) = - fc^-j^) 

4d+2(v) = - M^W . 
so, v - c *- •**) J , e ^ ^ , and as ziB^<v - ° . 

<P = Q_,i .£ ^4j+i(<ip) » w-h e n c e Q+,i<p - 0 . • 

Notice that Theorem 6 may be generalized as f o l l o w s . 
Let ^ ( j p , . , . . . , ^jr) be a set of microfunctions satisfying 

(p1 = - "<t>i(p2 > ^2
 = " ̂ 1 *Pl ~ <^1 ̂ 3 » * ' ' ' 

^k - - f_y»k-i • 
Then Q+$1( £ (p. ) = 0 . 

2. Decomposition of singularities 

, 

In this section we study the singularities of ft -micros 4-H 
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First we show that every /4r-micro (p admits a decomposition 
of the form (p = (̂  + (p2 + (p3 + (p4 , where (pq e

 vf q = $q/yo 

or s((fq) = s q , q = 1,...,4. 
To that end we introduce some new projection operators. 
Put 

and 

f± - Q + , l Q - T = Q T , r «+, l . • 
+ + Then H 2 Ł

+ + e_ + /*+ + f--» Ł ± = e + » ř + - ľ ± » 
£± Є_ = 0 , f_ j = 0 • , C _ [i_ ш 0 ____ _± f _ o . 

Furthermore we have 

Theorem 7- Every Cp c £ 0 m admits a unique decomposition of the 

form C ? = ( p 1 + ^ 2 + < p 3 + ( p _ f , with ^ q .£ C q , 

where £ q » \ / Y o ' <- = 1 > • • • > 4 • 

Proof. Let <ip £ t m and put 

^ 1 - ^ > ^ 2 = £-V > h - M and W - p^<p > 
Then ^ = ^ + ^p2 + £-. + fy and <pq e t q . 
Indeed, take for example ic^ = £+((?• Then G?^ = Q+ -rQ+ 0? 

and ^ = Q+ rQ+ -_(p whence Q__ -_ (̂  = Q_ p ^ = 0 or 
s(^l) = S1 
On the other hand, suppose that <p admits a decomposition of the 
form (p = (pjf + <f ̂  + <f ' + <p £ with (r/ e If . Then 

9i = * + <fi + £ + (f2 + e + <K5 + £ + ^ . 
But, as s(^ij) -= S/, , there exists a representing microfunction 

^ for (p/ , defined in some neighbourhood of the origin, such 

that 4 = £ + ^ .Hence £ + C^ = fy' in fe^. 

Analogously £+<?__ = C+ <f3 - £+<//+ = ° • • 

Put £ = C+ + £ __ and f- = K + U _ ; then 

t . i ( n + *__ * r ) 

=̂ j . (ic - *__ *er ) 
and so ^-^ *3£r = £ - K . 
Notice that when m « 1 , £ = 11 and ^ = 0 . 

£ will be called " electric projection operator " while f*. 
will be called " magnetic projection operator "• 
The reason for this will be explained in section 5-
Let (ip 4 £ 0 m • Then we associate with (p a 2 x 2 -matrix 
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p(<i?) in the following way: 

(1 , i f i <p / o 

| O , i f t + (f = o 

1 , i f l_<p. t 0 

0 , i f £ _ y = 0 

i f K̂ <> J- a 

P2 2(f>) - j| 

ld l 0 , if f+ 9 « o 

. * < » > - ľ ' " r-* 
2 1 • [ o , if p_y 

if Lç f o 

The image of p consists of all matrices over 2T 2 . 

Furthermore, p((p) « p( ^ - ^ ) = p( % r < p ) = p( «?£-_ *£ r^) i 

while the group ^ = {^->°^>/**Y} acts as follows on the 

2 x 2-matrices over ^-^p 

Let g € £ ; then we put g(p)(<p) = p(g(^)) . As p((p) - p(^) 

implies that g(p)((p) * s(p)(/,f) ? G m a v be considered as a 

group acting on the image of p . 

