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ON TRANSVERSE STRUCTURES OF FOLIATIONS

Robert A.Wolsk

This paper is in final form and no version of it will be submitted
for publication elsewhere.

Many authors have considered geometrical structures on the normal
bundle of a foliation. It is natural to consider only these struc-
tures which are parallel along the leaves of the foliation or as
some authors say projectible. As examples we can mention bundle-
like metrics, transversely projectible or basic comnections,trans-
verse symplectic structures, and in general transverse G-structu-
res. Various properties of these structures have been shown,very
often similar to those well known for corresponding structures on

manifolds. In this paper we shall endeavour to show how to obtain
such results in a most general way.

Let M be a smooth manifold of dimension n , and F a codimen-
sion q foliation on M defined by a cocycle {Ui ,fi, gi;)} where

{Ui] form an open covering of M , fix Ui-—> Rl is a submersion,
and 8yq ¢ tJ(Uin UJ)-—>f1(Uin Uj) is a diffeomorphism such that

rd l Usn U.‘l = g;jifil Uyn U.j « Let M, be a smooth q dimensional

manifold equal to L{ fiwi)' Then the mappings gy4 can be

considered as local diffeomorphisms of the manifold Mp and the
foliation'F as modelled on o« If the manifold M is compact
we can take a finite set of indices.

Analogously as normal bundles of order r (cf. [7]). we can define
transverse (p,r)=velocities and transverse A-bundles.

Example 1. Transverse (p,r)-velocities (p*-jets) .

let m be a point of the manifold M . Let £ g (RF,0)—> (M,m)
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be any loeal smooth mapping of RP mapping O intom . Let <£,g be
two such mappings and let (U,{ ) be an adapted chart such that
s U—>R"URI , P(x) = ( Py(x) , P (X)) , thus ¢, is con-
stant along the leaves. We shall also use the notation

5"1 = (y.‘,..,yn_q), ¢P2 ™ (x1,..,xq) o We say that the mappings

f,g are equivalent if Jg ‘Pzg - Jg 9021’ « This is equivalent to

370 (xy2) = 3"/ox'(x,8) for any miltiindex veXP,|vir,

ia T900sq o

We shall denote the number of such indices by p(r) and the set

of such indices by N(p,r) This equivalence relation does not de=-
pend on the choice of an adapted chart at the point m . The equi-
valence class of a mapping f we denote by [ﬂ; e The set of all

equivalence classes at a point m we denote by Kg’r (M,P) , and
the space Umﬂg'r(M,F) by ®T(u,F) . By 77': let us denote
me

the natural projection of NP*T(M,F) into M, i.e. W;([f];) =
= £(0). One can easily check that for any adapted chart (U,'Y ) the

set ,}-SJU E*T(MF) s isomorphic to xR P(T)  and that the

isomorphism is given by the mapping [f]; r———)('évyng (xif)) I-1,..,q

Thus, if we denote the mapping defined above by \f; ’

r -

Yoo
Y ¢ ('/TP) 1(IJ) —> g ququq.p(r) , the collection of all such

H'©

‘Fp defined by an adapted atlas on M , defines an atlas on the

space np’r(M,F) o« To see that, one has only to notice that if
Py s py are two adapted charts for a foliated manifold (M,F) ,

-1 - -
the composition /3 q)d TR %Rl —> @ qanan is of the form
(f1(y,x) ’ fa(x)) » where y denotes the first n-q coordinates,
x the last q , £, R %R rR*"% , and T, 3 R"%gr% > Rg?,
then
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T T = -q_q_d.P(T)
Lpip( "de) : Rn-ququq.p(r)_eRn “xR°xR is equal to

(21, T;(fz)), where T;(fa) is the mapping of T;(Rq)- quRq.p(r)
induced by f2 .

Summing up, we have proved that xP ’r(M,F) is locally trivial fi-
bre bundle, whose total space admits a codimension q.p(Tr)+q folia-
tion F;' projecting by ’/7’; onto the initial foliation F .

