WSAA 11

Frank Sommen
Microfunctions with values in a Clifford algebra 1

In: Zdenék Frolik (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo
Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 3. pp. [263]-291.

Persistent URL: http://dml.cz/dmlcz/701319

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/701319
http://dml.cz

MICROFUNCTIONS WITH VALUES IN A CLIFFORD ALGEBRA 1

F. Sommen (3)

Abstract. Inspired by the theory of microfunctions on the real
T line, we introduce a notion of microfunction defined
in an open subset of R_ and taking values in a Clifford

algebra dk and this by making use of formal boundary values of
left or right monogenic functions. Moreover we define a local
Hilbert transform on the sheaf of J& -valued microfunctions, which
is useful in order to stddy singularities of K -valued hyper-
functions in a purely algebraic way.

In this way we obtain theorems relating the singular behaviour of
an )k—valued hyperfunction to its values and we give an electro-
magnetic interpretation of these theorems.

Introduction. This paper is a continuation of our previous paper
[8], in which Clifford algebra valued hyberfunctions

in open subsets of R™ were represented as formal boundary values

of left or right monogenic functions in R™7T\ R™ . Hereby R™

is identified with a hyperplane in Rﬁ”q , which separates RP+1

into an " upper half space " RT+1 and a " lower half space "

Rm+1 .
In the first section we define the space of .fk—valued microfunc-
tions C(N;A) in an open subset (L of R™ . Moreover, when
fi < IRF+1 is open such that () is relatively closed in fi

show that t,(ﬂ A) coincides with the quotient of the space of

left or right monogenic functlons in fl\Jl with respect to the

space of those functions f in 11‘\11 the restrictions of which

to the upper and lower halfspaces admit monogenic extensions about

each point of [l . We thus obtain representations of ;& ~-valued

microfunctions as boundary values of monogenic functions, general-

izing in this way the definition of microfunctions on the real

line by means of boundary values of holomorphic functions 3

( see [5],[5] ,[6} [7] ). Furthermore we define left and right

Hilbert transforms xl and - acting on the space t(.(l A)

of -k -valued microfunctions, and having a local nature, i.e.

Jﬁl and %r commute with the restriction operators.

(%) Senior Research Assistant supported by N.F.W.0. Belgium



264 F. SOMMEN

These transforms %1 and %r are in fact extensions of the
Hilbert - Riesz transform introduced in [9] for the A -valued
L2-functions in R" , which itself is related to the classical
Riesz transform ( see [10] ).
In this way, the four group of main involutions on the Clifford
algebra together with xl and xr ggnerate a finite group of
thirty-two elements which enables us to express singularity pro-
perties of A -valued hyperfunctions in an algebraic way. More-
over, as the Clifford algebra is a graded algebra, we may decom-
pose xl and Jﬁr into a sum of boundary operators I and
and coboundary operators &i and 8&; .
In the second section we introduce so called electric and magnetic
projection operators £+ s €_ and P+,, P_ which are mutually
orthogonal and which satisfy T = E, + &+ p ot M.
They are constructeé& by means of the Hilbert transforms and they
describe microfunctions which are simultaneously upper or lower
boundary values of left or right monogenic functions. Furthermore
we obtain a non trivial generalization of the following theorem
( see [5] ) : " When a hyperfunction F on R is real valued,
then for every representing holomorphic function f£(z) in
CNR and every x€R , f ’ ¢+ admits a holomorphic extension
about x if and only if f | €_ admits a holomorphic extension
about x ". We thus establish a relationship between the singular
behaviour of 4 -hyperfunctions and the nature of their values,
a result which admits an electromagnetic interpretation as is ex-
plained at the end of the paper.
In the third section we introduce the so called logarithmic micro-
functions 2+ and A_ which are generalizations of the classi-
cal logarithmic microfunctions.
In section four the convolution of microfunctions is calculated
by means of intgrals of left and right monogenic functions over
suitable orientable surfaces in a way which is inspired by [3] .
This leads to a definition of micro-differential operators and we
show that the micro-differential operator associated with the
logarithmic microfunction A= A, + ) _ is equal to the inver-

+
se of the Dirac operator D in R .
In the final section we show that every microfunction ( may be
decomposed into a unique sum (p = ‘PE. + (?P‘ , Where 95 satis<

fies the electric field equations

[D,,%]1 = D¢ - @D, =0
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and where ﬁr satisfies the magnetic field equations
{Do’?r‘} = Dofp v %D =0
Furthermore we establish the relations
=1
e, + €_=1/2 {p,, .} o]
-1
fo* P 1/2 [Do, .1 o D
&I‘ xl"{‘ = D-O-’IA“’ Do ’ AP ez(.ﬂ.,A.) ’
thus relating the Hilbert transforms to the Dirac operator. N
Finally we show that, when F is a free magnetic field in RS\ R
such that F lmz extends to a free magnetic field about the
origin,while F }R? does not, then F 1is not extendable to a
magnetic field about the origin, i.e. there is a magnetic charge

at the origin. This explains the above mentioned relationship be-
tween the singularities and the values of an )é-hyperfunction.

and

Acknowledgement The author wishes to thank Prof.Dr. R. Delanghe

and Dr. F. Brackx for their constant interest
during the preparation of this paper.

Preliminaries. Let V be a complex m-dimensional vector space
provided with a quadratic form and let

{eq,..., em} be an associated orthonormal basis. Then a basis
for the universal Clifford algebra )IC constructed over V is gi=-
ven by {eA A c{1,..., m}} where e, = S, """ Cun with
A= (0(4,...,o(h) and 1€ < ... £ X € W .
Obviously eyiy = &4 (i=1ye0ey,m) .
The product in A is defined by the relations

e; e. + e e; = -2 Sij e » (1,37 =140eeym ) ,
e, = eg = 1 being the identity of A .
We define involutions in * as follows.

Let a=§ a, e, ek,aAGC ; then we put 3a = ZA:ELAEA ’

v -V ° - - -

a = ZA‘ g, e, and & = %} a, 8A y where 8 = Sqpe-e Be, o
- . - v

&5 = ey Li=1c.,m), €, = €y 3 ©) = Cyyees &, and

8y =€ = 'éA .
The four group § = {1[ , 0(,/! , } of main involutions on A’ is
then given by °((a)=§, (a) = & and ')“(a)=§ , ac/t .

A norm on -k is defined by [a\°2 = o0 [a.ﬁ_]o =22 > [aA‘a ,
where for be A we put [b] =b A
o

[¢]
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Notice that Jasbf, ¢ |al, | ble , a,b e A.

Let a,b e/t 3 then we use the notations [a, b] for ab-b>» a,
{a,b) for ab+ba .

Similar notations will be used for the commutator and the anti-
commutator of operators.

An element a € A which is of the form a = ZA: a, e, Wwith

a, = O whenever #A %k, k¢ m, will be called a k-vector.

