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A GENERALIZED LEIBNIZ RULE AND FOUNDATION OF A DISCRETE QUATER-
NIONIC ANALYSIS

Ko Glirlebeck/W. Sprossig

0. INTRODUCTION

This paper presents some new results in the real quaternionic
analysis. As well known, the Leibniz rule of the classical complex
function theory is given by the identity

e =g+ @D (0.1

where f,g are complex-valued functions defined over the field of
complex numbers and }‘- = -3_- (%t-{eg) ; Especially, it follows
that the product of analytic functions is also an analytic func-
tion. The last assertion remains not valid for the case of quater-
nionic-valued functions. Therefore formula (1.1) cannot be trans-
ferred to higher dimensions in this simple waye.

Let ey i=0,1,2,3 be the quaternionic units which fulfil the
following conditions
eoeiﬁeieo-ei ’ im 091,2,3

ei- -eo ’ is= 1,2,3 (002)
eiej + ejeiao i, = 1,2,3 31 ¢ °

Further, given the real-valued functions fi,gi , 1 =2 0,1,2,3
and the quaternionic-valued functions

3
f= Z eifi and g = E €8y Then we put fon Re £
1=0 i=0
and f = Imf = e;fy o

i=q
Introducing the differentiations by

This paper is in final form end no version of it will be submitted
for publication elsewhere.
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3 3

T 1,3f Z af 3 1L 2 af

alf - E(bxo + e a arf = E x
i=q =4

and setting

D =e dx adXoadXqy=e4AXAdXyadX 30, dX A dX3a 0% =0 32X AdX 140X,
vV = dx ‘dx1*dxzkdx
A. Sudbery[9])obtained the formula

d[g D f] {[3 g] £+ g[alf]} (0.3)

Let now /= be the generalized Nabla-operator. Then we

)
ZE}ibx
immediately ‘obtain from a result’ 111[3] the identity

g sx; [T s8] = [Fele + 7[Ve] (0.4)
where .Eo =ae - i ajey o
=q

In Section 1 we deduce a generalized Leibniz rule for quaternionic-
valued functions, whose left side issimilar to this of the
relation (0.1).
In Section 2 of our paper we present a model of a discrete func-
tiontheory of quaternions. Using this results we obtained a new
approach to the foundation of numerical methods for solving
partial differential equations. The definition of a discrete
analytic function in the plane was firstly introduced by J.Ferrand
in 1944 (see [2]). A complex-valued function f defined on the
lattice 2vx z* is called discrete analytic, if it satisfies the
condition

£(m,n) + 1 £(m+1,n) + 1°2(me1,n041) + 1°f(m,ned) = 0

Essential properties of such functions were obtained in papers of
RoJ. Duffin [1], S. Hayabara[§] and D. Zeilberger [10] o In the
first part of the second section we prove the existence of the
fundamental solution of the discrete Laplacian and point out a
way of its épproximative calculation., After this we consider
discrete analogues to the operators from‘[5] by help of the fun-
damental solution and we investigate their algebraic properties.
Most of them coincide with the corresponding ones of the conti-
nuous case. Therefore the basic methods of hyperéomplex function
theory can be also used in the discrete theory. Finally, we deduce
formulas of representation of solutions of the discrete Laplace
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equation and describe the orthogonal complement of the space of
discrete~analytic functions in L2°

1. A LEIBNIZ RULE FOR QUATERNIONIC FUNCTIONS

Let f = Z bid i€ » 8 = Z 8;ey quaternionic functions. The

i=Q i=0
product between both functions is determined by

3 3
fgm Z Z figjeiej (1.1)
i=g j=0
Obviously, in general, fg ¢ gf .

Using the properties (0.2) the product (1.1) can be expressed by
3
fg = (fog0 - Zfigi)eo + [(f233-f3g2) + fog1 + f1g°] eq +
i=q (1.2)
+ [(f3g1-f1g3) + fogz-c-gofz]ez + [(f1g2-f2g1)+fog3fgof3] ey
Let |H be the skew=-field of quaternions. Then the set of real-

differentiable quaternionic functions will be denoted by C;, °
Furthermore let Bi y 1 = 0,1,2,3,be the partial derivatives

:Ti ,i=0,1,2,3 .
The elassical Cauchy-Riemann operator is generalized by
3 - 3
V= Z aiei while /= 9 e, - Z 3;e; denotes the adjoint

19 i=1
ot 7. Notice that VIV =7V =/, A veing the Laplacian in R4
We now state our product rule as follows

THEOREM 1
Let £,g € Cj) o Then holds

Vi£e) = (Vg - T(Ve) + 2 Re(£ Vg (1.3)
Proofo.