If pan and we take only local diffeomorphisms of R® into M » the
above construction gives a bundle called the transverse frame bun-
dle of the foliated manifold (M,F) and denoted by 5( M,F), which
is a prinoipal fibre bundle with the fibre 1.: .

Example 2. The bundle of transverse A-points of (M,F).

et A be an associative algebra over the field R with the unit
1. The algebra A 1s called local if it is commutative, of finite
dimension over R , and if it admits the unique maximal ideal my of
codimension 1 such that 1y h+1 = 0 for some non-negative integer
h. The smallest such an h 1is called the height of A . Let R[p]=
= R[x.],..,xp] be the algebra of all formal power series in
x1...,xp » and let /mp be the maximal ideal of R[p] of all for-

mal power series without constant terms. Let & be a non-trivial
ideal of R[p] such that R[p]l/& is of finite dimension. Then
A = R[p] /& 18 a local algebra with the maximal ideal -'mp/a_.

Any local algebra is isomorphic to such a locsal algebra (cf.[3]).

Let c;(m.r) be the algebra of the germs of smooth functions con-
stant of the leaves of the foliations F . An algebra homomorphism
L3 cm(m,r) —> A will be called an A=-point of (M,F) near to

m / or infinitely near transverse point to m of kind A / if
«€(£) & £(m) modm for every feCp’(M,F). We denote by AEEH,F]
the set of all A-points of (M,F) near to m and by

A, Fl= kguﬁn[u.p] o Te mapping A [M,F]30+—> meM 1is denoted

by (TT A.

Let A = R[p]/&, /M= /mp/a_ and p, s R[p]—>4 be the natural
projection. Let us denote by N the dimension of 7y . Let

T Cg° (RP) — R[p] be the natural mapping, where cg’(Rp) denotes
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the set of germs of smooth functions on R’ at 0.

Definition. Let f,g be two smooth mappings of RP into M such
that f£(0) = g(o) =m . We shall say that £ is A-equivalent to
g at m 1f(hf) =7 (hg) mod/Mm for any he c;’(M,F) . By [_'f_]A we
denote the equivalence class of f , by %(M,F) all equivalence
classes at m , and A(M,F) = gu l\n(M,F) R

Let [£],e A (M,F) . then Ly(h) = pA(hf) is an A-point of (M,F)

near m , where he€ c:“’(M,F) . This correspondence

A(M,F) > [f]Al—> oLy € A(M,F] is a bijection. The proof of this is
the same as of Lemma 1.8 of[3].

Let (U,p) = (U,(y1,..,yn_q,x1....xq)) be an iu‘iapted chart, let
biyee,by De a basis of M . On the set WA (U) we can define
the following chart

Let .eN be an A-point of (M,F) near to (y,x) . Then o((xi) =

k=1

k-1,t-’N

‘fA(o(‘) = (y’x'(al;)in'],--'q

L]

Using the same methods as in Lemma 1.9 and 1.10 of[3] we can
check that " A is bijective.

Let (U,Y) and (V,¥) be two adapted charts and let

P vq t ¥ (UaV)—>P(UAV) be of the form (£,,f,)
where £, R:—> g4 0 f2 : R%—>R? . then kPAo k|JA'"_1 -
= (£4,A(£,))/ for the definition of A(f) see[3)/. Let Y= (Ugipy)

be’ an adapted atlas of the manifold (M,F). With the differentiable
structure defined by (7):&-1(1’1)' (Pn) » the set A[M,F] is a

smooth manifold, ’77"A: A[M,F]—> M a fibre bundle over M with
the fibreA.On the manifold A[M,F] there is a canonically defined

foliation 'F, of the same dimensional as the foliation P . The
projection Tr A mhaps leaves of the foliation FA onto leaves
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of the foliation F . The bundle admits a global section, the zero
section 8,e For any transverse mapping f M1—> M2 to the fo-
liation F of the manifold Mo f defines a smooth mapping

ACL) ¢ A[M,2"F] —>A[M,,F]

A(£)(o)(h) = £ (fh) , where LeA [M.,f*F] and h eC®(M,,F) .
Am 1 m M2

If F is the foliation by points of the manifold M, A[M,F]=
= A[M]- the bundle of A-points of M.