The space of all k-vectors is denoted by *k . Moreover, it is

well known that each element a ¢ 4 adnmits a unique decomposition
m

of the form a = T as with a; € ’éj . Hence there exist
J=o

projection operators GJ. from 74. onto J(’.J- which are given

by Gj (a) = i}j .

Let £ ¢ R™T ve open. Then M(r)(ﬂ;A) and M(l)(.ﬂ;A)

are the right and left zt—modules of functions f ¢ Cq(ﬂ ;A)

m
satisfying respectively Df = X e ?-x.f =0 and fD =

m m Jj=o J
> V. fe.=0 , wWhere S oe.n is a generalized Cauchy-
g=o %3 Y j=o J %3

dJ
Riemann operator. The elements of M?r) QL ;A) and M(1>(O. )
are respectively called left and right monogenic functions in J2 .
Moreover the A -modules M(r)(ﬂ ;A) and M(l)(.ﬂ i A) are pro-
vided with the topology of uniform convergence on compact subsets
of fl ; in this way they become right (resp. left ) Fréchet

/c -modules.

m

By D, we denote the operator 2 ea'qx , acting on 7&-—
J=1 J

valued functions in open subsets of R ™ .

In the sequel arbitrary elements of ‘R,m and R,mﬂ will be de-
noted respectively by X = ( Xqseeey xm) and x = X, +? =
( Xos Xqaeeey X ) while }.] denotes the Euclidean norm.

Horeover x € 1 and T € R® will be identified with the

m m
elements x = 3, x.e. and X = X, x. e. in A . Hence we
o B jm TS
have that X = X, -X=( Xg1=Xqyesey -xp) .
For any open subset J1L of Rm+’l we put 'O':t
and So(ﬂ) = {xe ,Rm+’l : =X e.ﬂ,} .
In the sequel we also use the notations B(x, r) =
{y € ’RHH:I : |y - x| <r_} and Bm('ic', r) a{_‘}’ c mm:ﬁ —?:[(r}
while for any subset U of R.m” s the characteristic function
on U is denoted by ¥y .
The following *—modules will be used currently.
Let 8 ¢ R™" be closed. Then M y( S;A) denotes the right

{xeﬂ_ : xoz 0}
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/t-module of all left monogenic functions in an open neighbour-
hood of S .
Let (X(Q) and T™(N) be respectively the space of analytic
functions and the space of Sato-hyperfunctions in N c RrR® .
Then the spaces of A -valued analytic functions and "E ~valued
Sato-hyperfunctions are denoted by & (f;A) and P(N;4)
respectively. The corresponding left ( resp. right) A’-modules
are denoted by &( )(.Q. A, 75(1)(.0 sA) ( resp.
cz(r)m Ay B4 ) .

&) we denote the space ¥3(N) / &(N) . The elements
of E(ﬂ.) are called € -valued microfunctions.
If N is relatively compact in TR™ , then @& (@) and
@’'(Q) stand respectively for the space ot € -valued analytic
functions in a neighbourhood of {1 and the space of € -valued
analytic functionals on JL , while &(l (;A) is the right
A -module of all left 7€ -linear analytic functionals on n .
Let Qc¢crR*, A ¢ R™ be open such that L is rela-
tively closed in ﬁ . Then in [8] we used the notations
'0‘31(-0 ;&) ( resp. %r(ﬂ;A) ) for the A -modules of formal
boundary values in [} of left ( resp. right) monogenic functions
in K\.ﬂ. . The elements of these modules were called left and
right /c -hyperfunctions for short. For the definition of semi-
monogenic A -hyperfunctions and the corresponding A -modules

@i,l(ﬂ.;A) and '53+ r(-0. A) we refer to [8] .

By ao,m ( resp. %o,m ) we denote the space of ,4 -valued
analytic functions ( resp. hyperfunctions) in a neighbourhood
of the origin.
The definitions of the signature s(F) of F € zBo, as well
as the definitions of the singular spectra SS_,_th , SS+ rF ,

ry(F) 5, k(B 5 t4 4(F) , o(F) and w(F), F (5 A)
may be found in LBJ . Moreover 1t was shown in LB] that the
image of s acting on B consists of ten matrices

Osm
{so,..., 59} , leading up to the definition of special subspaces

of %o’m (g =0400ey 9)
Recall that the Cauchy-kernel of the generalized Cauchy-Riemann

operator D is given by -—1—
m+1
6f the unit sphere in R.mﬂ . A

For the definition of the Cauchy-transform T of an analytic
functional T € &(/1)(.!—1;,4) we refer to [1] , [2] ana [8] .

lxl”“" ’ [ being the area
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1. Microfunctions with values in a Clifford algebra

In this section we give the basic definitions and study the ele-
mentary properties concerning microfunctions with values in a
Clifford algebra.

Definition 1. Let L € R™® and c R™ pe open such
that [l is relatively closed in 1 .

Then by M(r)i(ﬁ,ﬂ) ( resp. M(l)i(?i,{z) ) the right ( resp.

left) ;‘c -module is denoted, consisting of the left ( resp.

right) monogenic functions in ﬁ + » which admit a left ( resp.

right) monogenic extension about ;ach point of £) .

By M(r)(.a,,.(l) ( resp. M(’l)(.ﬁ,ﬂ) ) we denote the space of

leftN( resp. right) monogenic functions f in 2 NN such that

fl.ﬂ.i € M(r)i(?).,ﬂ) ( resp. f l_ﬂ,i € M(l)i(ﬁ’ﬂ) ) .

Definition 2. The right ( resp. left) ;4 -module of upper and
lower left ( resp. right) /‘(:—microfunctions is

given by
1
Ei’l('a ; A) = M(I‘)( Rg; ;A')/ M(r)i’( Rmﬂ \ N ) ﬂ)
m 4
(‘;i,r(.ﬂ.;k) M(l)( IR: sAY/ M(l)i( R™\an,0) .
The space of 7*: -valued microfunctions is defined by

;A = BA) /7 @054) ,

while the space of ;‘:-microfunctions at the origin,called

/c -micros for short, is given by

to’m = a?’osm/ L9Lonn .

Throughout this paper, monogenic functions will be denoted by

letters f , g , h «..; hyperfunctions by capital letters
F,G, H..., and microfunctions by Greek letters ¢ , ¥ ,... .
As in the one dimensional case one may easily show

Theorem 1. £, (4 sA) € M(r)(ﬁi sA) /7 M(r)+(ﬁ,ﬂ)
T and "~ - -
Curp@3A) T My (D, 5A) /1y, (T,0) .

Furthermore we have

Theorem 2. The following isomorphisms of ;4 -modules hold :
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(1) é+,(1}<n;/c>’=‘ ﬁmm;A) / B_H(ﬂ;/l) ,
= \r T +s| T
while the following isomorphisms of vector spaces hold :
(11) 8 A) = ch{l}(ﬂ;A)@ €1y 2:4)
r I‘~
(111) Q54 T wy(Aa A 7w (F,0)
(iv)  E(nA) %Z@ Care, , Cop® 2A7@ €, ,n(C ey,

i.e. for every ® € €(N;A) there exist unique - Ew)
such that b= M PA e, -

A
Proof. Define operators 'n+,l from 751(.0. sA) into
€400 ;A) as follows.