The orbits under this group action are: 

{«}•{(; a - m - ((::)•(::)) • 
{a:) • n • c o) • {::)} • (c:) • c:)} • 
{H-nV MVm-fn j -

These orbits are respectively denoted by AB , B. , Â , , 0 , 

B 2 , A 2 , AB^ , AB2 , AB-, . The orbit number 0((o) of an /f -mi­

cro (p is the orbit to which p(^>) belongs. 

When the orbit number of (•> equals B* or Bp , then p((p) is 

invariant under A but not under \ ; when 0(G>) € {A,,, A2 K , 

p(C?) is invariant under cY but not under A ; when 0((p) = 0 , 

p( ) is not invariant under c< , £ and "f and when 

0(|a) € f ABQ, AB,., AB2, AB-, y , p((p) is invariant under (2. 

These remarks lead immediately to the following theorem which ex­

tends a wellknown property of hyperfunctions on the real line, 

stating that when a hyperfunction F̂ v is real valued and 

x € sing supp F , then x £ SS+F ^ SS_F 

Theorem 8. Let (p € Z 0 m
 D e non zero. Then A+(p -* 0 implies 

that 0(lp) £ / A ^ A2, AB1, AB2, AB3 V , B+(p = 0 implies that 
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o(f») C {-,.., B2, AB^, AB2, A B ^ and C + Cp = 0 implies that 

oC<f) € /AB^, AB2, A B ^ . 

Let Л í R
Ш
 be open and let Jl ç R Ъe open such 

£L is relatively closed in Si • Then in £2j we have shown a 
Painleve type theorem stating that when f € M/v ( i l N . i l ; n ) is 
such that the boundary value of f for x -> 0+ equals the 
boundary value of f for x -*• 0- , and this in the sense of 
continuous functions, then f extends to a monogenic function 

rv 

in Jl • Moreover, by using J_8J , this result may easily be ex­
tended to the case where f(x ±CO ) are hyperfunctions. 
We now show a Painleve type theorem which at the same time invol­
ves left and right monogenic functions and which makes use of 
the theory of /% -microfunctions. 

Theorem 9. Let f-̂ , ^ £ M^(J-T\A \A) and let 
fr' sr e M(i)(^ v i l ;^) • T h e n we have: 

(i) If the boundary value F of fi I -fi- + equals the boundary 
value of f /lx and is also equal to the sum of the boundary 
values of g-, | 2L_ and gp J il_ , then F is analytic; 
(ii) If the boundary value F of f, { Jl equals the boundary 
value of f il and is also equal to the sum of the boundary 
values of g, | . i l _ and gp J il + , then F is analytic. 
Proof. We only show (i). 

As F is the sum of the boundary values of g-, j Jl _ and 

Sr| .#_ , pCn(P)) /- p °] since then £ +H( F ) = 0 . 
\0 0/ /** 

On the other hand, if F is the boundary value of f,] --1+ and 

of fr [ £ + , n ( F ) = e+ ( 1 ( F ) . 

Hence ["!(-?) s 0 or F is analytic. * 

3. Special microfunctions 

In this section we introduce some microfunctions which we shall 
need in order to define some special micro-differential operators 
used in section 5 • 

(i) The Dirac microfunctions S , S + > S _ 

The Dirac microfunction S is represented by the Cauchy kernel 

1 x which is left and right monogenic in IRl11 \^0\ . 
ĉ m-fcl |x|m+l ' 
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Hence p(S) = 

Ю 1/ • 

Furthermore $ and $__ are defined by 

^ +
 e
 Q+ iS"

 a
Q+-

r
S = £ + S" . 

Clearly S = £+ + $"_ and ^ S " = XrS" = S+ - f_ . 