Example 3. Transverse natural bundles.

Let Polq be the category of smooth manifolds foliated by smooth
codimension q foliations with smooth, foliation preserving trans-
verse mapping to the foliation.

Definition. A covariant functor N on the category Folq into the
category of locally trivial fibre bundles and their fibre mappings
is called a transverse natural bundle if the following conditions
are satisfied; i/for any foliated manifold (M,F), N(M,F) is a
fibre bundle over the manifold M ;

ii/if £3 (MO.FO)—>(M1,F1) is a transverse mapping

such that f’F.' =F, then NXN(£) N(MO,FO)——> N(M1,F1) covers
£ and maps the fibre X( Mo’Fo)x over x diffeomorphically onto
the fibre N(M1,F1)f(x) over f£(x);

1ii) N is a regular functor i.e. if f 3 UxM,—> M1 is ~
a differentiable mapping, U an open subsét of RK s such that
for any point t of the set U , the mapping ftz (MO,FO)—>(M1,F1)
g.t(x) = £(t,x) is a transverse mapping to the foliation and

f:F1 = P, , then the mapping UxN(Mo,Fo)a(t,y)HN(ft)(y)eN(M1,F1)
is of class C* ‘

Propertiess 1/ Por any morphism £ 3 (M,,F )—>(M,,F,) the fibre
bundle f"N(m1'F1) is isomorphic to N(M,F ).

2/ let f£,g be two morphisms of (MO,FO) into (M1,F1)
such that f£(m) = g(m) . Let (U, ) be an adapted chart at m and
(V,¥) an adapted chart at f£(m) . Since the mappings f and g
preserve the foliation, the mappings £ = Y£¢™ |yRP~9xpd->g™ %Re,



232 ROBERT A.WOLAK

£= wey s B %Rl > K %R , where din M, = n , din M, =m,

are of the form f£(y,x) = (£4(¥,X), £5(x)) , &(y,x) =
= (31(y,x), gz(x)) » vhere y denotes the first n-q coordinates
x the last q coordinates, £,,8, RP—>R™% and

2,081 R*—>R% . If the germs of the mappings f, and g, at

?'1(m) are equal, then the mappings N(f) and N(g) define the
same mapping on the fibre N(Mo’Fo)m .

Proof. The property 1 1is obvious. One has only to show the se-
cond. Let (U,¥), (V,¥) be two adapted charts such that

£, |P(U) = g,|P(U) and @(U) = 0" %p? , where D¥ denotes the
k=disc. Assume that Y(m) = 0 and ¥ (£(m)) = O . Then the
following diagram is commutative.

£lu, g |U
U > V
N S R S
io fz ’ 32 P
¢ > pl

where 1, 3 p? —= 0™ %p? is given by io(x) = (0,x) and

p 3 Dn"'qan-—>Dq by p(y,x) =y .
Since N is a functor, it is sufficient to show that the mappings
£, and g induce the same mapping in the fibre over 0 . But since

pfi, = £, and DPEl, = &, , N(£,) = N(PININ(L )= Ne,) =
- N(p)N(é)N(io) e But N(p) and N(i,) induce isomorphisms on

the fibre, hence the mappings N(g) and N(f) are equal on the
fibre over 0, which ends the proof.

Definition. A transverse normal bundle N is finite order r if
for any two morphisms £,g (MO,FO)‘—>(M1,F1) the integer =
is the smallest one for which the following implication is true:
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35t = 358 => MENy) = Ne)(y) for any point y of

the fibre N(Mo’Fo’x o
Having this definition we can prove the following theorem.

Theorem 1. Let N be a transverse natural bundle. Then there
exists an integer r and an Lr-space W such that N is isomor-
phic to the fibre bundle assoclated to the transverse xr=frame
bundle with the standard fibre W . The smallest such integer = is
the order of the transverse natural bundle N .