Let F ¢ 331(.(),;14() be represented by f € M(r)(ﬁ.\ﬂ s A) .
Then we put

~
M,,,® - f]ﬁi s My (A0 .

Notice that the operators ”1,1 are well defined and surjecti-

ve. Moreover, ﬂi,l(F) = 0 if and only if F € TS:,l(ﬂ;A) s

which implies the isomorphism (i) .

(ii) follows from (i) . Moreover for any F e B ;A) we de-

note MNE) = F+ @(Q;A4) , while for F € ﬂo,m we put
M(F) = F + G ooon -

As to (iii) , notice that by Mittag-Leffler's theorem ( see [2]),
Q@A) ¥ ny@,0) .

Furthermore in view of [8] ,

n

R

B4 = M(r)( Ovn A/ M(r)(ﬁ.';/(')
whence
E(Q;A) S B A) 7 &WGA)

¥ My (AN A) /om0

As to (iv) , let pe L(Q;A) . Then for some Fe B(L;4),
n(F)=Qo or (‘a=F+ Q(.ﬂ;/{:).

Now, let F, € Bon),Arc{1,..., m} , be the unique hyper-

functions such that F = %‘FA e, ( see [8]) and put

?A =F, + @ () . Then obviously Q’A e E(ﬂ) and
p-Fe R(AA) = T(E @MU e =T ey

Loreover, as the maps ( —= p, from Ca;4) into E(Q)
are well defined by the above construction, it follows easily
that ‘o admits a unique decomposition ( = % Gy e, with

by € BC2) . ®
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The spaces Eh{l (.Q;A) ana € ;)‘(7) have the following
sheaf properties. o

Theorem 3. The 7€-modules ¢ +,{1)(.Q ;A) and the spaces
—— ='tr
Ca;A), Q € R®™ open, are flabby sheats in RT .

In view of Theorem 3% it is clear how the supports of the micro-
functions under consideration are defined.
One has that for every F € B(0;A)

ssi,% F = supp r1i’%(F) and sing supp F = supp (KF) ,
where the definition of r1+,r is similar to the one of r7+,l.
Furthermore when F € Zgo,m :‘then for every a € c%o,m ’ -
s(F + a) = s(F) ( see [8] ), whence it makes sense to define the
signature of an -micro as follows.

Definition 3. Let (fe eoun and let F € Bo,m be such that
M) = P . Then we put s(p) = s(F) .

Hence it also makes sense to introduce the decomposition of the
support of an f%’—valued microfunction as has been done for
hyperfunctions in [8] .

We have

Definition 4. Let ¢ € Eca iA) and let Fe BUL;A) bve such
— that IW(® % . Then we put r+(ﬁ) = ri(F) ,
k() = k(B t(i,%)(@ = t(i,%)(F) and w() = w(F) .
Furthermore the group CB’ = (’I, o< (5 , ‘rj of main involutions

on 7& acts on C(_ﬂ.;A) as follows. We put ol (¢) =M« (#))
A = ﬂ({S(F)) and Y(@) = M@ .

Notice that when ‘f: % ‘fA e, with cfA e B() , %(p) =

%GAEA v AR - ?jﬂ € and (@) - %‘ faen -

Moreover the operators
Ay =L (Tle) , B =l(T2p), 0

! +
5 (T2 ¥)
are projection operators such that
A+ # A_ = B+ + B_ = C+ +C_="1T
and
A A_=B B =C C =A_A =B_B, =C_ c,=0.
These operators will play an essential role in describing the re-
lation between the values and the singularities of an ,/E—valued
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hyperfunction or microfunction.

Another essential tool is the notion of left ( resp. right)
Hilbert transform Xl((f) ( resp. Jﬁr(ﬁa) ) of an 7{ ~valued
microfunction ( .

Definition 5. Let @e E(ﬂ ;/4) be represented by f €
__———_—M(r)(ff\.(l sA) (resp. by f e M%>(ﬁ\ﬂ;A)).
Then the left ( resp. right) Hilbert transform l(gg) ( resp.
%xﬁ@) ) of @ is the microfunction associated to the left
( resp. right) monogenic functior}N h , given by
n(x) = { f(x) , if x e Q,
-f(x) , if xe Q_ .

Clearly a;i = 3&§ = 1L , whence the operators
=1 + =2 +
Qi’l ——é—(/lI_ xl) ] Qj‘_’I‘ "'—2-' (/[[— xr)
are projection operators satisfying
T= Q+a1 * Q—,l = Q+ar +Q_
0o .

wr ?
Qi,l Q;,l = Qiar Q;,r =

Furthermore, it is easy to see that
Qi,(%}t(ﬂ;ﬁ) = Ci,(%><ﬂ;4> :

so that r1+,{1> may be identified with Q+,(1 o Il .
“\r - lr
Notice that Q+,l and Q+,r in fact correspond to the upper

( lower) boundary values in microfunction sense of the left and
right monogenic representations of @ .

Notice also that, when Q is represented by an L2 -function f
in R"™, JEI(P is the microfunction associated to & f ,
where E@ is the Hilbert-Riesz transform for L2 -functions in-

T

271

troduced in [9] . So Zl and & are natural extensions of

the Hilbert-Riesz transform of L2 -functions, with the supplemen-

tary advantage that they are defined locally. A similar extension

of the Hilbert-Riesz transform of L2 -functions would not be
possible in the hyperfunction setting since such a definition
would depend on the choice of the representation of hyperfunc-
tions as formal boundary values of monogenic functions.

The operators .&Cl and 3ﬁr admit decompositions of the form

xl=<%{+ XI and. o = %;+ x;»

T

r

where the operators 36{1} ( resp. 9%;} ) are boundary
( resp. coboundary) operators.
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As to the construction of {H and ZH , we first decompose
¢elc;4) into ¢ - _2: 6, -

Hence it is sufficient to cons1der the action of 9@1 and %
on each 6. (ﬁa) 3 J =0y4eeey m 4, and by Theorem 3 we may restr:.ct
ourselves to the case where [l is relatlvely compact.

In this case one may find T. e & l)(_(). ;A) of the form

#A=j Tj,A ey Tj,A e @'(d) , such that
0,(p) =1+ (1)('312 sAY + Qs A) .
We now Eave that when (1 = R™I( 20 ,
T.(X) CJm+q TJ s_’ ,T—{.ﬁ#—uulm.‘4>

is a representing left monogenic function in _O.\.O. of the hy-
perfunction TJ + a (f‘a[l /’() and of GJ(Q) itself.
Hence & 1 ( 0. (Qo)) 1s represented by

{T(u) ,ue.ﬂ.
f(u) =
—Tj(u) ,ue.ﬂ.-— .

Now let €0 and put .f—ie n o+ n(0s€) .