Moreover representing monogenic functions for d 4 are given by 

£+ 
1 n 

We therefore sometimes use the notations 

and 

- *_.+1 |0;5[ m + 1 

*S« -___ -__-.__., • 

(ii) The logarithmic microfunctions *A , ^ , /̂  __ 

We construct generalizations to ]R_m of the logarithmic micro-
function on the real line, called logarithmic microfunctions. 
To that end, we first introduce the logarithmic functions -A. ~(x) 
b^ 0 

A*(x) = -2- / x - h ah 
^m+1 -«* |x - h|m+l 

A"(x) - --L. / N x ~ h dh . 
* m+1 0 |x - hlm+' 

Another expression for A"(x) has been given in I^J • 
Notice that A + ( x ) is left and right monogenic in 
_R?+1 \ (x . "x = 0 and xQ ̂  0) while A"( x ) is left and 

right monogenic in tR-m+ \ { x : it = 0 and x > oy • 
Furthermore ^ A +( x ) = % A"( x ) - - J- -X m+1 , 

xo *o <»m+1 |x|m+n 

whence D A + ( x ) = D A"( x ) = -1- JL m+1 • 
0 ° "m+1 lxlm+1 

The positive and negative microfunctions ^ (x) and /̂__( x ) 
are now determined by giving their representing monogenic func­
tions: ïc , _ j Л + ( x ) ' 

f ° * _ ( * ) — { л _ r , 
l A ( x ) , 

xo> ° 
xo< ° 
xo> ° 
x o < 0 

Clearly supp 3 + - supp ^ _ = •/ 0 } , while A + - flCA^C x' + O )) 
and * = n ( - A - ( _ f - 0 ) ) " . 
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Notice also that D A + = c + • 

Finally the logarithmic microfunction % is given by 

A = A + A • It is represented by 

* ^ J A+(x) , x o > ° 
} A"( *) , xo < o 

and it satisfies the equation D > = J 
Hence / _̂  

>(?) = -L / -x-h d h , -J.._£_ . 
^m+1 £ l-3E-lal m+1 --m |x| m 

Moreover a straightforward calculation yields 

a+(x) = rJ x_m i i 1 . , . 
2 0 m |x|

m (m-1)«m+1 jir|
m-1 

This formula should be compared with the formula for In x , x € ^ , 

observing that - _ J . 1_ „ is the kernel of A ^^ 
^ ( m - 1 ) C n + 1 |x|m"1 m + 1 

while - J X — m is the kernel of D . 
Notice also that (J- ̂  = 3. A = A, - A 

j . r + — 
whence Cfc-. A = <v A = 0 and so 

(m-1)com+1 |!П
m
-
1 

4. Convolution operators 

In this section we mainly deal with convolution operators associa­

ted with microfunctions df supported by the origin. The case 

where the microfunctions have compact support is quite similar. 

The convolution operators associated with microfunctions supported 

by the origin will be called micro-differential operators. They 

contain all usual differential operators as well as the inverse 

operators of elliptic differential operators. 

We first define the convolution operators associated with special 

microfunctions• 

( i ) The case ( 1E - £ + )<jp = 0 

Let S C Ht,m+?r be closed such t ha t S C R ™+1 and 
"fcS r\ flC1 = {0} and l e t f be a function in fcm+1 \ S such 

t h a t Df =- fD = 0 in R.m+1 N S . 
Moreover, l e t (jp be the microfunction represented by 

h = J f > xo> ° 
I 0 , xQ < 0 . 
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Then clearly supp <p = £ 0} and ( H - £ )(p = 0 • 
Let ^ C C (il ; A) be of the form ^ = Q+ 1 <\f . Then we define 

a micro-differential operator ^((p) acting on ^ at the left 
side as follows. 
Let ^ = g + M ( r ) + (^

m+1\ W ,il) , g € M(r)(1rl
m+1;/t) and 

let 1? € -A and P> 0 be such that B ("x ,P ) £ .11 . 
Then for £ > 0 sufficiently small 

s c -? „ = / y € Jlm+1: y - u € S for some u with 0 ̂  u ̂  £ 
c ,X,P I o 

' and u e c)Bm(x,P.) 
is closed and does not contain x • 
Put r 

Sc^,(x) = J f ( x - u ) d <T g( u ) , x > £ , 
£,X,P ^ u o ^ 

where -Ze, = {y + £ : y ^ Bm^ *>? ) . / a n d d ̂ u = "̂̂  • 
Then by Cauchy*s theorem, for x > £ , 

g , t p ( x ' i = , ̂  / r f ( X - U ) d (T g( U ) . 