Proof. The first case to consider is that of a foliated manifold
(M,F) whose foliation F is given by a global submersion

f i1 M—>MN . In this case the transverse r=frame bundle Lr(M,F)
is isomorphic to f!Lr(Mo) e Let B(Lr(Mo),W) be an associated
fibre bundle to the r-frame bundle Lr(uo) with the standard fi-
bre W . Then f"B(Lr(Mo),w) is an associated fibre bundle to the
transverse r-frame bundle 1¥(M,F) with the standard fibre W .
In what follows we shall demote B(L"(M,),¥) by B(M,W) and
£78( I.r(Mb).w) by B(M,F;W) . The isomorphism from Palais=-Terg’s
Theorem (cf.[6]) we shall denote by B(Mo) « Thus the following
diagram is commutatives

a
MM, F) ———>2 N (M) > (M)
B(M, F) B(M "™ , B(M,)
> ) v
£"B(M,) d > B(Y,,W)

where B(M,F) = B(Mo)"° a, a is the isomorphism from Property 1

. and N, is the natural bundle on the category of q manifolds ob=-
tained fram N by foliating q manifolds by points. To this natu=
ral bundle we have applied Palais-Terng’s Theorem. The mapping
B(M,F) 1is an isomorphism of fibre bundles since both mappings
B(llo). and a are. .

To complete this speclal case we have to show that these iscmor-
phisms are functorial. Let: 1‘1 be a foliation given by a global
submersion f1: M;—> 7V, and F, be a foliation givexi_by a
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global submersion f2 3 Mz——>V2 such that the diagram

£ -
, : %

v >y

is commutative for some smooth mapping £ . We have to show that
the following diagram is commutative.

: N(£)
N(M,, Fy) N(M,,F5)
\ B(£)

B(M1,F1SW) B(M21F23w)

It is so, because the following diagram is commutatives

B(M,,F,) > BN (V) —— N (V,)
B(M,,F, \ B(Vy)
N(£) B(My,Fy ;W) —————> B(V,3W)
No(£) N, ()
\ A\ Y
(¥, F) > £3H,(Vp)-[————> No(V,) B(%)

(V)
B(£)™=B(£)

\4 v
B(M,, Fy3W) > B(Vy3W)

" The general case .can be proved in the following way. Let (M,F) be
a foliated manifold. Then there exists a covering 9 ={ Uw} A
"end global submersion £, : U, —>V defining the foliation
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P|Up . Since N(U.,F|U;) & N(M,F)| U, , the bundle N(M,f) is iso-
morphic to || N(U,,F| U;) /~ , where the relation ~ is
<€ 4

induced by the natural identification of points in various Ug .

For each &£ we have the isomorphism B(U,,F|U,), B(U:pF|Us) 3

: N(UOC,F\U‘K)-—B- B(U;,F|U,3W), which agrees with the relation ~
and the corresponding relation for the bundles B(U,,F|Uy;W),
Le A . Thus the bundle :tlEJI\ N(UzyF|Us) /~ is isomorphic to

B(_UJ,FIU’K;W) /~ +This isomorphism induced by B(U.,F|Uc)
we shall denote by B%(M,F). Since the bundle:clg_fa B(U,y FlU, W) A

is isomorphic to the associated fibre bundle to the transverse

, r-frame bundle of (M,F) with the standard fibre W, B(M,F;W) ,
for each such covering %(, = UJ} we have defined an isomorphism

of N(M,F) onto B(M,F;W) denoted by Bq,(M,F). We have to show
that this isomorphism does not depend on the covering? . Let %
and‘V‘ be two such coverings and W ve a covering which is finer
then U and ¥ . Then the following diagram is commutative.

N, F) —> [| MUF|U, )/~ ——> [ B(U, ,P|U;sW) /~ —> B(M,F3W)

1l ’(w .FIWJ)/~ — || B(W ,FIWJ,W)/~

where the horizontal arrows have been defined previously, and the
two vertical arrows are naturally defined. Thus gu(M,F) =B“(M,F).
Thérefore these isomorphisms are independent of the choice of a
coveringQ/,, and we denote the isomorphism thus obtained by B(M,F)

The only remaining thing to prove is to show that B(M,F) define
an isomorphism of the functors N and B (.;W) .