Then for every g € M(l)(.().a, A) there exists 9> 0 such
that

<A (f) ,80= — f g(u) a¢;, £(uw)
is defined. T(Qex[-2:91)
Furthermore by Cauchy's theorem, the above integral does not de-
pend on 9% , whence it defines an analytic functional As(ﬁ) in
&’(1)('01 ;A) and so a hyperfunction S = As(f) + a,(l).( ,Q,E\ﬂ;/’()
in O .

Lemma 1. %,(0 (@) =5+ &3 A

A
Proof. In view of [8] it is sufficient to show that £ - AE(i‘)
has an analytic boundary value in /[l .
To that end notice that in RTM s

(£ = AaJ(£)))

. A - A )
 Om AT, X[ xQ/el)'Z;cx_-'uT;f“q aey (Ty(0) - £(w))
= 2 v X -u ae, C'D‘.(u)

G if+1 Rmﬂn 2 8, x[-1,%0/2]) X - u‘m+'\
which immediately yields an extension of ( f - Ae(f) )I 'R o+ 6o
RN (g x §-1) v (9, x [-1,0])) .
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. A o4 A
As a similar property holds for ( f - Aﬁ(f))l R, £ - AE(f)
has an analytic boundary value in {2 . @

Lemma 2. S 1is of the form S.
S

ot S , Where
51 = € 54(854) end ng = ©5:1(8547)
Proof. Let § Y O . Then we put
fS =< £f(x+5) , x,2 0
f(x-§) , x <O . ,
Now it is easy to see that A (i‘s)—v A (i‘) in ét(l)(!l‘;fl)
if & —>0+ .

Hence we only have to show that A (fg) takes values in
Aiq 0 Ay g+ °
But we have that
he(fg) = Vg @) . (2(F+5) - 2(F-%))
A A
75, @) . (1 (B 45 ) - TJ-(K—S ))
-p
X = u
7[" @) . “’m+’1< T3,% 0 -’—_k,'———,mm)
and the right hand s:Lde clearly takes values in AJ-’I <]

i

J+1°
Notice that by Lemmas 1 and 2, 951(6 J.((p)) takes values in
*J"" (¢} A:J+’l , which leads to

Definition 6. The operators ’2@“‘ and 'Zi are given by

ZT-% 6., 0%,

gm0 " °s

E@I:i@ o %. o0 6. .

31 1 J

and

In a similar way %; and Z; may be introduced.

By the Lemmas 1 and 2,

AR %1=91036109 +Z: (ea+1+eaﬂ)°%°9

_1 m
+6m_o%06 . a,?loej='zl
and analogously J=o
+ -
. B - R,
Moreover
2 2 2 2

Theorem 4. @1‘ = %E = '3&; = SC; =
and

SRR TE L R
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Proof. We have that
= 2 _ +2 -2 + - - +
T= %l = 3&1 +%1 +3€:1361+ %1%1
or %2 5
+ - - + + -
(T-%] %] +&] L) o 93.: loej+xloej,
which leads to
2 m-2

aﬁ{ = > 0, o 3@+2 o 6

=2 Tge2 1 i
=3 + - - +
i J=o eJ'+2 ea" Gj+20(?§1&l+ %] ‘xl)oej
_é - -
Similarly z =0 and so T-= %I xl + '361 JCI .=

Corollary. Let (Ll ¢ 1Lm be open. Then the following sequences
are exact:

+ +
Eas A ——ﬂe'—,—J—C(ﬂ;A)'—}J‘—'}—’ ;A
- )

Eas Ay — 38 o e (A — Bt e (A

Proof. Clearly imqe, I ¢ ker ?GI .
—_— r
Let (pe E(.ﬂ A) be such that 55641 e=0. Then by Theorem 4,
go j@{l 1'@ and so belongtrto im ;
Notice that 5&{1\{ transforms Jj-vectors into (j+7)-vectors and
T
‘x— transforms j-vectors into (j-1)=-vectors.

]

Hence we have long exact sequences
%1 %It)
0= 0,(¥(a; AN —et o . 8 (e(n;4) —L>o0
% e
0 0 (EW;A) —Hs . .. B (E(n;A) —Hso0 .

Furthermore, 321 and Kr are related to each other by
Theorem 5. We have that for each i€ N 0<€ig -%‘- N
'——gé}— _ + +

1°92i‘-‘zr°621’z1°9

and

2i+1 < T 2i+1
Tlo By =-F 0 0y, Lroby,, = Zoo 6,
Proof. Let us check the case where (p& t(_Q 3 A) is a test-
function. By a standard density argument this is sufficient
in order to prove the theorem.

Let egi(qg) =6 .
Then

X e - & éeai*qf—f.;;—_uﬁm o] at
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]
\V]

"
™D
H o+
B
23

[

=]

while
L16G(F) = 2 J/

Qm+1 R

©n+

4 Osn [

X = u
S
X - umtt

—

boi s [I—XSCT_—_—%] mer §CE)] a¥

= - % so(sc’) .

The case 62i+1($) = @ is similar.

= é e2i-’l [?(K) —‘%___?-l’u'lmmj a¥

Remarks. (1) Theorem 5 yields the identities
—_ + p- + -
3:1 xl = 'J’.r xr and

Furthermore,

z, %,

= & &£+ %;36*1‘

L1% = TIXT .

( %]+ %7 HL
%] X+ K] R
( L] & - LTRIHYo T

Kiogok 1- Riogo &

%)

r

275

(2) The relations in Theorem 5 are equivalent with the following

T
- % T, .
ones:
1°C+= £;°C+
L
Hence
xr= x{00+- x{

From which we obtain that
x1=%‘( 7%1* %r
and
- _ 1 _
?&1 Y ( 7&21 zrr
(3) The following relations

(& ,%]1-0,

{aﬁl, T } =0, {a&r’q‘) =0

{£3,%7) - 1
[%:, 231 - &,

oC_ -

o 7 )
o'w ) .

hold:

G .
T

Furthermore it is easy to see that

m;ot’( = po B , KT ox

, ZLI ocC_ =

z_

1

’

+
-4l oc_

oC, =-®,o00C, , BTocCc_= &L oc_ .

°oC, + %IOC_

- ﬂ o ac i ,
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%IOﬂ == o EC{, Jﬁzoﬁ - %o XI_
Analogous relations hold for z; and %; .

Furthermore we have that
g = oo By, Fyy o f - po Ky
(4) The group generated by {O(,A ,'?@1, xr} contains thirty-
two elements which may be written in the form 8, &) with
& € {1[’ %l’ xr’ 2:1 %r} and 826{1[""'/1’3‘? :
In the following theorem we investigate a relation between the va-
lues of a microfunction and its singularities .

