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CRITICAL CURVES IN NONSTANDARD POTTS MODELS 

A.K. Kwasniewski 

In 1952, using a Kramers-Wannier type analysis, Potts has reported [6] critical 

points for the spin system on the lattice with Kronecker ©"-like interaction of the 

nearest neighbours. 

The other, cosine-like interaction, generalizing the Ising model one was also con­

sidered there, however no similar results were obtained. 

This is in this very case - which we call the nonstandard (or planar [1]) Potts mo­

del - that we derive equations of critical curves with the method of Kramers and 

Wannier due to a generalization [2] of Onsager-Kaufman description of the Ising 

system via Clifford algebras. 

Consider then the system on the two-dimensional torus lattice with p rows and 

q columns. Let its state be described by a pxq matrix (s.,), s.,€Z . 

We denote by Z the multiplicative cyclic group of n-th roots of .unity while 

Z" stands for its additive realization, 
n 

The total energy of the system in a given state, in the case of nonstandard 

Potts model reads as follows: 

E[(s.k)] 

kT i:k-i(
SikSi 'k+1 + s i ! k + iS i0+ b ifk=1(siksi*i.k+ sili,ksik) • 

(1) 

The transfer matrix M for this model can be represented in a convenient form 

[2] with use of generalized Pauli matrices [4] and generalized "cosh" functions 

f. , i€Zn' [2]: 

f.(xj-ij; uf k i exp{u)kx) , (2) 
1 n k=0 

where x might t>e any element of some associative algebra with unity while to stands 

for the generator of Z . 

The crucial property of f.'s is their relation to the eigenvalues x-. °f the inte­

raction matrix W [2,3] i.e. 
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where the known X
k
(-a) > k€Z' (with Xk

=X_k)
 f o r m t n e s e t of all eigenvalues of the 

circulant matrix W: 

n-1 
W = J exp{2a Reco }o = W[a]. (4) 

1=0 ] 

Here 0=(o. . . ) , i,j€Z% denotes one of the three n*n 0.,On,0~, generalized 
i l * I , J n i _ J 

Pauli matrices which are defined to satisfy the following relations: 

o.o. = oya.a. i<j, an = I ; a.=(n*n) 
ij ji J' I i 

[4,2,3]. 

As in the Ising model case, introducing the tensor products 

X k = I ® . . . ® I ® a ® I ® . . . ® I (p terms) (5) 

Z k = I ® . . . ® I ® a 3 ® I ® . . . ® I (p terms) (6) , 

- where Pauli matrices are placed at the k-th site - one arrives at the following 

form of the transfer matrix [2,3] 

M = [g(.-)]P eXp{b f z ; \ + 1 • Z"+1Zk} exp {a* f f a + X^
1)} (7) 

where [g(a*)] =detW[a] and a*is the dual parameter to be found from its defining 

relation: 

det W[a*] = n11 det w"1 [a] . (8) 

We do not quote the boundary cyclic conditions as finally we are concerned with 

thermodynamic limit only. 

There, the planar models under consideration posses the Kramers-Wannier duality 

property. 

For that to demonstrate let us introduce the operators 

r rT k
X r = Z k a ^ V , = V - - I . - * . «> 

Note then that these very operators do satisfy the same,generalized Clifford al­

gebra defining relations as X, and Z,. Hence (9) defines also an automorphism of 

the very algebra and this must be an inner automorphism because the generalized 
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Clifford algebra with 2p generators is isomorphic to the algebra of all n Px n

p mat­

rices [5]. 

This in turn means that there exists an invertible matrix D such that 

DZkD
_1 = Z k and D \ D " 1 * Xk * ( 1 0 ) 

At the same time, from (7) and (9) one gets 

D-'MD - [g(.*)]P exp}b l(xk • X "
1 ) } exp{a J ^ Z ^ . • Z ^ ) } . (11) 

Considering now the parameter b as the dual of the dual b* one arrives [3] at 

the following duality relation-for the free energy F of the system: 

r ( a.b) = - 1 ln <*KwTá] -dětWlb] + Hbiíail) (12) 
n 

Using now arguments srnrilaj' to those of Kramers and Wannier, under the assumption 

of uniqueness of the existing critical curves, we conclude that their equation, in 

parameter's a and b plane, is of the form: 

detW[a] detW[b] = n11 . (13) 

The interaction matrix is easily diagonalizable and det W is known. One also rea­

dily verifies that for n=2, equation (13) becomes the one known in the Ising model 

case. 

The author expresses his thanks to Z.Strycharski, M.Dudek and J.Lukierski. 
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