Let f;(u oF )——*(MZ.FZ) be a morphism. We can choose a covering
U= {Ui} I of M1 with submersions g 3 Ui—-> Vi defining the

foliation F, , and a covering W = {WJ} g ©°f M, , with submer-

sions hdx WJ——>Z defining the foliation F2 such that for any

J
ieI there exists je J with the property: f(Ui)c: W; o« Let us

denote f£|U; Uy —>W, by £, . Then f, induces a mapping
fi:_'vi——> ZJ. Because N and B(.,W) are functors,the diagrams
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MMy, Fy) «— [IN(U;,F Uy) /~  LIB(U Py Uy sW) /o <— BOU, oF, 5W)
N(£) l UNCL)  UB(L,) B(£)
MMy, Fp) «— [ (W, FoWg)/n LI BQU,Fy WysW) v B(M,,FpsW)

are commutative.

Because the foliations F1|Ui end Fale are globally definéd by
submersions, it follows from the first part of the proof that the
diagram

—I‘LN(Ui'F‘l Ui)/‘v —>_U.B(U1'F1 U1;W)/""
L N(2y) l L B(£y)
LNy Py W)/~ ————> LIB(Wy, By Wy3i) /v
commtes, which effectively ends.the proof.

From our point of view, the bundles considered in Examples 1,2,3
are nothing else but the inverse images of the (p,r)-velocities,
A-bundles and ngtural bundles, respectively, on the manifold

via the mappings fi . They glue together because diffeomorphisms
can be lifted to these bundles. Thus for these structures and geo-
metrical objects connected with them we have the following "dic-
tionary". On the left hend side there are transverse objects on
the foliated manifold (M,F), and on the right hand side there are
corresponding objects on the manifold MF .

normal bundle of order r tangent bundle of order r
bundle of transverse (p,r)}velocities bundle of (p,r)~velocities
bundle of transverse A-points bundle of A-points
transverse natural bundle natural bundle

foliated (p,r)=-tensor (p,r)=-tensor

transverssly projectible G-structure G-structure

basic r=form r-form

basic connection connection

One can 1ift foliated tensors and basic connections to the trans-
verse bundles mentioned above by repeating the constructions for
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. the corresponding bundles on manifolds with only minor changes.
But this process is very tedious (cf. [7]). Using the corresponden-
ce explained in the wdictionarym we can prove it in the following
way. Let t be a transverse object on (M,F). If we can 1ift such
an object to a transverse bundle B of the type considered, the
corresponding object on the manifold Mp can be lifted to the cor
responding bundle on the manifold Mg , and this 1ift is left in-
variant by the lifts of the transformations 8y 40 since any trans-
verse object projected onto Mp is left invariant by & «Inver—-
sely, any object on Mg invariant by g;4 ocan be lifted to (M,F)
Therefore we have to check the following. Let t and t' be two
objects of a given type on manifolds N and N', respectively,
and £ be a diffeomorphism of N onto XK' , such that t = £7t’.
Let 1 be the lifting oonsidered. Then IL(t) = L(£)™L(t’) .

First, we shall use this procedure to 1lift foliated tensor fields.
Let t be a foliated tensor field of type (p,s) on the foliated
manifold (M,F). Then t defines a tensor field T of type (p,s)
on the manifold M, such that t|U; = £3% and g5 T|24(U, 0 U,) =
= %'Ifi(UinU ) .
We shall 1ift foliated tensor fields to the following transverse
bundles.

1/ Normal bundle of order r .