Now it is easily seen that g c r? _ has a left monogenic exten-
*• » x»f 

sion to Jl£ = ( 1it+ *
 B

m (
x »J )) ̂  S £ X P a n d s o' a s 

"x ^ S - H> , it determines a microfunction <%f -? ( u ) in the 1 c>x,f ' t ,x,^ 
neighbourhood w

 6 ^ ? = Bm(x ,P) \ S e - of 5? . 
Furthermore, when £' jf' are such that CJ /-• , is still a 

_* » t * x,p 

neighbourhood of x , g^tT* / - g P ^ f l .--admits a left monoge-
e ,x,p c,x,p 

nic extension about each point of <̂  c •-£.-. A ^ <+t "$ t > whence 
t ,x,p e »x,p 

TC,x,f « €,x,p ^,X,P' re,x,f'i e,x,f M C,X,P' 

Moreover, when y € fl is such that c^-* A o -t / jzi , 
fe ?x, P t»y 9 f 

g -* - g -* admits a left monogenic extension about each t ,x,p c,y >f 
point of to£5? n ^ t "y P » whence ^ -? coincides with 

Hence, in view of the* sheaf properties of ^(Ji;A) , there ex­
ists a unique microfunction *\Lp in -0- such that 

*K,x-,f - -vf I * t , x \ f • 
Furthermore, when f' G M ( p ) + ( lrl

m+\ R m ) A M(1) + ( ̂
m + 1, R m ) f 

^f+f1 = N'f • H e n c e ^ f depends only on Cjp and ̂  and so 

we may define the action of the micro-differential operator T)(£) 

on ^ by 

W<f)H- - ^ f • 
Notice that the definition of ^((p.>p is completely local and 

that suppr5((p)/^ £ supp^ > f o r every ^ t £ (-A \A ) for 
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which ^ « Q+ 1r^ . 
By using Cauchy's theorem, one can globalize the definition of 
^( (p )S** as follows. 
Let K̂  , K^ be compact in Jl such that T) K- is a smooth sur­
face and K,- £ Kp . 
Then for some £ > 0 , s * K? ̂  K̂  * 0 , where 

s c K = / y e ^m+'1: y ~ u e s f o r s o m e u w i t h ° ^ uo < ̂  
and u €• ?K2 } . 

In this case, -
Sc K (x) =- J f(x-u ) d r g(u ) 
t,Ji2 K2+£

 u 

represents ^(Q))^ in a neighbourhood of K^ . 
Consider now *+£ c(J2;>4:) such that <N-' = Q. -̂ N̂  and let 
g6 M,,%( R- 5^) represent "f . Then in a similar way, we may 
define ^ ^ ( ^ ) , starting from 

s f x P ( x ) = ,-^fs g(u) d<T f(x-u) 

' f B m (^Tf)+c u 

as a local right monogenic representation for ^ Q(9 ) • 

Definition 7. Let ^ € £ (jZ ; A) . 2hen the left and right ac-
tion of the micro-differential operator ^ (f> ) 

on <^ are respectively given by 

Q ( < p ) f - ^(<f ) ( Q + f l ^ ) 
and 

^ I K f O = (Q+ > rNO ^ ( f ) • 

Of course Q_ _(Q«f )^) = Q_ r(<^/d (£)) = 0 . 
Moreover we have the representation formulae 

Theorem 10. For every <vL _ £ (Jj ; ^ ) , 

^ ( J + ) ^ = Q+j_4 and of.^(S+) =Q+>r-f • 

Proof. Let g 6 M(r)(R+
+1 ? A) represent Q+^'f . 