Theorem 6. We have that

(l) ker Ai n ker ( A:F o Qi+} {1}) ¢ ker Qf+7 }1}
-f 9 T -] T
(ii) ker B: N ker ( B; o Q{i),{%)) ¢ ker 91:}’{%}

Proof. As (ii) is similar to (i) , it suffices to prove (i).
Let ¢ e C(Q;A) and consider the case Im SO = 0 only.
(- -}
Then § = 235 ( 943(@)+ 64j+,,(§o)+ e4j+2(cf)+ 94j+5(g>)) )
whereby Qj(?) =0 if jom.
As ¢ € ker A, , for every 1€ N 941(§) = 941+5(?) =0 .
Furthermore, -
A_ Q-Hlj
=L 2 (8,5, + BT 6, (G)+ 6,,.(p)
“ J+1 1 "45+2 43+2
® e + %7 0,5,1(6))
Hence, A_ Q+,1@ = O implies that for every je N ,
8450100 = - xi94j+2(?’)
94j+2(‘9) = - %164J+4(§0) -
+ -~
So, = (T- H1) T8, (f), mmaas BI04 =0,

oe Jd=0
b - Q1 32--;'0 94j+1(ﬂo) , whence Q.6 =0 . ®

Notice that Theorem 6 may be generalized as follows.
Let < ?1,..., (?k7 be a set of microfunctions satisfying

g =-%76o s Po=-&T¢, -KIGs, ...,
P = - XIpr -
Then Q+,l( JZ_;I (Pj ) =0 .

2. Decomposition of singularities

In this section we study the singularities of 74‘-micros.
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First we show that every /Q'—micro (p admits a decomposition
of the form (p = @, + (P2 + (p5 + (p, » where (Pq € \Cq = Eq/;-o
or s(lq) = Sq v Q= Tyaeey 4

To that end we introduce some new projection operators.

Put

"

€= Qo U,p =t Uyr U,
and
Fa= @ Gy = Oy Uy -

Then 1T = €++ €_+ r-++ Moy £i=£i’ S

Furthermore we have

Theorem 7. Every (f’ c e admits a unique decomposition of the
form ({’ ‘p,]+ o+ ﬁo3+%4,w1th (qu(‘i'
where C T/ro,q Tyeeey 4

Proof. Let @e to o and put
[ 9

€1 €9y Pom E6 Py s KG o amd b= p_ G

Then (= P4+ ko + €5+ p, and o, € eq )
Indeed, take for example (f’l = £+(p - Then @, =Q, 1@, . ¢
9 9

and Q’I = Q+,I-Q+,l(? whence Q-,l SO»] = Q-,r Q’n =0
s(§1) =54 -
On the other hand, suppose that (P admits a decomposition of the
form § = Q”I + QE ?4 with (fq eE’ . Then
b1 = +‘€1 t e ?2* E+‘i’5 €.l -

But, as s( (o,l) = s, , there exists a representing microfunction
’\} for (?’I , defined in some nelghbourhood of the origin, such
that = €Y . Hence €, @)= ¢f Eoum -
Analogously €, Q2= €+‘f5= € 94—0. ]

Put E= € + € and R = [ r._ ; then

+ -

€= .:21..('[[+ xlxr)
po F (- T %)

and so %1 ?Er = E- .
Notice that when m =1, €=T and M =0 .

€ will be called " electric projection operator " while ,&
will be called " magnetic projection operator ".
The reason for this will be explained in section 5.

Let ‘fe 4 o,m + Then we associate with (f a 2 x 2 -matrix
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p(®) in the following way:

1, if £ £0
PM(W*{O . +¥

s 1if £+(f =0

1, if g_¢ #0
sz(w:(o,if ¢ =0

1, if £a
P12W)={0 . e

, if rx+(f=0

T, Af p_g KO
p21(%)={o A

,lf r_(fr—Oo

The image of p consists of all matrices over Z
Furthermore, p(f) = p( alﬁo) p( %) = p( Jﬁ Z 2 P) s
while the group 9, {’E 2 X /5 "} acts as follows on the
2 x 2-matrices over
Let g € & ; then we put g(p)(qo) = p(e(p)) . 4s p(@) = p(p)
implies that g(p)(¢) = g(p) “) , 9 may be considered as a
group acting on the image of p .
The orbits under this group action are:
P9 S {4 R S | SR (O IR M
{ o o/f > \\o o/ lo 1 0 0 1
11) 00) (10 (O'l} {(’11 01)
{(OO’('I’I”IO),O’I 10(11}’
(56 e == {0 )
1 1 o 1 o 1 [0) 1
These orbits are respectively denoted by ABO ’ B,‘ ’ A,I y O
B, » A, , AB; , AB, , AB5 . The orbit number O(‘f) of an A’ -mi-
cro ( is the orbit to which p(So) belongs.
When the orbit number of (F equals B, or B, , then p(¢) is
invariant under /B but not under & ; when O(sg) € (4, AE}
p((f;) is invariant under ¢ but not under (5 3 when O(ga)
p( ) is not invariant under « , (4. and 7Y and when
0(p)e fABO, AB,, AB,, AB;} » P(@) is invariant under g« .
These remarks lead immediately to the following theorem which ex-
tends a wellknown property of hyperfunctions on the real line,
stating that when a hyperfunction P is real valued and
x € sing supp F , then x e SS+F N SS_F .

Theorem 8. Let ‘9 € &o,m be non zero. Then Aisa = 0 implies
that 0(p) € {A,], Ay, AB,, AB,, ABB} , Biso = 0 implies that
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o(p) ¢ {B,], B,, AB,, AB,, ABE) and C,{ = 0 implies that
0(¢) € {AB,, AB,, AB37 .

Let N ¢ R® bve open and let a c ﬂ{m+ﬂ be open such that
{l 1is relatively closed in N . Then in [2] we have shown a
Painlevé type theorem stating that when £ € M(r)(ff\.ﬂ ;A’) is
such that the boundary value of f for Xy O+ equals the
boundary value of f for X, O~ , and this in the sense of
continuous functions, then f extends to a monogenic function
in j{ . Moreover, by using [8] , this result may easily be ex~
tendéd to the case where f(?iiD) are hyperfunctionse.

We now show a Painlevé type theorem which at the same time invol-
ves left and right monogenic functions and which makes use of

the theory of -microfunctions.

Theorem 9. Let fl’ 8 € M(r)(ji\ll ;A) and let
- £ 8. € M(l)(ﬁ\-ﬂ. s A) ‘.\’Then we have:
(i) If the boundary value F o? fl IJ1+ equals the boundary
value of frl ?i+ and is alsadequal to the sum of the boundary
values of g | X_ and gr] {l_, then F is analytic;
(ii) If the boundary value F of fll 11+_ equals the boundary
value of fr lfi_ and is alsgvequal to the sum of the boundary
values of 81 IJT_ and gr’ 11+ , then F is analytic.
Proof. We only show (i). ~

As F is the sum of the boundary values of gllil_ and
| A _ » p(MUE)) # (:) 8) since then ¢ _M(F) =0 .

~
On the other hand, if F is the boundary value of fl[ Jl+ and
of £ |, ,M(F)= €, M(F).
Hence [1(F) =0 or F is analytic. ®

3. Special microfunctions

In this section we introduce some microfunctions which we shall
need in order to define some special micro-differential operators
used in section 5 .