The normal bundle NT(M,F) of order r admits a foliation F*
modelled on the manifold TF(M,) with transformations ( g13)
To these bundles we shall be able to 1lift any foliated tensor
field; thus we have to check

2P L ey D) 2or A 2 0,1,00,r .
i1/ Bundle of transverse (p,r)-velocities.
The bundle of transverse (p,r)-velocities N°**(M,F) on the fo-
liated manifold (M,F) has a natural foliation F¥ . The foliation
F- is modelled on Tp’r(mp) with Tr(gi ) as transformations. The=-
refore to be able to lift foliated tensor fields' we have to check

that if r’t = t' then T:(f)xt‘a) = t'("\) for any A& N(p,T) «

iii/ Bundle of transverse A-points .

The bundle A(M,F) of transverse A-points of the foliated manifold
(M,F) admits a foliation F, modelled on the manifold A(MF) with
transformations A(834) « To these bundles we shall 1ift foliated
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tensor fields of type (0,8) or (1,8); thus we have to check

a) a)
(£%+) A = ACL)®t A

iv/ Transverse natural bundles.

for ’AII 0,00,N

Let N(M.F) be a transverse natural bundle on the foliated mani-

fold (M,F) . Then the manifold N(M,F)

the same dimension as F modelled on N(M@

‘N(gy ). .We shall be able to 1lift foliated tensorg of type (1,8)
« but only if the functor N fulfils the following conditiong

(o) The union of all open orbits of the action of L; on the
standard fibre W 1is dense in W .
The condition (o) allows to define the complete 1lift of tensor

admits a foliation FN

of

) with transformations

fields of type (1,8) to this natural bundle (cf. [1]).

Because the 1ifts for the first three types are defined multipli-

catively, we have to check the equalities only for functions,
1=-forms and vector fields. The case of natural bundles will be

dealt separately.

a/ Let heC®™M) , £ : M>M be a local diffeomorphism. We have to

show that
1/ (me)® 2 nlM g2y

11/ (h)?) - h(“)m;'(f)

111/ e)?) 2 n M yey

for a = 0..0,1‘

for JAe N(p,r)

for A = 0,e¢,N

The equalities follow directly from the definitions.

b/ Let X be a vector field on M, £ ¢: M—>M be a local diffeo-

morphism .

We have to show that
) r (a) )
ii/ Tp(f)!x = (f!X)

111/ an) X o (r,x)("\)

for

for

for
-

L3

A ,- 0,..,r
Ae N(p,r)

A= Opee,N
%

Since the proofs of these equalities are similar, we shall show
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it only for A-bundles.

= M2, 0 M)
=) c,';‘v (w(fxx))('“)
=3 ok, (£ )
- (fﬁw)(a)(x(v))
for any vector field X, A, Y= O,¢s,N « Therefore A(f)"w(m =
= (f!W)(%) .
Let t be a foliated tensor field on the manifold (M,F) , and let
t('u’) be the 1ift to one of the considered bundles obtained in the

above way. Then the tensor field t(’“ ) has the following proper-
ties.

k
k
i/ met(/“') = ({thﬂi-n—r) for ﬂ,ﬂ-n o’...’r ;
k
1/ o{x(»tun = (f; t)(,a—A) for u,AE N(p,r) ;

K ‘
111/ 7 xmt('“) - Z'c;\’# (,(1; ) for 9, v 20,.4,¥ ,

where X is a foliated vector field and X denotes the con-
traction. The equalities follow from the vorresponding equalities
for tensor fields on model manifolds. It is also clear that if a
lifting of a tensor field fulfils suitable equality, it must be
unique as the vector fields x(") span the whole tangent space.
In this way we retrieved the results of 1lifting of foliated ten-
sor fields to normal bundles of order r contained in [7] and
proved the following. )

Theorem 2. Let (M,F) be a foliated manifold.

Then for any 7 e N(p,r) , there exists the unique lifting
L, 1 (M,r)——vmve(n;(m,r) . F;), €= 0,1 such that

.:(iool',f - Lﬁ_/u(.f;t) for any «e N(p,r) ,
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and for any ‘) = O,eee,N , there exists the unique lifting

L, 5 (,F)—> 1 (A(KF), F))) , €= 0,1, such that
v

k v
Now, we shall deal with the fourth case. For transverse natural

bundles the following theorem is true.

