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SOME GENERALIZATION OF GODEMENT’S THEOREM ON DIVISICN

Jan Kubarski

ABSTRACT., Some generalization of Godement’s theorem on division

is found. This generalization characterizes all equivalence relation
R (on a C%manifold) such that every abstract class of R has a coun=-
table number of arcwise connected components and the family of all
such components is a foliation. Using it, another proof of that cla-
ssical Godement’s theorem is obtained.

The classical Godement’s theorem on division [3] - which charac-
terizes regular equivalence relations R on a ¢ manifold V - is well
known: :

THEOREM 1. (Godement [31). Let dimV=n. The following conditions
are equivalent: '

(1) In the set V/R there exists a differential structure of an
n-k-dim., C®-manifold (with the quotient topology), such that the na-
tural projection V -+ Vp is a submersion.

(2) (a) RcVxV is a proper n+k-dim. c®submanifold of VxV,

(v) pry:R =V, (x,y) > %, is a submersion. ®
The family L of all abstract classes of an equivalence relation R

fulfilling (1) has the following properties:
(1°) every abstract class of R has a countable number of arcwise

connected components,

(2°) the family ¥ of all arcwise connected components of all ab-
stract classes of R is a k-dim. foliation.

Of course, here: each arcwise connected component is equal to a
connected component. '

Now, we give some generalization of Godement’s theorem which cha-
racterizes all equivalence relations fulfilling (1°) and (2°) (in
particular, all foliations). -

THEOREM 2. Let R be any equivalence relation on a Hausdorff c®-
manifold V with a countable basis. The following conditions are equ-
ivalent:

This paper is in final form and no version of it will be submitted
for publication elsewhere.
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(1) the family £ of all abstract classes of R has the above pro-
perties (1°) and (20),

(2) there exists a subset «LcR such that

(i) O <) where A={(x,x); xeV},
(ii) L) is a proper n+k-dim. C®-submanifold of VxV,
(iii) pr, 1QL: L) — V is a submersion,
(iv) if we drnote, for (x,y)eR, ‘
Ry s=RO(xIXV), £y s=(pry 1007 (x), Dy oyiRy = Ry (3,8) o (x,8),
then we have that the setA B(X y)[.ﬂ.y]n ‘Q’x is open in the man. .ﬂ,x,
(v) the manifolds RX esee lemma below) have a countable num-
ber of connected components.

LEMMA. If {),cR has properties (i)#(iv), then, for each point xeV,
there exists exactly one ¢®manifold ﬁx with the set of points Rx’
such that, for each (x,y)éRx, .

(a) D(x y)[.ﬂ.yla fg[ (i.e. is open in Rx),

(b) D(x,y)"ﬂ'y:'n’y -—»D(x'y)[.ﬂ-y]a:'Rx is a diffeomorphism.

The manifolds Rx have the properties:

i) D :R_ — K is a diffeomorphism

((ii; ﬁ;xg—z)\h& is aﬁ immersion, i '

(1ii) ﬁx are Hausdorff,

(iv) if, in addition, the family ¥ of all arcwise connected com-
ponents of all abstract classes of R is a k-dim. foliation, then the
mapping yx:Lx — ﬁx, y —> (x,y), is a diffeomorphism for each xeV
(LX - the abstract class of R through x equipped with the uniquely
determined differential structure of an immerse submanifold of V su-
ch that each element of F contained in Lx is an open subman. of I‘x)-

The very simple proof of this lemma is omitted.

Proof of theorem 2. (1)=%(2). Let us take any nice covering
{(Ui,qi,lﬁn); ieN} of F [2,p.18681 and denote by Qi the plaque of the
chart (Ui,ﬂ,’i) which contains x, eri. Of course, the covering {Ui,
i€N} of V has the property:

(#) if X,7€U;N U, and yeol, then yed, i,JeN.

J
Ve put
ﬂ.i:={(x,y)erV,- x€Uy, yeQ]it} and .Q.:aiLEJNﬂi.

We prove that ) has properties (i)#(v). (i) is evident. To prove
(ii), it suffices to show that

19) ‘Q'i is open in ) (with respect to the topology induced from
VXV),

2%) "Q‘i is a proper C®submanifold of VxV.

1°) results from the equality .Q;iﬁ.ﬂan(Uiin) which is a conse=-
quence of (#). To show 2°), we first define, for each chart (Ui,cpi),
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the mappings q:i and 71 in such a way that

;= (91,92) = (x == (2](x),95(x))e B¥x R

Next, we put

vy = R, (x,3) - (9(x), 9X(x), 91(3)).

The inverse mapping of vy is
wy leIR le —-».Q. (a b,c) »—-)(q?i (a b), @ '1(0 b)).

Now, it is easy to see that 2° ) holds (Vi is a global chart on ..Qa ).
To show condition (iii), it is enough to consider the following com—

n-k).

muting diagram v
Q; —Ls RORE
pry10y | oz
i n
Ui - R

for each ieN. To notice condition (iv), we write ..Q.x={x}x U o
where N ={1eN, xeU;}. Therefore
y)m, 100, =Uy oy e (£8%(03 NG 2y

Condition (v) follows from proper y (J.v) of R, from our lemma,

(2)2(1). We assume that {2 <R fulfils (i)é(v). ‘Let us take the
embedding u:V — £, X > (X,X). Of course, u'T*{L (where T"2=Kerd,,
d= pr, 1£2) is a vector bundle of rank k over V. We define a strong
homomorphism 7 of vector bundles as a superposition

L (Prz)’.
70 ——nT.Q.—-»T.ﬂ.-—-)T(VXV)————»TV
+ pr L 4
v —->.Q. c e vy 22 Ly,

> is a monomorphism because, for xeV, x,, (v)=C(3 )*(v), veT(x x)n,
where Jj, H{xixV =V, (x,y) > y. Thus E:=ImxcTV is a vector subbun-
dle of order k of 1V, and B\ =(Jy )y, x) Ty, x)‘ﬁ 3, xeV.

