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RELATIONS BETWEEN FINSLER AND AFFINE CONNECTIONS

L.Tamdssy - B.Kis

We consider a Finsler connection [ as a linear connection
in the vertical subbundle V&B of 1T#T8 , B denoting a
differentiable manifold, T8 its tangent bundle, and #TB the
total space of 1@ L Of course such a Finsler connection can be
extended in many ways to a linear connection [ in THTSG
V. Oproiu [3] gave a way of such an extension in which the con-
nection in THTR is uniquely etermined by the Finsler con-
nection.

In this paper we investigate another way of extension using
beside the Finsler connection a connection [ in %8 . Moreover
we investigate the inverse problem: given a linear connection
in TH%B , when is this an extension in our above sense of a
Finsler connection [g , and what is the connection ' used at
this extension. Thus we touch upon the question, when does the
restriction to the vertical subspace VTB of a linear connection
M in Tt TB yield a Finsler connection .

In §1. we collect and partially supplement the notions and
tools used in our investigations. Whitney sums and Whitney de-
compositions of connections have an important role throughout in
our investigations. §2 deals with the extensions, and mainly with
the mentioned inverse problem leading to a system of partial dif-
ferential equations whose integrability is also investigated.

§1. Connections, Whitney sums and Whitney decompositions
1. Bundles. If ’2-(M‘N‘?ﬂ is a bundle, then (7= M denotes

the total space of 2 ,Wf%xN is the base space of #,and
Pry s L2 M —»N the projection map. Manifolds, bundles and maps
are supposed to be of class c® throughout the paper if not
otherwise stated. If ¥ is map of the bundle & on the bundle
I/ There are several slightly different definitions a Finsler

connection. In this paper we use the above one.




330 L.TAMASSY - B.KIS

, then & is the domain of ¥ , dow¥=k . If the diagram
ag — 0 e
P EJ lwq

is commutative #¥¢ and WY denoting the map showed by the
figure, then ¥ is called a bundle map.

TM denotes the tangent bundle of the manifold M , and we
also use the notations TM = ¢ ’(‘.’M"‘eﬂé PrTM . The tangent
bundle of a bundle & is T§=(TH, TPrt Th) where TAri denotes
the differential of the map fr§ denoted sometimes also by dPT .,
VE 2 Ker PT’L‘&,‘L’“t , #%) is called the vertical subbundle of T§

Let § be a bundle, M a differentiable manifold, and
Y:M =~ b a map. If the elements o, o, of the set a¢ =
{d:% —+t|o is & bundle map, bid=#} satisfy the property that
there exists a bundle map @ 3 dowmd, —>domK, for which €, =,
then we say that &, factorizes o,

6 will be denoted by Fac&;(ogla(;] . The unique element of
the set 0O(4,¥) ' factorizing every element of O(k,¥) is denoted by
ad, ¥ , and Facfs(oc,ads 4) by Factg £ . dom adg"i’ is called the
pull-back bundle of § by 4 and we denote it by 4!'¢ . It is
well known that V§ and (P‘rg)!.% are canonically isomorphic. We

denote it by

(1) Bt erete — vy
A vector bundle & is the Whitney sum of the vector bundles
if there exist bundle homomorphisms

5“ ¢ : bigla bk

Fep—p® Cr g — £ (0=42) satisfying the conditions:
1 X
(2) P"oflﬂ Pif veu qud tepts topta d
(-d; if AJHM P P = ;
As it is well known, the sequences O —r g‘T, 5? g o and

13
0 — 5‘1_34_. E-* - o are short exact sequences, and the
corresponding maps split each other. We indicate this fact by the

diagram

¢ 4 z

€)] 0 &> l;/-gv ¢ .«-P%.- Fe—ro \
\

(3) obviously determines a Whitney sum, and we will give Whitney

sums mostly in this form, and say that (3) is a dual short exact

sequence. Let ﬁ‘ and §* be subbundles of ¢ such that every

fibre of § over an xehbif is the direct sum of the appropriate
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fibres of & and &* . Furthermore let p":g-—yé" and

be the natural projections and inclusions. Then (3) is a dual short
exact sequence. In this case we write t= t'@F . This is the
classical Whitney sum of é‘ and §* . - In the subsequent part of

the paper bundles are always vector bundles.