Using the product (1.1) it follows

Vitg) = VZ Z figje e, = Z 958 ( Z figjei .‘l) =

i=0 |= =0 j=0

3 3
Z 3 (f;85)e e ey = 2 [(akfi)gj + fi(akg:l).] eye; e
10.':0 iljlk-o
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Setting
3 3
Sy = Z (akfi)g ;€184 €3 and S, = Z fi(akgj)ekeiej
"J‘.kso Wik=0

one obtains for 51

Z Zakieke Z gjey = (P .

i=0 k=0
Following algebraic calculations are necessary for the treatment
of the term s2 . )
s 3 3

SchZZf(bkg)ekeiJ ;{Zo bgje+

J‘-o Kmq 1=4
3

Z Z £; 3 gylejey + Z Z 1,8 )e ey =

J.O \eq J-Q k=q

3
_[ Z Z fieiakek]g - 21; fiaig + foaog +

k=4 {=1

-] 3 3
Z: 50,8 + Z f0xeE = [ Z-_- £ dey ] g =
k=41 k=q

1=4q

+

+

3 3
2 Z £,9;8 + £,0.8 + Z f,0;9,8 = -1 (Vg) +
1=4 1=1

+f3g-2 Z_ fiaig+fag--f(Vg)+2Re(fV)g
iz

Finally the sum S.1 + 32 yields the wanted formula.

Special case
If J f = 3 g = 0, then (1, 3) leads to the formula

V(fg) = (Vf)g + T (Vg) -2 [Re(fV)] g (1.4)

3
where 6- Z 51"1 °

i1 .
A connection between the operator V and the basic terms of the
vector analysis is given by '
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1. ﬁf e, = (grad f )e,
def

00
_ (1.5)
2. Uf = (-aivie, +rot T

° - 9
def -0
~ €1 €2 ©3

where rot f = 3, 95 33 , div f = Z aif °
£, £, I, 124

Corollary 1 (Product rules of the vector analysis)
When f = f 0% *+ £ s &= 8o, + 2 and both functions belong to

C:' then are valid the following relations.

(i) &grad £,8, = (grad :fo)go + £ (grad g;)
(1) aiv(f 8) = (grad f )g + £ div 8 Ky
(iii) rot(f g) grad £, n g + f rot €
(iv) aiv fxg -g rotf—f rotg
~ ~ ~ ~ ~
(v) gradf 2 mfxrot g+ Exrot T+ (f : grad)g + (g : grad)f
» A

(vi) 1rot fxg = f aiv g - § aiv T + (E-grad)f - (f-grad)g °

Proof.

Pirst setting f = f e, , & = g,8, » Using (4.4) it follows

V(fogoeo) = (Vfoeo)go o+ Toeol Vgoeo)A +0

Taking into consideration (1.5) we obtain (i). If we put
f = foeo y & = g it follows immediately

Ve = (Vo + 2,(Fo) + 0

Making use of the notation (1.5) then the definition of the
quaternionic product yields
A ~ ~ L)

.-(divfog)eo+rotfoén -(g:radi’o)g eo+gradfoxrotg-(fodivg)eo+forot§ .
This proves the statements (ii) and (iii). Now we set f = f,g = 8o
Then formula (1.4) gives

2 an A A A AArA 3 A

Vite) = (Vf)g - f(V&) - ( Z fiai) g (1.6) .

inq
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Applying (1.5) and (1.2) the left side of (1.6) can be expressed
by o A A ~ A ~ A A~ PSS

V (-f-g eo+f‘g) = -div(f"g)eo- grad f:g + rot fxg

while the right side of (1.6) can be transformed into

3
A Ala A P ~
[(-divf)e°+rot f]g - f[(-divg)eo+rot§_] - ( “Zl fiai)g = (1.7)
- ~ ~ A A A A AN
= =(rot £):g e, + rot fxg -(divf)g + (div g)f +
S 3
r.] ~N -~ ~ A
+ (f-rot 8le, - fxrot g - (; £,3,)8
=4

Interchanging the functions f and g we get
-grad(f- g)-rot fltg =(rot§)x £- (divg) f+(aive) E—gxrotf-(g-grad) 1 °8),

Adding of (1.7) and (1.8) proves the relation (v) while subtrac=-
ting of these identities shows the validity of (vi) and (iv).

