Július Korbaš

Note on Stieffel-Whitney classes of flag manifolds

Persistent URL: http://dml.cz/dmlcz/701413

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
The Stiefel-Whitney characteristic classes seem to contain quite interesting information on real flag manifolds (cf. e.g. [3], [4], [6]). Let $G(k_1, \ldots, k_r)$ denote the real flag manifold $O(k_1+\ldots+k_r)/O(k_1)\times\ldots\times O(k_r)$, where $k_1, \ldots, k_r (r \geq 2)$ are fixed positive integers. For instance, $G(k_1, k_2)$ is the Grassmann manifold of k_1-planes (or k_2-planes) in real Euclidean k_1+k_2-space.

Recall (cf. [5] for details) that over the manifold $G(k_1, \ldots, k_r)$ one has naturally defined k_i-dimensional vector bundles γ_i ($i=1, \ldots, r$) with their Whitney sum being trivial bundle. For the tangent bundle one has

\[TG(k_1, \ldots, k_r) = \bigoplus_{1 \leq i < j \leq r} \gamma_i \otimes \gamma_j. \]

Moreover, by [1], the \mathbb{Z}_2-cohomology algebra $H(G(k_1, \ldots, k_r); \mathbb{Z}_2)$ can be identified with

\[Z_2[w_1(\gamma_1), \ldots, w_{k_1}(\gamma_1), \ldots, w_1(\gamma_r), \ldots, w_{k_r}(\gamma_r)]/J, \]

where J is an ideal determined by single relation $\bigoplus_{i=1}^r w(\gamma_i) = 1$. Here $w(\gamma) = 1 + w_1(\gamma) + w_2(\gamma) + \ldots$ means the total Stiefel-Whitney class of a vector bundle γ. If M is a smooth closed manifold, one puts as usual $w(M) = w(TM)$.

The main purpose of this short note is to illustrate our introductory observation anew by the following

THEOREM. If $r \geq 3$, $k_1 \equiv k_2 \equiv \ldots \equiv k_r (\text{mod } 2)$ and $k_1k_2\ldots k_r > 1$, then $w_3(G(k_1, \ldots, k_r)) \in H(G(k_1, \ldots, k_r); \mathbb{Z}_2)$ does not vanish.

As an application, one gets

COROLLARY. If $r \geq 3$, then the flag manifold $G(k_1, \ldots, k_r)$ admits an almost complex structure if and only if $k_1 = k_2 = \ldots = k_r = 1$ and $\dim(G(k_1, \ldots, k_r)) = \binom{r}{2}$ is an even number.

This paper is in final form and no version of it will be submitted for publication elsewhere.
Namely, it is easily verified that the manifold $G(1,\ldots,1)$ is parallelizable.

Therefore, if its dimension is even, this manifold obviously admits an almost complex structure.

Moreover, in order that a real smooth closed manifold M be almost complex, it is necessary that M be even-dimensional, orientable and also that all the integral Stiefel-Whitney classes $W_{2i-1}(M)\in H^{2i-1}(M;\mathbb{Z})$ be zeros (cf. [7, 41.9]), hence the same be true for $w_{2i-1}(M)\in H^{2i-1}(M;\mathbb{Z}_2)$.

Keeping in mind that $k_1\equiv k_2\equiv\ldots\equiv k_r \pmod{2}$ is equivalent to orientability of $G(k_1,\ldots,k_r)$ (cf. [3]), we get Corollary as a consequence of Theorem indeed.

Proof of Theorem. Without loss of generality, we suppose $k_1\leq k_2\leq\ldots\leq k_r$. Hence $k_1k_2\ldots k_r>1$ implies clearly $k_r>2$.

Consider first the case $r=3$. If $k_1\equiv k_2\equiv k_3 \pmod{2}$, we compute from (1) (cf. [3] if needed)

$$w_2(G(k_1,k_2,k_3)) = \left[1 + \binom{k_1}{2} + \binom{k_2}{2}\right]w_1^2(\gamma_1) + \left[1 + \binom{k_2}{2} + \binom{k_3}{2}\right]w_1^2(\gamma_2) + w_1(\gamma_1)w_1(\gamma_2).$$

Since $w_1(G(k_1,k_2,k_3))$ is now zero, the Wu formula yields

$$w_3(G(k_1,k_2,k_3)) = w_1^2(\gamma_1)w_1(\gamma_2) + w_1(\gamma_1)w_1^2(\gamma_2).$$

By direct finding a basis in $H(G(k_1,k_2,k_3);\mathbb{Z}_2)$ or by applying the Leray-Hirsch Theorem to the obvious differentiable fibre bundle $G(k_2,k_3)\to G(k_1,k_2,k_3)$

$\xrightarrow{i} \quad G(k_1,k_2,k_3)$

one proves the assertion.

Now recall ([2]) that when $F\subset E$ is a differentiable fibre bundle, then one has $TE = p^*TB\oplus\eta$, where η is the "tangent bundle along the fibres". So, if F is connected, $w_1(F)\neq 0$ implies $w_j(E)\neq 0$.

This, when applied to the fibre bundle $G(k_2,\ldots,k_r)\to G(k_1,\ldots,k_r)$

$\xrightarrow{i} \quad G(k_1,k_2,\ldots,k_r), \quad G(k_1,\ldots,k_r) \to G(k_1,\ldots,k_r)$
with an obvious induction, proves Theorem completely.

REFERENCES

4. KORBAŠ, J. "Vector fields on the manifolds $O(n_1+...+n_s)/O(n_1)x...xO(n_s)$", Ph.D. Thesis, Czechoslovak Acad. Scienc., Prague 1985 (Slovak).