Then locally ^ ( S" + ) "^ is represented by 

-1- J x - u ... .„ dl? g( u ) , x„ J-o , K ff il compact. 
«-m+1 K+£ (x - ulm+l ° 

As for 0 < xQ < 1 

_L J u - x df g(u) 
Om+1 (K x f . 1])S(K+C ) |u - x|m+1 u 

represents the microf unction 0 » ̂ ( a )*l' is also represen­
ted by 
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rr Jr , _ L _ l m + 1 c i i r u g ( u ) = s ( x ) 
^m+1 K x [ £ , 1 _ .u - x | m + l u 

and so ^ ( ? + ) ^ • - Q+ i<f • • 

Theorem 1 1 . For e v e r y ^f £ £ (-tt ; ^l ) , 

and ' 

Proof. Let g € M(p. (R
m + 1 ;A) represent Q+ ̂  . 

Then Q+ 1 DQ g = DQ Q+ ±g is represented by - ^ g . 
o 

Hence, <7K ~_\ ) D ̂  admits the local representation in K : 

K/ t^(i.«)dr u(.^ o,) 
= lim A [ i ( A +(x-(u + 5)) - A

+(x-u)) drg(u) 
y+ 0 J r K+e ' u 

+ ^ J A +( x -u ) d<r g(u -*? ) 

* - / / f e A + ( x - u ) d O - g ( u ) + / - A + ( x - u > dS g ( u ) , 
K + E ^ x o u T>K u 

d S b e i n g t h e o r i e n t e d s u r f a c e e l emen t on TrK . 

As J A ' ( x - u ) d S g( u ) r e p r e s e n t s t h e z e r o mic ro f u n c t i o n 
• ^ K . U 

i n K , 0 ( A + ) D r j - ' l K i s a l s o r e p r e s e n t e d by 

~ f $ x A + ( x - u ) d r g ( u ) 
K+t ^ x o r

 u 

« £- J * - u m+1 cLCT g ( u ) 
% + 1 K+£ | x - u | m + l u 

and s o , by Theorem 10 , 0 ( A + ) D Q ^ * Q+ ^ 

On t h e o t h e r hand , D ^ ( > + )rL js l o c a l l y r e p r e s e n t e d by 
/ D A + ( x - u ) d r g ( u ) 

K+l ° r
 u 

= J _ J g - u d r g( u ) 
wm+1 K+t lx - u » m + 1 u 

whence D 0 1 ( * + )< t = Q+ 3 / ^ • • 

U n t i l now we i n v e s t i g a t e d t h e c a s e where ( H - £ + )<p = 0 . 

We now c o n s i d e r t h e c a s e where ( H - € _ )G> = 0 . 

L e t S C R m + 1 be c l o s e d such t h a t 3 £ ft +
+ 1 and 

1>S A fllm « ^ 0 } , l e t f be a f u n c t i o n i n 2R_m+1 s S w i t h 

Df =- f D = 0 i n R m + 1 \ S and l e t t h e mic ro f u n c t i o n <j> be 

r e p r e s e n t e d by 
= | 0 , x Q > O 

\ f , X Q < O 
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Notice that supp fc == ̂ 0} and (p =- £_ (f • 
Let ^ € t(A;A) be such that rf, .=. Q_ ^ and let 

h, = /O , if x0> 0 
I g , if xQ< 0 , 

with g € M(x(I£m+1; A ) , represent^ 

Then in order to define 0} ( (jp ) ̂  we use the local representa­

tion r 
S, ? #(x) = J f(x-u) d r g ( u ) , 
e.x.fVJW " 2 -e 

where -J.c * B
m (

x »f ) " ̂  an(i c-̂ u = - d u 
In a similar way *f T> ( £ ) may be introduced, where 

Furthermore, for a general ^y €. C(Jl ; n) we put 

0(f>>f = ̂ (jb) Q. f l^ and *fd(fc) - (Q„ i r-^)^ (fO 
and in analogy with the Theorems 10 and 11 we have 

Theorem 12. For every ^ € £ (il ; A ) 

^(5.)^ = Q-,1̂  and ^ ( O = Q-.r'f • 
Moreover 

^ ( A _ ) D o ^ = D o ^ ( A _ ) ' | - Q_4l«f 
and 

Notice t ha t Q + > 1 ^ ( ^ ) ^ = Q + ? r ( H > ^ ( £ ) ) = 0 . 