- Corollary 2 (Borel-Pompeiu formula in 242
Let G be a bounded domain in R, whose boundary is a piece~
wise~smooth Liapunov surface I" « Furthermore let f C:'(G)AG”(GUF').»

Then

1, [ xo _1[9 £) 4o J T+ x€C °

P |x=y| G
3
where o= 4 a(iei is the unit vector of the outer normal on I
at the point y
3 ~-X
and Q= Z: B¢y » Oy .%—ii o
i=0 .
" Proof.
Setting in Theorem 1 E = -é—;z Tile e, it follows

VEs = (VE)E - E(Vf) + 2 Re(EV)E o

By integrsting over the domain G we obtain the identity

JV(Ef)dG - f (PE)E a6 - IE( P£)ac + 2 Re fE(Vf)dG o
G G -

G G
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- Applying Green's theorem it follows

_Iec Ef al ‘]‘,‘f:f—lf ac -jE(Vf)dG +;nlz f—|—-f—7 3, 4G (1.10)
r G XY G G

It is easy to see that

"E(?f) +;—:'2'ix—fy-'-zaofﬂE(Vf) .

From (1.10) we deduce the relation
1 J 1 J 0r 1 J 1

L Efdl = ac + Vrac

a2 22 I lx=y? 20 ¢ xyI?
3

The differentiation by the operator V "Z 31‘*1 completes the
proof. i=0

Remark 1.

Let GC RB be a bounded domain whose boundary is a piecewise=-
Smooth Liapunov surface [* . Setting

3 .
E = 11?7?1?! y o™ Z % ey where o= (u1,u2,o(3) the unit

1=4 3
X3~y
vector of the outer normal on " and © = Z -%_T-j* ey o
: i=1 l y'
Then £(x) ¢
L [« 1Jmf3 x) . x¢
==z dal + 4G = - (1.11)
ﬁrlx-yl ﬁs I x-y] o , x¢3
Remark 2.

Introducing the operators
Ff 'J“ (ve) £ al and Tf = J(VE)f ae .
r G
Then we find

b i ’ in G
FE+ TVf =

o , incoa °

The following theorem is very useful for describing the image of
the operator T
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Corollary 3

Let G be a bounded domain in R4 or RB, M= 3 Go Moreover we
assume that the boundery [" split into the subsets ', and r,
where [7,n l"2-¢ and I".,ul"'2 =" . If we put f, =0 on r
g =0 on P2 and g€ker V , we have the identities

T[( Vfo)g] =f8

1 ’

and
Yo T(Vz)e =0

where YO is the trace operator onto the boundary r.

Proof.
From (1.4) we see

Vite) = (VE)e + £,(Ve) » (1.12)

Since Vg = 0, the identity (1.12) yields by application of the
operator T )
1 -mPre=t[(V)e]
and thereby
fog - Tl:(Vfo)g] °

Corollary 4.

Let fog, gekerv o Then we have either fo = consto or g = 0 o
Proof,

From Theorem 1 it immediately follows
0=Vize) = (Vz)e

and the proof is completeo

Remark 3.

It is worth noticing that the above proved Leibniz rule can be
also formulated in the difference calculuse. To do this let us fix
the following notations

f(x+e h)=£(x) 3
321‘-» 1:11 , he R ’Dh-Zalilei ,

DhF - (aloleo.ual;e_»] 36}2192’31;33)'1? Qﬁhc = (3136-0951113-:] ’_blale-zfagé-B) * G ’

F = (f,f,f,f), G = (8:8,8,8), Shg ‘(S(X+eoh),ooo,g(x*GBh))e The
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" sign "." means the usual inner product in the space }H4. Then

D, (f8) =DyF S, - FD,G + 2 [Re(F Dh)]-c . (1.13)