(i) The Dirac microfunctions §, §,, §

The Dirac microfunction © is represented by the Cauchy kernel

a X_ 4 which is left and right monogenic in R&*1 \{O) .
Cm+1 | x|
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Hence p(d) = (’l O)
o 1/l -*
Furthermore 8* and S_ are defined by
iﬁ=Qi’1s =Qj',r5 = Eis .
Clearly § = §,+ §_ and  #§ = %5 = § = §_ .

+ -

Moreover representing monogenic functions for p) 4« are giiren by
1 X x 20 -
e _— ’
§ 4 > { “ms1 [xlmm o< .
- 0 y X, £ 0

We therefore sometimes use the notations

= A 031X
T o5 7"
and
Ls--2 X
S TR

A

(ii) The logarithmic microfunctions A, Ay

We construct generalizations to R™ of the logarithmic micro-
function on the real line, called logarithmic microfunctions.

To that end, we first introduce the logarithmic functions ../\.i(x)
by . , o _
= X -h
A(X) ‘_"—m-+’l —memdh

= = =1 f~ X - h dh
NGO =g, § e
Another expression for A*(x) has been given in [4].
Notice that _/\.+(x) is left and right monogenic in

R\ {x 1T E0anax ¢ 0y while AT(x) is left and
right monogenic in Rm+’l \ { X ¢t X =0 and X, 7 O} R

Furthermore 2 *(x) = A (x)==-1_ _x
xo .A. L o= xo wm+1 lx‘m+1 ’
whence D A*(x) =D A7 (x)= 1. .._.’—E_ .
-0 ° Cume1 x| m+1

The positive and negative microfunctions f,\+(x) and A_(x)
are now determined by giving their representing monogenic func-

tions: ./\.+( ; o
X) , X
A (x) = { °?
' 0 » X, 0
0 y Xg>:0
A(x) {A‘(x) y X, L0 .

Clearly supp 9+ = supp A_ = (O} , while A+ = M(AY(F+0))
and A_ = Fl(-AT(X-0)) .
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Notice also that D A, = Si .

Finally the logarithmic microfunction A is given by
A= A+ + A_ . It is represented by

A+(X),X>O
2 e °
AT(x) 4 %, <0

and it satisfies the equation Do) =5 .
Hence
—’
ANE) = L _/_.-_-’X_-h_ gdn = 2L X
@ mi 1 %-h} o “n |Z)T

Moreover a straightforward calculation yields

A(F) = =2 X & _A1 1
z 2on W™ T @6 g 12

This formula should be compared with the formula for 1n x , XE€ R,

observing that -__1 LA is the kernel of A
- (m-1) @ pyq 'le 1 1
while -1 _ _X  is the kernel of D_.
[} n —xb m [o]
Notice also that 212 = ?frA = A, - A =_2

= . a1 1
(m=1) @ 41 i
whence zik = %;A =0 and so

A= KT 2 R DI i G- E R B I
P oy, 1210 T ) o, 1ZI

4, Convolution operators

In this section we mainly deal with convolution operators associa-
ted with microfunctions Q supported by the origin. The case
where the microfunctions have compact support is quite similar.
The convolution operators associated with microfunctions supported
by the origin will be called micro-differential operators. They
contain all usual differential operators as well as the inverse
operators of elliptic differential operators.

We first define the convolution operators associated with special
microfunctions.

(i) The case (T - €4 )(P = 0

Let S ¢ R™ be closed such that 5 < R ™' ana

2 A RE= {O} and let f ©be a function in Rm+’| N\ S such
that Df = fD =0 in R™I\ s .
Moreover, let @ be the microfunction represented by

h={f,xo>0
o, %, < o .
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Then clearly supp® = {0} and (T - € D =
Let A € t(.{l A) bve of the form V= Q+ 1'\{" Then we define
a micro-differential operator ’B((p) actlng on f‘f-« at the left
side as follows.
Let '\L g + M(r)_l_(R.m'm\ M@ L), g € M( )(']R.m'rI ;A) and
let ¥ €N and §> 0 be such that B(x,f)C.Q .
Then for €> O sufficiently small

Zrp (ye'ﬂmm.y u € 8 for someuw1th0<u§€

and U € 9B (x,r)

is closed and does not contain X .
Put

gexf(X)_ ff(x u) aey, g(u) , x,>&

-
u .

Ze
where Z;= {y+€ :yeBm(x,y)}. and d6, =d
Then by Cauchy's theorem, for x o7 €

g, 2 (%) = S f(xg) de, 8(u) -

€ %] Tov (Tl x 2B (% 3p)
Now it is easily seen that e ¥ ¢ has a left monogenic exten-

9949
o
sion to .D.£=('R.xB(3?,g))\S -.f‘ and so, as
3? # SE,'}?,f , it determlnes a microfunction f+ ¢ X,f(u) in the
neighbourhood & €2 = B (X ,f) \ S of X .
9 ’
Furthermore, when ¢’ , f are such that rwsl}-{-f, is still a
94+
neighbourhood of 3 ’ ge 3, ~admits a left monoge-
nic extension about each p01n of (&) ,Sc',f e’,&',r’ , whence
w b G =

w‘s-iafl C,-}E,f d,i,e’ ’*C,X,f l E’i.sf n we’,}?f' )

Moreover, when y € {1l is such that ©, Zhe n E,y, D,

admits a left monogenic exten51on about each

g, 2, -8
E5X,¢ Ea?af
whence d th
’yf , r\}«s_’x f coincides wi

int of A

p(j;n ° Eai’af

in -0 n - .

6,7, €y
Hence’, in view of thJ sheaf progertles of e«(.ﬂ ;/’() , there ex-
ists a unique microfunction ﬂ/f in [{) such that
Nl/éassz - '*f l aﬁ,i»f 1
Furthermore, when f'e Mery R,m+ LR n M(l)+ m_m'm,ﬂm) s
(‘{/f+f. = f . Hence '\{,f depends only on & and ~ and so
we may define the action of the micro-differential operator ’D(f:)
on A by
WY - Yy -

Notice that the definition of ’D((’P,)AP is completely local and
that supp"b(?)"{w ¢ supp¥} , for every N € L (L;A4) for
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which Y = U1V -
By using Cauchy's theorem, one can globalize the definition of
'b((p DA 2 as follows.
Let K’l ’ K2 be‘compact in {1l such that "()K2 is a smooth sur-
face and K,I [ K2 .
Then for some £€>o0, S ¢,Ko N K, =0 , where
SC,K2= { y € R.m+1:y-u € S for some uwith 0 < u <€
and T e 3K2} .
In this case,
se,K2(X) = Kjaf(x—u) d e, s(u)

ot
represents (b(qp )Y in a neighbourhood of K, .
Consider now + € @] ;&) such that N = Q+,r'\{’ and let

ge M 1 (Rm+’l;)¢) represent Y . Then in a similar way, we may
define "{u Q(@) , starting from

sg’-};,Y(X) = Bm(_}zg)%g(u) do, f(x-u)

as a local right monogenic representation for '+ D) .