( i i ) The case ( H - k + ) <p = 0 

Let S C 'R m + 1 be closed such t ha t S C 2E m + 1 and 
^ S A H m = { 0 j and l e t f be a function in I^m+1 \ S s a t i s ­
fying Df = fD = 0 . 
Then the microfunction (U , admit t ing the l e f t monogenic r e p r e ­
sen ta t ion 

l-f(-ï) , x„< 0 
o 

and the right monogenic representation 

ь
r
= Г '

X
°

> 0 

I 0 , x
0
 < 0 , 

is supported by the origin and satisfies Co = |k_ (p • 

Let ryL 4 C.(il;A) admit the left monogenic representation 

g . Then a local representation for ^( ( p ) ^ « ^(fc)(Q
+
 -W* ) 

is given by 
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- j se,x,f(x ) = ~ J ^(-( x + u)) a<ru g(u) . 

Notice that g -* is left monogenic in B (x , p') x J-°° , 0[ , 
for some *' with 0 < p; £ p 

Notice also that now ^ ( to )-p =Q_ 1
(^ (fO' >f' ) • 

On the other hand, let g be a right monogenic representation of 
cL, and put f f =- - f ( - x ) . Then D f/ = f /D = 0 in SQ( R

m N S) 
and in analogy with the previous case we define 
<>fr^(f7) = (Q • r . 'S-O^Cfc) by means of its local representa-— ,r ' r 

t i o n , 

~ s e , 5 , f
( x ) " - 7 i s(u ) dr u f^( - ( x + u)) 

z / s( u ) dr u f (u + x) , xo> o , 

and we obtain that <f <) (£ ) = Q+ ( ̂  Q( £> )) . 
Finally, let f be a function in * S ( /R.m+1 ̂  S ) satisfying 
D f = f D = 0 and let (f be the microfunction admitting the 
left monogenic representation 

ч - c: 
-f(-x) , x

Q
> 0 

, x
Q
< 0 

and the right monogenic representation 

h 
Í 0 , x0 > 0 

Í £ , xn < o . 
Then <p = f̂ +(p and supp £ = { OV . 

Furthermore, let <̂L admit the left monogenic representation 

g ; then ^ ( ^ ) ^ = ^( (b) ( Q_ -i ̂  ) is represented by 

s £ , 3 , P ( x ) = " rJf(~ ( * + u ) ) d6\i s ( i l 5 » x
0 > ° 

and 1»(^)»f - Q+)1( 0(f , )*r ) • 
On the other hand, when '"f- admits the right monogenic repre­

sentation g , then ^ 0((i) = ( Q+p^fO^Cfc) is represented 

^ f g f 5? p(x)= y g(u) dr f(u+x) 
t,X,P ^ u 

and it satisfies <f Q(<p ) = Q_ p( NL <7)(̂  )) • 

5« Electromagnetism and ^t -microfunctions 

In the previous section, the microfunction (p occurring in the 

definition of ^ ( jo) *j~ and ^ $(£ ) was always represented 

by a function f satisfying either Df = f D = 0 or Df « f D 

a- 0 in some suitable domain of fF- m + • At first sight these 
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conditions upon Cp seem to be very restrictive. However we shall 
show that they allow us to define v ((p ) ̂  and <vL Q (jb ) for 
a general <p 6 t (fcm; / ) with supp <p = |0) . 
Let ^ € t (H \A ) ; then it follows from Theorems 11 and 12 
that D ^ C X ) ^ - W ) D o ^ = ̂ D QQ(>) = 4^(>)D 0 - ^ • 
Hence on £ ( i l ; A ) , ^(A) DQ = DQ

 rd (>) « H or 

T O ) = D;1 . 
Furthermore put 

^(fl;A) - { °f 6 t(fl.;A) : L-0/*l = 0 } 
and 

(̂(fl ; ft) = { ^ t t {SI; A) s {DQ ,-)-> = 0 } . 
Notice that, if r^ is 1-vector valued, th&n 