2., FOUNDATION OF A DISCRETE QUATERNIONIC FUNCTION THEORY

2.1 Fundamental solution of the discrete Laplacian -A h
Definition 1

Let Ra = {(ih,jh,kh); i,joke Z ,heR, h = const}, GC Rg

o = ([aa]x[ca)x[an]) aR2 . Q =intq

1=N-h, NeN , Yo the trace operator

- = A(3 - B(x, ’ RB ’
(-Ayw) (x) = A(x)u(x) z%l(x)\{:(:? Duld xeRY

A -;62 , B(x,xth) = ;‘5 ,

(eed = 2 z@eton

L,(G) =xeG
1,0 = { £+ {f,2)

v h?  x=0
Kh ( x) =
0 x40

L,(6)

Applying well-known theorems of the theory of finite difference
methods we get the following statements.

Lemma 1 [7] o

The boundary value problem

A0 = Kx)  in q

(2.1)
ol = © on 39
has the unique solution ul,h and it holds the unequality
ul,h(X) 20 V erl : (2.2)

Proof, discrete maximum principle
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Lemma 2.

Let be L»le Assuming up ., Uy p are solutions of (2.1) in Q19
? 1
respectively. If the functions U nt Y1.n in co QL, co Ql, respec-=
9 9
tively, are continued by zero then is the unequality

uL,h(x) 3> ul,h(x) V xe Rg (2.3)

valide.
Proof., K; = K; in Q, uL)ul on Q;, maximum principlee

Lemma 3.
up 0 2 vy L@ Vxeq (2.4)

Proof.

To prove this unequality suppose, on the contrary, that exists a
point x €Q {0} with b p(xg) 3y @) ¥ xeqr{x,}.

Then i't follows the existence of Q ¢ contained in Ql with x te.,
{0] ¢ Ql' QN ? Q, # ¢ and therefore Uy h satisfies

-A h ul.h(x) = 0 in Ql'.

ul’h(x) $0 onJQ,

The assumption and the maximum principle yield

u = const in Q/, and consequently u =2 0 in Q4 o Thereby it
1,h 1 1,h 1
proves the Lemma 3.

We now consider the limit 1-»9° for the construction o.” a
fundamental solution E (x). Expanding the function ul h in =
series of eigenfunctions of the operator -Ah one can obtain
estimates of Eh(x).

Lemma 4.
The functions

055 iz = e com By, oo 41T, on BTy

1,59k m 0,15000,N=1 (2.5)

are the nbrmed eigenfunctions of the operator - Ah in Ql and

Ag’xh) [sin2 -2-2'1'1 Th + sin® ZjHpptsin? _2_%? Th] (2.6)
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iyjsk = Oy150e0y,N=1 are the corresponding eigenvalues.

The relations (2.5) and (2.6) lead to the following representa-
tion of ul,h °

Lemma 5o
N-4

(1,h)

1 C
ul’h(x1.x2,x3) = i o 175-8;5) ‘Pijk (x1.x2.x3) in Ql (2.7)

»Js

L]
Proof, Fourier series.

The following Lemma 6 is necessary to get an estimate for the
funection u °
1,h

Lemma 60
Let N = 14 with a fixed number h. Then holds
N-4
1
153,km0  (2141)4(25+1) %+ (2k+1)

7 € C4l+ Gy (2.8)

with constants 01,02 independently of 1l.

Proofe Let be
Vi [(i—- Hh, (1+ -%)h] x [(3- %)h.(af %)h]x [(k- 2, (kt %)h}

rou (22424 xg)’/2 b D€V b Ty = (15 Pex2)V2 p

then we obtain

[=4,0]* 1% 0] +|%5 0l
J fsz-;QL-h3,\<$up r4—@ 3 h‘*s’{?-;‘jh“‘
Vi i 13k ik o 0

4 1
<ﬁh '———@ °
s (rijk- )3

For any C and r7(1+}-ﬁ|c)% we have : h )3\<—%whence
(r- r




54 K. GURLEBECK/W. SPRUSSIG

1 h3‘ J ;!zdg.,. 30-—21—-113. ThatmeansforC(“/fs-

Tijk i3k Tijk
—-n’ g J L a . (249)
r3 sk -3¢y, J -

ijk

If we choose, for instanéé, C = 0s5 then r 5 h 1is sufficiently
for (2.9)s Now we estimate (C = 0o5)