2. Connections. A connection * on a vector bundle § is

the dual short exact sequence
) o=— (rle «—;’:-, tug ‘_;';t, et thg «—— o

where 3.'5 is the inclusion map induced by h , and
F};.Fa‘g,r“t d(#rt), The Dombrovski map of the connection [ 1is

(5) Ky = od‘P’rgoU'k:/Cﬂk——'E
The covariant derivative V associated to P is

(6) v(vela (K, «Te)

A connection is uniquely determined by its Dombrovski map.
Proposition 1. The bundle homomorphism K3 Tk —»§ is the

Dombrovski map of some connection O iff
0 K= ady Py

where 'V’E - &“ .

Proof. Suppose that K is the Dombrovski map of a con-
nection (4). Th.en KIVE- {ade Prg OVE\IV,E - ad& Py o (uﬂm =ad§ Ms.-yi
because of U-f°?'t= ‘:d[P'rg)‘g , and 1m}£= Ve .

Conversely, suppose that the bundle homomorphism K:sTHE —» ¢
satisfies the condition (7). Now Kev(= leeVy  because adyb#§
is a bijection on the fibres. Moreover K (VE)=ladyPM}ot)(vi) =
(ad g MVEV (PR = & » thus Vi @ Wev vy =Td}  therefore we
can write every 2-51’&(5 in the form Z= k+4 where X6V and

ye u«vs- Kew K . Now, U;(!')ﬂ U'tu:)-fo "(UQIV})(‘)‘ 1}(,) ) which

has already been given. Thus U'g(%) is given if we know Kev K

On the other hand UE uniquely determines the connection (4) .
Let & be a vector-subbundle of } . We say that the con-

nection [ is invariant on the subbundle §* , if

vvigledect for every Uedeetbdy and for every 6 edec}t

i.e. if (KyoTellef! . This is equivalent with the property
Koo} (V) e &} for every Ueth §, tedlltys
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Let o:t—}' be an isomorphism between the bundles & and &'
Now a connection [' on & induces a connection M' on §' by the
Dombrovski map Kgqt = de Kge (ald-‘)

We denote Twm &s by Ht . HE uniquely determines the con-
nection (4). The map P; is a surjection /on the fibres/, and its
kernel consists of the fibres of V§ . Thus Pi is a bijection on
H§ , and there exists the J'..nverse of Pﬂut . Denote this inverse of
P“H‘ by &t . The map F is an injection /on the fibres/ and
its image is V§ . We know that }! g(pfg]ft —=> V§ 1is a canonical
isomorphism, and the inverse of h is denoted by 1'!

3. Whitney sums and Whitney decompositions of a connection. Let

gl ;¥ (w=42) be vector bundles, satisfying (3), thus t the

Whitney sum of E"’ . Let a connection f‘" be given on r’
U & pon "
(8) 0 — (pr;«’)‘;h;l, e g A (Pl ege o
¥ e

and let Ky~ be the Dombrovski map of frd . Then we can give a
connection I* on the vector bundle & with the aid of P and ().
The simplest way of giving this connection is using its Dombrovski
map, defined by

(9) Kg = GoKgio dP* + Mo Kypo dp®

With the help of Proposition l. we can easily see that Ky is in
fact a Dombrovski map of some connection P on § . Moreover, if

' and M are linear then M too is so. This connection is the
Whitney sum of ™ ana ™ by (3). Conversely, let {* be a con-
nection on the above vector bundle & . Then two new connections
M and M can be given on the vector bundles ¢ and §* with
the aid of (3). These connections are given by their Dombrovski
maps K¢t and Kge

(Lo ‘ Kvﬂ - PA," KV" de

n are called the Whitney decomposition of the connection * by
(3) on the vector bundle §Y . If  is linear, then 0% ana 0*
are linear, too.

We say that a connection I on § is invariant by (3) if
the Whitney sum by (3) of the Whitney decompositions of f1 by (3)

is 0 ~again.