[DQ ,-+1 = 2 curl 4 
and that, if ^ is bivector valued, then 

For this reason the elements of £t(^"»/^) an(i C•*.(H ; ̂ ) 
will respectively be called Jc -microfunctions of electric and 
of magnetic type. 
Notice that 

[ D O , . ] o ( D O , . } = / D O , . y o r D o , . 3 - 0 
and t ha t for every t\l 6 t («-2 ; /t ) , 

+ = •§ [ D O ' - I °»zH + i K - y °<f • 
This leads to 

Theorem 13. Let ^ 6 C ( .0 ; k ) . Then there exist unique 

'ft € \ & '»A ) and ^^C fe ( A ; A ) such 

that ^ = 4 t + ̂  ̂  . r r 

Theorem 14. The following sequences are exact: 

o — » ÇtCД;Л) ̂
0
' 't Є(íl;Л) ІD

° " '3 Є ř(Л;A) ->o 

0 Єj.lftiA) ̂ " V Ü(Д^)-----l Î!e(.a;A) ->o . 

We now come to the main theorem of this section, which gives the 
connection between the operators £ , f*. and the electric and 
magnetic field operators £D , .J and «̂D , .^ • 
First notice that 
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r l3» ( D
0 . - V - - ° . *(*» < D

0 . • » - ° . 
[*, [DO,.3H =o , j^, [D O,.]} =0 , 

{% . ID0,.3} =0 , (j, <-
Do. -)) - 0 . 

riu. CD0.'-] - ° . L*£p (D0.-H - ° -
Theorem 15. (i) If °f ^ H ^ ' ^ ' then there exists a repre-

sentation f of ^ in ^ m + 1 \ & m such that 
Df = fD = 0 . 
(ii) If ^ € <£u(«-l ; A ) , then there exists a function f in 

ĵ m+1 ̂  jjjm ̂  satisfying Df = fD = 0 , such that f ( -f(-x)) 

is a left ( right ) monogenic representation of <̂ U 

Proof. We only show (i) since (ii) is similar. 

Let ^ € t t (J2 ; A ) . Then Q+ ^ e £ £ (Jl ; A ) . 

Mor6over, let g € M(r)(1R-+
+1 > A) *>e such that 

I 0 , xQ < 0 
represents Q •,+ 
Then by assumption D Q g - gDQ £ M(r) + (ljl

m + 1; fltm) . 

( r ) ( Take h €. M ( p ) ( JRĵ "1 ;A) with - jL. h = g ; then 

- D . h - 1 C D
0 . ^ ] + f A>'h> ' 

O 

'o" 2" u-0 ' "J ' 2 ' 
But, as [D Q , g] = - £ [.Do , h] D belongs to M(p) + ( R ^ 1 ; ^ 

there exists a right monogenic function 1 in jR. m + and an 
analytic function k on R m + such that 

J [DQ,h3 = 1 + k . 

As A k = 0 in R m + we may find functions k. and kp such 
that k̂  D = 0 , k2 D = 0 and k = k̂  + k2 . 
Hence 1 + kp = 1 [D , h} - k̂  is simultaneously a solution 

of f D = 0 and f D = 0 , whence 2_ ( 1 [DQ ,h] - ^ ) = 0 . 

But this means that 1. [ D , h] is extendable to a left monogenic 

function on f. m + 1 or 1 T_DQ , h] €. M(r) + ( R
m + 1 ; tB-m ) . 