Definition 7. Let "{’ € f(ﬂ 5 /’() . Then the left and right ac-
tion of the micro-differential operator @ (e)
on °{.« are respectively given by

WeId = e (q 1¥)
A4 (e) = (9 ) () -
0f course Q_,I(Q(‘f)"{’) = Q_’r('\k'b (g)) =0.

Moreover we have the representation formulae

and

Theorem 10. For every '\{f € E(.Q- ;A) ’
AE Y = 4y md $DCE,) = o
m+1,
Proof. Let g € M, (R} '3A) represent Q % .
Then locally (% ,)~ is represented by
A % -1 a¥ g(u) , x. >o, K € {L compact.
Wnt1 K+€ |x - 11lm+’I o ’
As for 0 < x, < 1
A ga-% .af, glu)
Oml (K x [€,1])N(Kee)u = x™1 8
represents the microfunction 0 , 7 ( S,*)"f is also represen--
ted by
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a - a¢. g(u) = g(x)
®n+1 Kx [&,1] lu—xlm'm u

and so ’B(S_F)rs{.« = Q+,l'1“ . =

Theorem 11. For every ’1’€. E(.ﬂ ;74)
’U(’A+)Do'+ =I)ofb(?.+)'\{" =Q+,1'+
'\"’b()\+)Do = '\*'Do ’)(A+) = Q+,r{+ .

Proof. Let g € M y(RT;A) represent QoY -
Then Q+,1 Dog = Do Q+,lg is represented by - ’T g .

and

Hence, QO (A +) D,y admits the local representation in ﬁ :
/ Af(x-u) ar, (-
K+¢

=1im 24 I j(.h (x=-(u+9)) - At(x=-u)) ae, g(u)
7> 0 9 K+¢e

g )
’7u°

+ Af(x-u) ae glu=-9)
9%k x [€, e+73 ?
J R ATCGe-w) args) S A e, ),
K+£ DK
dSu being the oriented surface element on “JK .
As f.A'F(x-u) ds, g(u) represents the zero microfunction

in K, (A,) Do"]vl K is also represented by
- A At(x-u) ar, g(u)
K+ ¢ o
o f X-u .4 40, 8(uw)

“n+1 K+e |x - ul
and so, by Theorem 10, “¥(A D% = +1"" .
On the other hand, D 2(A )f\)r is 1oca11y represented by
S D A T(x-u) dﬁ‘u g(u)

K+t f
= . X ac, g(u)

Oni1 K+E ix _ ul ym+1 u

whence D (A, )} = Q+,l'+ . =

Until now we investigated the case where (1o - €, )9:

We now consider the case where ( L= € ) =0 .

Iet S C Rmﬂ be closed such that & c Rmﬂ and

S a R™ ={0} , let f be a function in Rm+’l\ S with
Df =£D =0 in R™7T\ S and let the microfunction ¢ ve
represented by

O,xo>0
f,%x< 0 .

h=



Notice that supp So _
Let “+ e E(ﬂ A) be such that (‘{a

h,={0,1fxo>

g ifxo<

. 1
with g € M(r)(}}lfx+ A
Then in order to define

tion

grt’;’f(x) = Z

where J

-€

-—’
= By(x,¢

In a similar way ,+ )

F= ot

Furthermore, for a general ’\{- € ﬁ(ﬂ H A) we put

e+

{o} anda G = go
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-+. and let

,

0]

o ,

) , represent ¥ .

W(e)Y¥ we use the local representa-

/ f(x=-u) d“ug(u)
-€

) - ¢ and 4G, = -4 .
may e 1lntrodquce where
( be introduced, wh

=V(p) e ¥ ed 4V(E) = (o DD (F)

and in analogy with the Theorems 10 and 11 we have

Theorem 12. For every

25

Moreover

WA _)IDY =D,

and

4,0 (A)

Notice that Q+’1()(§0)‘+ = ( "’»q(fa))

(‘{'6 t(-ﬂ,ldf)

= Q—,l'\” and q‘-'b(S_) = Q_’rr‘{.« .

/D(A_)r\{, =Q—,l+
FIA_DD, = Q o -

1]
o

(ii) The case ( 1T - j‘.‘t )ga =0

Let S ¢ RO

s A R™
fying Dr

o
be closed such that S ¢ R ang

(O} and let f be a function in Rm+’l\ S satis-

fD =0 .

Then the microfunction (f, , admitting the left monogenic repre-

sentation

h1 =

O,XO)O

-f(=x), X,

< O

and the right monogenic representation

e |

is supported by the origin and satisfies C’, = M (P .

Let o € SCRY D!
. Th local tation f 0 =0

g en a local representation for (Q:)"’{v (Q)(Q+,lr\}, )

is given by

i‘,xo>0
oaxo<oa

admit the left monogenic representation
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g, 2 (x) =- ./f(—(?t+u)) ae, e(u)
E’X’f D
&
Notice that g, ' is left monogenic in B o(F sp') x J-e, 0L,
for some g’ with | 0 <f < .

Notice also that now @ ( P)+ = Q_ l((b (P)«I.« )
9

On the other hand, let g be a right monogenic representation of

and put £/ =-£(-%) . Then Df’/= /D=0 in S (R®~ 8§)
and in analogy with the previous case we define
‘+ Ap) = ( QU r "f« ) Q(Q) by means of its local representa-

9

tion

-}g’f(x) = - 2_{ g(u) ar, f/( -(X +u))

= I—/E, g(u) ar, f(a+x) , x> 0,

and we obtain that ¥ 9(f) = Q, o€ + q(j’))
Finally, let f be a function in S (Rm \ S) satisfying
Df =£fD =0 and let Q? be the mlcrofunctlon admitting the
left monogenic representation
{—f(-—?c) » X, > 0

-0 , xo< 0
and the right monogenic representation
_ {O » Xy > O

T f,%,<0 .

Then § = rl+ ¢ and supp ¢ = {O}
Furthermore, let f‘f' admit the left monogenic representation

g ; then D(p)¥ = ‘B(p) ( Q_’lﬂ}« ) is represented by
f(-(x+u)) a6y g(u) , x > 0

hl =

853",(1() = - zd
and D()o =0Q, (P (pI¥) .

On the other hand, when ¢} admits the right monogenic repre-
sentation g , then A 9(p) = ( Q+ ~F )¥(p) is represented
by

!

(X)— / g(u) ar, £(U+x)
and it satisfies f‘f«@(ﬁa) r(”f@(f-))

5. Electromagnetism and 7‘: -microfunctions

In the previous section, the microfunction occurring in the
definition of D (p) + and 4 Q(p ) was always represented
by a function f satisfying either Df = fD =0 or Df = fD
= 0 in some suitable domain of ﬂl m+1 « At first sight these
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conditions upon ‘f seem to be very restrictive. However we shall
show that they allow us to define 0) ()4 ana ‘\{, (D({o ) for
a general 9: e L(R™; A) with supp ¢ ={o} .
Let "(—6 € (Q3A) ; then it
that Dofb(A)"fr = 9(D) Dof\}«
Hence on C (ﬂ;A) , ) D,
. AxY) = 7.