Proposition 2. A connection P on the Whitney sum § of
# and 4* according to (3} is invariant by (3) iff M is’
invariant on the bundles Jw ¥ (4;.411_).
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Proof. For the necessity we get the following equation
according to the formulas (9) and (10):

1y Kg = Woptho Kgod(topd) + (Coptlokye d (Lopy

Multiplying by p‘ and arranging our formulas we get the following

equation:
Plo Ky —PloKgod (top!) = plok, d(dy — o pl)a plokyod(topt)=o

Thus for all UeThi} and for all @6 Aec Yue® Kvode'el‘wf’“""‘"',
and so [ is invariant on Jw ¢ . Similarly (¥ is invariant on

Y ¢, too.
The sufficiency means that

((doploK oddodpls topte Ky odtodpr) o dE) (L) € &

for G€AccYu if (Kyod&)()e}” . But this is trivial.

§2. Finsler connections and vertical invariant connections
l. A linear connection in the vector bundle (Preg)‘TR or
in v¢g is called a Finsler connection over the manifold B , or

on the bundle €B . Let a connection 1

0 = (pr’ta)'-fs ‘E?‘;, Tttt «-—gf—@. Prea)cs —— o

12
a2 Ein feg
be given in the vector bundle T8 . Since %8 1is a vector bundle

E we can apply the results of §l. So according to section 1.1 and
formula (1), ECG performs an isomorphism (pree)ics — ven

and given a Finsler connection [% in (Mres)ies {tg induces a
4

connection ¥ in V&8 according to section 1.2. Similarly beg

transplants the connection [} in Preg)iea into a connection

‘Z-, in HCB [see section 1.2./. Then we can form the Whitney sum
P of [Ip with itself by (12). This yields the same as the
classical Whitney sum of A and . i , in THTB for £6lt3 =
VEB® HCB . This M is induced by (& and ¥ , and is called the

extension of the Finsler connection @ with the aid of P . The
connection (¥ determined in this way is obiously invariant on v&8
and HCB .

Now we wish to investigate the converse problem: Is every
vertical invariant linear connection I’ in Z#TE an extension of
a Finsler connection [} with the aid of an appropriate f 2 The
answer is negative. We will determine the conditions for the
positive answer, and this will show that in cases when these

conditions are not fulfiled, is no extension of f'p by a F .
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2, A linear connection in 7T €g is called a vertical
invariant connection, if it is invariant on the subbundle V€B. It
is clear that every Finsler connection in V€8 can be extended in
many ways to a vertical invariant connection in THECR . The
simplest example of such an extension was given in the previous
paragraph.

From this point on we will compute locally. Let (x"-l "”Hiﬂfﬁ\
be the natural local coordinate system in %8 , determined by a
local coordinate system (x*) of B . Then (7%:"\!%5) is at (x4) a
local base of the fibre of THTB , and (%ﬂ‘) is the canonical
base of WUB at the same point. Be ¢;= Teg .%74‘
a base in the fibres of the bundle (PM’KB)*‘EB.

The covariant derivative, associated to r',: is
. ] d
Ve e Git do Aoy o il dad oy
(13) A= 1w
o4
Ve 7%1"’ cle d¥ 733!

since [} 1is invariant on V&B . Here 2% % if 1< 4n and
= }““ if w#l s« £z . Thus Greek indices run from 4 to zZh ,

Latin indices run from 4 to W , and the summation convention is
also applied.

then (e,) is

Now we are going to express in the local bases (%“.l -g,-“) the
covariant derivatives s and \‘7' %‘-sc associated to a connection
which is an extension of a Finsler connection (4 in v¢ @
with the aid of an arbitrary A ’ o being the transplant by 5’(‘.‘8

of an arbitrary Finsler connection [} in (ﬁrCB)l’EB 13

l(a = J.ca' KVp" (dé;s) |/see section 1.2/. Thus F is the
Whitney sum of [ with itself by (12) . It is clear that +uis
construction yields all those vertical invariant connections

which are extensions in the above sense. Then a comparison of

6-,3;5 and ¥ %@i' with (13) yields the sought for our conditions.
First we study the maps of the dual short exact sequences (12) . By
the definitions /page 3 and (1)/

(15) Feg (e) = ,fga (c= Lu)
Similarly we have

Peg ()= e

16
Pes (%‘:\ =0

since the kernel of f¢8 consists of the fibers of VCE .lpage & /.
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r ) . .
Assume now that Acs (6= S 7%:4—'9.: ny” with some functions

- -
§; and Ay . We know that Beg o heg = c‘da-"ﬂ-'s)lt‘ﬁ so

0= (Peg o heg)(e) = G (57 2 A H”%% Vo STen.