So Q+ -j «i/ admits the representation 

i . l i vV«-J «xo> ° 
I o . *„< o 0 

with Df = f D = 0 i n ff.m+! S Blm 
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C o r o l l a r i e s , ( i ) £ = J_ { D Q , . y o D~ 1 

en) n - J C D 0 , O ° D ; 1 

Cm) ^ f c - N - = D ; H B 0 , 4 « t(--M) • 

Notice too that when ->L = £<sL , rvL admits a representing 
function which is left and right monogenic, while, when ^ « R̂ j- , 
r4> admits a representing left monogenic function f which also 
satisfies fD = 0 • 
We now come to the general definition of a micro-differential ope­
rator ( convolution operator with support at the origin ) . 
Let fa £ fc( R m ;A ) be such that supp (f = { 0 } and let 

Then using the representations of Theorem 15 we may put 

n>((p)^ = T>(e+cP) Q+ > 1^ + ̂ ( £_<f) Q_,l'vf 

+'?>(̂ -+<fO ol f-> + O ( ^ ) <Cfl-f 
and 

< ^ l ( ( p ) - (Q+, r 10 '<Kd+<f) + ( Q _ , r '
N f ) ^ ( £ _ ( p ) 

+ ( Q + , r i - ) ^ ( r +
( p ) + (Q-,ri-^^-(f> • 

Notice t h a t 
<*(.})+ = ^ ( Q + , r y ) Q + , i t + ^<Q-,r<r> Q-,i + 

and 

^ 1 ( < P ) = ( Q + , r ^ ) ^ ( Q + , 1 < f ) + ( Q _ , r 1 - ) ' l ( Q _ . - > > • 
To conclude, suppose now that ^ £ ̂  is such that 
^ = £ *\> and ( 1E ± cc ) «L = 0 . Then by Theorem 8 either 
<^= 0 or e + ̂  /- 0 and £ j>L /- 0 . 

Similarly, when ^ = |k^ and ( H ± A ) ̂  = 0 we have that 
fc^ =0 if and only if IAJN^ = 0 . 

These properties have the following meaning in electromagnetic 
field theory. 
Let m = 2 , DQ - ^ ^ + ̂  e2 + ^ e? , 

° = ^ + % * 2 + %3
e3 W i t h £d - ¥1 °d • d - 2 • 5, 

and let f be a bivector solution of D f = 0 = f D^ in 
TN \ 1R. • Then e1 f is a solution of D g = 0 with values 
in the Clifford algebra generated by £ 2 , £ -, . Hence f is a 
solution of ftf = f ft « 0 in 1R5 \ HI2 . 
Now f « f12 e1 e2 4- f1? @1 e3 + f2J e2 e? 

= - f 1 2
C 2 ~ f 1 3 € 3 + f 2 3 € 2 L 3 
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so that the microfunction O^ = f(x+0 ) - f("x- 0 ) has the 

form ^ = ^ 2 e 2 + 1- 3 t 3 + <^23 - 2
 £ 3 * 

But we also have that in hyperfunction sense 

D0f = e ^ f = e.- 1^6 -f 

= ^ ® ( ^ 2 e2 * ^ 3 e3 + ^23 e1 e2 e3 > ' 

whence f may be interpreted as a magnetic field generated by a 

current ^ 2 e2 + ^ 3 e5 an<i a maSnetic charge *^p, e. ep e-, 

in j e . 2 . 
If we assume that magnetic charge does not exist, ^ 0 3 = 0 • 
But then rj, = M and so U+A|. = 0 if and only if 

So the singularities of f ( x + 0,). coincide with the singulari­
ties of f(x - 0 ) . 
If we assume the existence of magnetic charge, one can imagine 
the magnetic field 

f r 0 , X l < ^ o 

I " -fej' -j^3 * e1 e2 e3 ' x1 > ° 
the corresponding microfunction of which equals 

•f- -+ І S Є
?
£ , + xp £ 3 - x

з - p 
2 3

 O з l ^ l
3 

We clearly have a magnetic charge .1- fc £p £_ at the origin 

and 0 e SS+nj^ while SS_*v̂  = 0 . 
So the existence of classical magnetic poles is related to the 
existence of magnetic fields having singularities at one side of 
an analytic surface and not at the other side. 
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