N4 N
1 1 3
< -3 h° =
1,3.km0 (2141423414412 S B 13 ka1 (1243%4k%)h
.5 b
= 1 31 1 3
LI v (1%+3%4k%)h° S P L 2" s
12435241% 16 J 1%+3%4k%325 Tijk

1 1 1 1
<02+-m Z T—h3\<02+m-1:—f~;-—c- Z I-—zd(}‘

QM Qn Ty 13k Vigk T
1 1 -2 1 ! 5
€C, + — I r dG = C, + 1 (2,10)
| 21
Lemma 7. The sequence {u (x)} is convergent Vxe R 3,
—_—— 1,h 1 h

Proofo From (2.3) and (2.4) it follows that it is sufficiently
to show the boundedness of {ul,h(o)} « We have

|“1 h(o)l 5 2 BTN TZER D €
! 41 1,j,kw0 5in 571—L + eeo + 8in S—'HIL _



A GENERALIZED LEIBNIZ RULE AND FOUNDATION 55

N-4
<"'h'§ 12 2.2 £
Sa’ S, 4 (2i+1)°¥°h . oe s (k+1)T%n° S
T 161 161
N-4

[c2'+-‘ —E—-1}=

1 1
£ -
Z (2i41)°4+(2341) 24 (2k41)2 © 1 W (1.T3c)

i,j,ke0

1-13' ¢

3
Definition 2,  E(x) -1];:”'.2 ul’h(x) » X€Ry o

Remark 4. In any bounded domain G cRg {“1,h(x)}
uniformely converges with respect to xo.

THEOREM 2.

It is true

v
-AhEh(x) -{ W » x=0
0 N x %0

Notice that the function Eh(x) is an analog to the fundamental
solution of the continuous caseo

!
20,2 Some operators
Definition 3. Let GC Ry be a bounded connected domain furnished
with the property that the boundary 9 G is a subset of the
boundary of another domain which is composed by quader stones
whose edges lie parallel to the axls.
The translation of the point x€¢ Rh by + h in the x - direction
will be denoted by V—- hx o Beside, let £ $ G — | be a quater-
nionic functione It can be represented by

£f(x) = Z fy(x)ey , £ 3 G — R . The space L,(G) is given
imo

by {ft ¢G—H 3 Z l£]? v3 < w} o A discrete
yeG
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generalization of the Cauchy~Riemann operator of the classical
function theory, of the (7-operator of the hypercomplex function
theory, respectively, is defined as follows

3
£(VF | x)=£(x)
(B (VID)(x) = & > ey —IaT T (2.11)
1‘1 h 0
A fundamental solution of this operator is determined by
oh(x) = DL(V) Ey(x) .
Further we define
(TpE) (x) = Z of (x-y) 2(y)n’ (2012)
thuaGI
and
(Fp) (x) = T}, D;;(V)"f + £(x) (2413)

where 361 signifies the "left" boundary, this means that

36, = { x€36 1+ J xe{1,2,3} with V] ,x ¢ ¢ . Notice that
’

similerly is introduced the "right" boundary

A6, .{ x€36 ¢+ Jwe{1,2,3} with v:,hxfzc} .

Remark 5.

The operator T; is a discrete analog of the hypercomplex
T-operator. The relation (2.13) can be seen as a discrete enalog
of the Borel-Pompeiu formulae.

In order to obtain the complete analogy to the continuous case it
is necessary to show that the operator F; is also defined on the
the boundary values of these functions which are given in G.

For this purpuse we have to carry out comprehensive calculations,
which will be omitted here. Indeed, let us only formulate the
result. It consists in the following representation of the
operator Fh

(F*£) (x) = - (x=V> _y)D(M)£(y)h , x€Gu 3 G,  (2014)
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+ t
where V«,hx = Vh"x ,
3Gy -{xeaGl sV p X ¢ G} ,

G ¢'{Xéacr 3 V:’h x* G}

D(n) = 5;1 n e, o The vector n = (n1,n2,n3) denoted the
unit vector of the outer normal on the surface 9 Geo
Remark 6o
Of course it is possible to define F; by (2.14) whence we can

get the Borel-Pompeiu formula (2613)o

Next we intend to investigate the algebraic properties of the
operators I, F'{l ’ T; and D;;(V)o

Property 1. (BL(V)THE)(x) = £(x) x€ Gudgy (215)
Proofs It holds

(OH(VITED) (x) = ; B (Pef (x-0) 210> = 2(x)
y€Gud 1

Property 2. F;f € ker n;<v><éuac1> (2.16)

Proofe. Act D;(V) on F;'lf. Make use of the formulas (2.13) and
(2.15).