Therefore §:=di . Thus
Y
@) hegte) = % = ,f;c-— At —,?:14
Now, as we know -é't[s"uﬁl& = degyer — beg © Pes » and

Tm (deeres — heaoleg) = I (Fegoing) = VCB
As we have seen, i'eglvfﬂ’j':és- T.g and so
Ueg = (ep®(idoure — hese Pos) = Teg * (@euns ~hos - frs).
Finally, in wiew of (16) and (17) we obtain

P
/61‘) = 17;5 D( LO{/\-HLB L'UB a‘(%c\ - ﬂ; 24

Usg (%5:\ - o
Let the covariant derivative VF associated to f'ﬁ be locally:
(18) Ve (e = QF de¥e,
Now, according to (6}, our constructions of F‘ , and (9) we obtain

¢ /%:‘ = Kgo d(%‘c‘ = (-3"&‘3°KVF°*’W§.‘B +%3°qu"deﬁa)d(§;c}=

(Fes © 7 © Uos + dg > Ve = Pes) ( 7?;;\
Using (16) , @7, (8 and (15 we get

( ,axs‘ = (_J'{,'a°vr:) H 94‘ -f(fq;gan\(C..\ ?1';3(9 q; dE&* d%dle)-l'
19)

hog (2 di,) =r{rd2-4- +{,3qu Ay Gy -7 “416{%

Similarly we have
¥
.= (4 V' _qd
(20) Véa«y =(J¢g°%=Uisg +hg o Ve Frg) %‘\a\'-‘- ;9 %%r
. 4 3
Thus € is determined by fJ; and R}
If M 4is an extension in the considered sense, then M and
"
must be equal for certain [}; and ﬁf: . Thus from (13 , (19)
and (20) we obtain
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r
Gui=Qe
* H A qt r 4
Wi = 9 A7 CY - QTAy
'] L]
(= Qe
Denoting in parenthesis the quantities locally determining a con-
nection we get the
T : ical i i i T HT T
heorem: A vertical invariant connection F(Gﬁbaﬂdh q‘b)

is locally the extension of a Finsler connection [;(Q:'] with the
2 : - A . r r . N .  d
aid of a connection [(R}) iff Gy and  Cy; coincide; Q= C;::
and the partial differential equation system
t g? FYR r 4t
(21 Hiew S5 4 Abog, ~ GG A

is integrable.

We note that if a connection [* is an extension of a o
with the aid of [ , this fact is independent of the local coor-
dinate system used. Thus, if (21) is integrable in a set of local
coordinate systems covering {8 , then also globally is an
extension, but the differentiability of M is not yet answered.
However if M /i.e. the solution of (21)/ is unique, then 1 is

a global extension in our sense.
3. The integrability of (21).

In a linear connection on a manifold ;]
L PY) _ o B .¢
7 (ng d2 Z%,)- (% RY) d2f d2 %%,,
for any tensor field a‘;‘, . It is well known /(4) pp. 124-127/ that
'3 £ G L (]
(22) 2 U Vpy Ag = Rupe Ag ~ Rupp g =25, % A

where R and § are the curvature an torsion tensor of the con-
nection.

Let us define the ‘following connection:
o
(23) Vp ,-?“{'-' (v} ) V; ;?i( - Vp '?%;

Finally let B be given by the definition
o
(24‘ B: = ﬁp,if oL sn and BSn
(o] X in other cases.
Now in view of (24), (23] and (13} the studied partial
equation system (Zﬂ can be written in the form

(25) (%) 8a = Hlp
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t .
where Hy; are the coefficients appearing in our theorem, while
the other coefficients of HJ; are zeros.

The integrability condition of (25) is
(o QT T
’9:6 {VF)d] Bp = QL‘J‘ H-l]ﬁ
This is equivalent with the condition
¥ v
(VR)es W2l B = (7)er Wi,
so, by (22 we get the condition
26 TP BaT _ ° T AT
for the integrability of (21). (26) is an ordinary equation system

at every 34 for the unknowns gt . 1If 06) has a solution for
Bg satisfying (2@ , then our system (Zﬂ is also integrable.
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