Theorem 3. let (M,F) be a foliated manifold, N a transverse natue
ral bundle fulfilling the condition (o) . For any foliated tensor
field t of type (1,8), there exists the unique 1lift 1€ to the
total space of the bundle N(M,P) such that

900,00, 20 = (6(Xyp00,X 0
for any foliated vector fields x_l o

Proof. Let X be a foliated veotor field and X' be its represen=
tative. Let “ft be the flow of X’ . It preserves the foliation
P . Thus we can define X( (ft), which in its turn is the flow of a
vector field X' on the total space of N(M,F) , and preserves
the foliation Py .Thus we have defined a foliated vector field on
N(M,F) which does not depend on the choice of X’ and is denoted
by x° « On an open set U on which the foliation P 1is defined
by a submersion f , xc is an inverse image by N(f) of the com=
Plete 1lift xg of the corresponding vector field X, . Thus

can be obtained as the inverse image of the complete 1lift of a
vector field on the model manifold MF , as directly from the de-
finition (r,x)c = §(£),X° , for any vector field X and eny
local diffeomorphism f .

Let 1t be a tensor field of type (1,8) on the manifold N and £
be a local diffeomorphism of N . Then

m2Y™%(x5, ..., 20 ) = me™Y, tCmee) 5,00, m(0) 20)

= 5™y tc((f"x.‘)c,..-.(f!xg)c)

= WL (B2 (X)) e e 2, (X MO
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-1 C
= (f Rt(f!x1,..7,f!xs))
= (fnt(x1,100 ,XB))C

- (f“t)c(xf,...,xg Y .

Thus because of the condition (o), N(f)xtc = (f’t)c « Therefore,

each foliated tensor field t of type (1,8) can be lifted to the
total space of the transverse natural bundle N(M,F) . We put

C c
t0 Uy = 2] ¢

o ? w;here t
fi(ui) « Then

o is the corresponding tensor field on

00,00 X0y, = 256505000 X

= (an(2,)) " 1Scag, (%)%, a2, (X))

SNC € RPN TS o

= (AN EIN N4 (X, gpee s X N
= ((ar)" T4 (X, peenX, NG
= (X ees X0,

where X, is the corresponding vector field on HF to the folia-
ted vector field X . This ends the proof of Theorem 3 .

To complete this short paper we shall prove that the 1lift of ba-
sic connections to normal bundles of order r , bundles of transe
" verse (p,r)=-velocities and transverse A-bundles exist. Because we
shall apply the same method as for tensor fields, we have to check
only the following. If |/ is a connection on a manifold M, V' a
connection on a manifold M’ , and f is a local diffeomorphism
of M into M’ such that £, V Y= V’fnxf’Y for any two vec-

tor fields, then

1/ e, V. ) o O e ¥4 por A i m0,e.,T
= V) 1we XA e

~ 'VI
ii/ m;'r! VX(MY("‘) a Vlrrf x(MT;t!Y(“) for A ,ueN(p,r) ;
. ’ P =
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~ ¢

~ N ) .

for a’,“v l'O,oo.No

A(D) !Y('U’)

where X,Y are vector fields, and ﬁ is the 1ift of the conneo=-
tion |/ . The proof of these cases are similar. We shall check
only the third one.

VR el v 2 vy

- 4 ! £ Y)(Y')
Z"aﬁ % £,X n
=S oY, (g Ty
. v (v)
=2 o, MBIV 4D
= AC2) (S c;’M.( VxY)(v’)
= a0V )y .
Theorem ‘4. Let (M,F) be a foliate& manifold, Let ? be a basic
connection. Let B(M’LF) be a transverse A-bundle. Then there e-

xists a connesction |/ , basic for the foliation F, of the to=-
tal space of the bundle B(M,F) such that

Vx(,u) Y(Q) 'Z c/uvﬂ (ny)(V) .

A

for any follated veotor fields X,Y on the manifold (M,F) and
a’/k. O’QIO'N. .
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