Property 3.  FZ = B} | (2.17)
Proof, Note that
[z-miot 0] [ -mnf (D] 2 = [ 1-273D5 (D) + TEDR(DITY e -
« [ 1~} Dh(V)]f , x€Gud Gy o }
Proverty 4. (F'£)(x) = £(x) , x€ 3030y, F£€ ker BH(P)(Gudcy)(2.18)

Proof. Make use of (2¢13)e
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Property 5. Tife ker D( V) (co (Gy3Gy)) (2.19)

Proof, Act DE(V) on '1‘; .

Property 6o (IFDp(V)£)(x) = ~(Fp£)(x), V x€ co (Gud ¢;) (2.20)
Proofs This follows from (2.13).

Property 7. (Fyf)(x) = 0, x€co(GudCy), e ker D(V)(&uda;) (2.21)
Proofs It is to obtain by virtue of (2.20)

It is an interesting fact, that Property 7. has a conversion. For
this reason we assume that f fulfils the relation

(B0 (x) =0, ¥xeoo (Gudcy) o

Then . o
(Tf D}(V)E)(x) =0, ¥V xeco (GudG))

and
(rf D}(V)D)(x) =0, V xede .

Using of (2.13) it is readily seen that
(yof)(x) = y'o(sz)(x) on 3G o

The right side of the latter relation we have to understand as a
continuation of F;f onto aGr s Which guarantees that

+ + 2
F,,f€ ker Dh(V)(G).
It is well-known that under the above assumptions the boundary

value problem
. "Ah u=0 in G

You=Yy,f on 96

has the unique solution F;f. Hence, Property 7 can be extended
to the following equivalence.
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Property 7's
+ °
Fh(X'Of) (x) = O’Vxe co(Gyd G)) iff existed a function

geker DF(V)(Gudc) with yg =gt . (2.22)

Fmt
Property 8. FhThf =0

Proofs Making use of (2.13) it leads to (2.23)

2.3 Applications

The preceding statements were devoted bringing to light several
analogies between the continuous and the discrete operator calcu=-
lus. Now we want to discuss applications of the discrete hyper—
complex methods for the approximative solution of boundary value
problems of the Laplace eguation. Basing on the results of the
continuous case it is not difficult to extend these methods to
other boundary value problems.

THEOREM 3. (Representation of discrete harmonic functions)
Every function fekerAh(G) permits the representation

tacp,+ b, (2.23)

where q:.leker D:;( V)(auaGl), ¢26ker D;'I(V)(G) are uniquely

defined functions.

Proofe

Write f = F+(yof) + T+D+(V)f. Then in virtue of (2.13) follows
immediately q;.‘ - Fh(yof), ‘Pz Dh(V)f. The uniquenesg of the
functions ¢1 and ¢2 is easy to verify.

In former papers [3]1[4] we found that for the treatment of
boundary value problems and eigenvalue problems it is very useful
to know the complement of the space L,(G)n ker D(V) and the
corresponding orthoprojectors. Therefore we intend to generalize
this approach on the discrete case.



60 Ko GURLEBECK/W. SPRUSSIG

Definition 3.
Write e;(x) = DE(V)Eh(x). The operator T; is defined as follows

(T;f)(x) = Z e');(x-.v)f(y)h3 °

ye('}uaar
THEOREM 4.
The operator -
Yo rf; tim 1#; — im y T, is invertibleo
Proof.
By virtue of T,Fjv € kerd, follows from [ T Fy v =0

immediately TEI“Z v = 0 and therefore F; v = O The relation
(2013) yields v = ™ pf(V)v as v = F'w and concluding v = O.
h h

It remains to prove that ' YOTI:F; is a surjection. Let
Yow € im YoTn » vhat means that y w= YT, v .
The boundary value problem

(-]
Aw= 0 in G

YoW = YoIp v on 3G

has a unique solution and can be represented in a unique way

by wad, + T P, where ¢, €ker D, (V), P, € ker D:(V) ’

whence |y =chy + ToFy ¢o0 From YoW = J oTh V one conclude
ch = 0 which means that y w = (y-oT;F;)c";a .