[¢)

follows from Theorems 11 and 12

F10,9(2) = +9(A)D° = .
DO(b(A) = 1T or

Furthermore put

{D,s¥}) =D+ +FD_,

[DO’A{‘] =I)0’1" - +D0’

€Ay = { +etcash): [ 47 =0}

Gtsty = { Fet@sh (o 4y -0} .
Notice that, if o} is 1-vector valued, thén

[D,,47 =2 curln
and that, if ~ is bivector valued, then

{D s +Yy =2 aivy .
For this reason the elements of QL( 0:4) ana C,.(0 s A

will respectively be called A -microfunctions of electric and
of magnetic type.

Notice that

[D,,-10 {Do,.} = (Do,.}- ° [p,,.J=0
and that for every 's’, e LA,

¥ o= L[0T et + L, .} 0
o)

o .
This leads t

and

Theorem 1%. Let "" € E ( .Q;’() . Then there exist unique

"k€ QE(Q;A) and '+ € B (84;4) such
that 'T,=~{.E+'+r. rr

Theorem 14. The following sequences are exact:
D ,. D , .
o— gk Lerb ety Berd eiaiay »o
Dy - D ,.
o — &a;h) Porl eiain Boo} s A) —o.

We now come to the main theorem of this section, which gives the
connection between the operators € , B and the electric and
magnetic field operators [D_ ,.] and {Dys -y -

First notice that
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[pa{Doa')‘J =0 , ‘<°<’ (Doa-}) =0 ,

[o(,[Do,.]] =0 , {A, [Do’-])' =0 ,

{'F’ [Do,.J} =0 , [7,{Do,.j) =0 ,
=0

(%, [2,.-11 -0, [¥pge (%, -1] -o.

Theorem 15. (i) If f"v € Ee(.ﬂ ;/c) , then there exists a repre-
T sentation f of A in Rm+’l N\ R® such that
Df =fD =0 .
(ii) 1Ir ’+ (< e?‘('ﬂ;A) , then there exists a function f in
R™7V\ R™, satisfying Df = £D = O , such that £ ( -£(-%))
is a left ( right ) monogenic representation of f\{.« .
Proof. We only show (i) since (ii) is similar.

Let A € e (N;A) . Then Q1% € B @Ay .
Moréover, let g € M(r)(']P\T'*/l ; A) be such that

g/ - {g ’ Xo> 0

o, xo< 0

represents Q .
Then by assu:r-xg,)%;';n Dog - gDO € M(r)+(Rm+’l;Rm) .
Teke h € M(r)(]}l“_‘;rq sA) with - 2 n =g ; then

X
o]
g =D,h = %[Do,h]+ %{Do,h). 1
But, as [Do,g] = - %[~,Do,h] D belongs to M(r)+( Rm“;mm)’

there exists a right monogenic function 1 in R TH and an
analytic function k¥ on R TM such that
% [p,sb] =1+Xk.

As Ak =0 in RTM we may find functions k,; and k, such
that k13=0,k2D=0 and k = k; + k, . .
Hence 1 + k2 = % [Do ,h] - k, is simultaneously a solution

= = n 1 - -
of £fD =0 and fD = 0 , whence fTio('g‘[Do’h] ky)=0.
But this means that %[Do , h] is extendable to a left monogenic
: ® n+1 m+1 , qm
function on R + or % [.Do , h] '3 M(r)+( R s R .

So Q+,l+ admits the representation

‘- % {Do,,h} y X,> 0
0 ’ xo< 0
with Df =£D =0 in RPN R® . m
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Corollaries. (i) & = _:|2. <Do y . )- o D;,]
(1) p= 210p,,.7° n;"
(i11) %, F; ¥ =07, e C(L;4)

Notice too that when m‘, = €.f+ ’ f\{, admits a representing
function which is left and right monogenic, while, when "f = vk“{r ,
4+ admits a representing left monogenic function f which also

satisfies f£D =0 .
We now come to the general definition of a micro-differential ope-
rator ( convolution operator with support at the origin) .
Let € E(R™®;A) be such that supp (p = {0} and let
o e £(8;4)
Then using the representations of Theorem 15 we may put

VeH>Y = V(e @) Q b + VCe_era ¥
“DCpg) ¥+ V) 9 Y

and

$ ) = (Q NIDCE,f) + (O NID(E_G)

(Q ¥V, @) + (o NIV )
Notice that
Werd = CQ, prQ, %+ Ve @)oY
) BUCDIENCRI DI C RPN DR G N DI ISP

To conclude, suppose now that “f. € (Q o,m is such that

“f-' = £E€4 and ( T t o )f*. 0 . Then by Theorem 8 either
e+=o or €.,4 #0 and e_rj., A0 .

Similarly, when f? = rk'\{z and. ( T A )% =0 we have that
f‘+"’ = 0 if and only if rk_f\p =0 .

These properties have the following meaning in electromagnetic

field theory.

= = n n

Let m=2, D, = %ﬂe1+ fo'262+ ﬁ3e5’
~

= m i = ry j =
D %’I + A% £, + ’(%3(_ 33 with QJ. ey 5 5 J 2 3 3,
and let f Dbe a bivector solution of D f =0=1D in
'R 5 AN 'IR2 « Then eq f 1is a solution of Dg = 0 with values
in the Cllfford algebra generated by 52 ’ 3 « Hence f 1is a

solution of Df f%’ in TRB N\ 'R
Now £ = f

+

and

12 1 82 * L4589 85 + I3 ¢ e

= = f,]2€2 - f15£3 + f25E2E5
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so that the microfunction (\}« = £f(¥+0) - £(¥- 0 ) has the
form '\f, = ’*2 £,2+ ’f5€5+ "1’23 E2€3,
But we also havexﬁhat in hyperfunction sense

D f =e, Df = e, Sx1@+

- Sx1®(°f-2e2+ N5 oep 425e1 e €3 ) »
whence f may be interpreted as a magnetic field generated by a
current ﬂ+2 e, + f*aa ez and a magnetic charge 1}25 e ey €3
in » ﬂlz .
If we assume that magnetic charge does not exist, '\FQB =0 .
But then c+=(5e1. and so f‘+"{' = 0 if and only if
Ko ﬁ, =0 .
So the singularities of £(¥+ 0) coincide with the singulari-
ties of f(¥-0).
If we assume the existence of magnetic charge, one can imagine
the magnetic field
{ 0,x,<0
f= —
- _’]63_3._‘.2§{T3. e ey €3 x4 >0
the corresponding microfunction of which equals
-* = + .:21- by €,65 + x2:);|3;:%552

We clearly have a magnetic charge %— ) 62 £5 at the origin

and 0 € SS,~b while ss_N =g .
So the existence of classical magnetic poles is related to the

existence of magnetic fields having singularities at one side of
an analytic surface and not at the other side.
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