THEOREM 5.
The discrete space L2(G) admits the orthogonal decomposition

1,(6) = [kernt(7)(3udc ) n 1,] ® DL(MW](Gudc, ).

Proof,o
First we show that the defined subspaces are orthogonale. Let
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fexer B}(V)(GudG)), geD (VNI (Gudc,). This implies

g = D;(V)Hc We have that

(f.g) ; ﬂg(y)kp ZZ £(¥e ) hy)‘ ? -
- ;Z £(y)e HYW® - 27 3~ (V) \¥) = 2;: £(7)e, H(y)n®
o v;,hE ®

o

- 2 Z £V ¥e, H(y)h® =

« B Vy,n3% gu uha‘}rp

ZZ f(vh Ve, H(yK Z ; J?y)e“ H(y)h® -

3 V G

-3 T I e, BIE Z;Zf(_y)e“ H(y)n® -
o Va.h(éuacm) *

-2 Zf(v e HWEE = T F(DZ®HEII = 0
G .

The explicit construction of the orthoprojectors on the subspaces

Yields that these are complementarye. This is the content of the
next theoreme.

THEQREM 6.
The discrete operators

Ph = % (ot polh ¢ 1p(@) —= L(®)
By =1-P%

are the orthoprojectors on kerD,(Y)(GudG,) and on Dh(VOW;(GUBGr)-
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Proof,
L]
Obviously holds im?i'; C ker D;( V)(GUaGl)o As for

feker Dj( V) (Sud ay)

P+f - Fy (Yo nfh )-1YOT}-1f - Fﬁ(rofr -1% hFh)f = Fhf =z

[ ]
we have imP; = ker D;(V)(GUAG]_). A simple calculation
shows that

2 2
+ + + + + At + o+
Pr *Pn *@Qn *"On:PunBn=0nPn
On the other hand :l.m(i+ c Dh(V)W (GuéG )e It is easy to see
because
= @¥e = TTf - TOF (p TTFD)"Y 1Tf e W)
n@nf = Tuf = TuFh (poThFn) poTnf € VW2
whence )
* ¢ e DT (VIWI(Guac.). Let £ = D(V)H, HeW)

QL £ €Dy 2(GudG). Let now f = D s HEW, o Then it
follows

Qif =Q@f DL(V)H = Bp(DE = Byt f) ™y m 0p(V)H -

=t - F(pIpF ;)”X-OH - f o

On this way we obtain explicit representations of the solutions
of the problems

—Ah uw=wo -Ah veelf
(2.24) respectively (2.25)
You-s rov=o .
THEOREM 7.

The solution of the problem (2.24) has the representation

u = Fig + TpR (oo f ) Yy (2 - Fp) (2.26)

and the solution of the problem (2.25) is given in the form

-n+ ot ‘
veaT @ Tp £ (2.27)
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. Proof, Make use of the decomposition
-Ay = DBL(V)IDL(V) .

Remark 7. ,
If we start the above considerations with D; (V) then we
obtain similar results.

Remark 8.

Since it is possible to calculate the functions Eh(x), eh(x)
the representations (2,26) and (2.27) are given a numerical
meaning. The solution of the discrete boundary value problem is
reduced to a matrix multiplication.

Remark 9.

Since the functions Eh(x) and e;(x) are homogeneous with
respect to h it is sufficient to compute these functions with a
fixed meshwidth.luore exactly holds

h
1 s

+ (ih,,3h,,kh,) -(h‘)2 + (ih,,jh,,kh,)
°h2 22 d0g9 X005 E, °h1 R Rt |

Remark 10.

In order to find out a connection between the solutions of the
discrete and continuous boundary value problems we have to
consider the behaviour of the described formulas for h —e 0. These
investigations will be carried out in another paper.

Remark 11
o+

The formulas for the discrete operators F; and Th can be
used as suitable formulas of quadrature for the continuous
operators F and T o
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