Via bijections -rx - 'R'x, y :—>\(x,y), xeV, every abstract class
of R is equipped with a differential structure of a manifold. The
correctness follows from property (i) of the manifolds ﬁx (see lemma)
The manifolds obtained are integral for the distribution E. Indeed,
for xeV, the inclusion L, & V is an immersion (because it is the
superposition L T% K co{x¥ X V), and 7L =(j,) e (x, 1) T x, )
=E x* Let F be the family of all connected components of all manifo-
lds I‘x obtained above. By the Frobenius' theorem [1,p.861, F is a k-
dim. foliation. To conclude this theorem, we need to demonstrate
that the family F is equal to the family of arcwise connected compo-
nents of all abstract classes of R. For the purpose, it is sufficie-
nt to show that every manifold I‘x is a k-=leaf of V with respect to
all locally arcwise connected topological spaces, i.e. if X is such
a space and f:X — V a continuous mapping such that fIXlc I‘x’ then
the induced mapping f:X —>» L, is continuous, too. Let X and f be as
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above; take tGX and (U,9) - a chart around y:=f(t) distinguished by
F»,»e:U —R kygn-k, Let Q be an arcwise connected component of UNL,
through y(with respect to the topology induced from V). Q contains
countably many plaques of the chart (U,¢) since L, has - by (v) -
countably many connected components, and each of them -~ as a connec-
ted immerse submanifold of V - has a countable basis. Thus pr,[9[QI]
is an arcwise connected and countable set in R™" , so it is one-poi-
nt. This states that Q is equal to one plaque of the chart (U,¢). The
set f~ [UF\L ] is open in X. Let B be the arcwise connected compone-
nt of the set £ [U(\L J, containing x. Of course, B is open in X,

f{BlcQ and fIB:B — V is continuous. The free choice of teX
implies the continuity of f %—» L ]

REMARK. The connectivity of the manli‘olds ﬁ is equivalent (in
the above theorem) to the fact that £ is a follatlon(l e. every abs-
tract class of R is an arcwise connected set). n

REMARK., If ¥ is the subgroupoid (of the groupoid determined by R)

. generated by the set (), fulfilling conditions (i)+(iv) from theorem
2, then the set ¥ N({x}xV), xeV, ia an open-closed subset of ﬁx‘ a

THEOREM 3. The following conditions are equivalent:

(1) the family of all abstract.classes of R is a k-dim, foliation,

(2) there exists a subset {LcR such that

(i)+(iv) as in theorem 2,
(v?) £, generates R (as a groupoid),
(vi’) the manifolds "Q'x are connected.

Proof. (1)#(2). The set {L constructed in the proof of theorem 2
fulfils (vi”) in an evident manner. The connectedness of manifolds ﬁx
implies that (v follows from the last remark.

(2)%(1). It suffices to show that the manifolds ﬁx are connected.
Let us take any xoeV and yeon. Since L) generates R, there exist
points X;,e..,X €Ly, such that (in the groupoid R) (xo,y)=
=(xn_1,y)'...-(x1,x2)-(xo,x1) where (xi,xi+1)e.ﬂx1, i=0,44.,n-1,

X =Y (vi”) implies the existence of curves cy {0, 1) —->._Q,xi such
that ci(o) (xi,xi), 01(1)=(xi’xi+1)‘ We define a curve c:0,n) — Ry,
by the formula c(t)= D( ,x (ci(t-i)) for i¢t<¢i+1 to obtain a co-
ntinuous curve joining (xo,x ) and (xo,y) ]

Theorem 2 enables us to carry out another proof of the classical
Godement’s theorem.

Iroof of theorem 1. (1)=(2) as in Godement’s proof.

(2)3(1). Iet us suppose (a) and (b). We notice that Ld:=R fulfi-
1s properties (i)+(v) from assertion (2) in theorem 2. Thus, theorem
2 states that the family ¥ of all connected components of all abstra-
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ct classes of R is a k-dim. foliation.

Now, we prove that, for each point xeV, there exist a real number

ay0 and a chart (U,9) around x distlnguished by ¥, such that
(1) :U %> R¥xK(a) where K(a):=11 (-a,a),
(11) ¢(x) = (0,0),

(iii) if L is an abstract class of R and LNU# ¢, then LNU is e-
xactly one plaque of the chart (U,q).

Let us assume to the contrary that there exists a point xoeV such
that, for each real number a)0 and each chart (U,cy) around X, disti=-
nguished by F, fulfilling (i) and (ii), we have: there is an abstra-
ct class L of R such that the set LNU contains at least two diffe-
rent plaques. Take any chart (U,q;) around X, distinguished by F such
that @:U £ RR™ ™ and g(x,) = (0,0). et vs st

=cy-‘nR xnrl(-- 7)), meN.
Of course, (U ,quU ) :I.s a chart distlnguished by ¥, too. Then we fi-
nd an abstract class L such that NU_ contains two plaques Qm and
Qm, say Qm =q [lR {c ';l, Qm.-q "m x{cg}l, for some ¢ #cm. Let us
put xm =@-1(0,c ), s=1 2. Of course, xmeL , which means that (xm,xz)
€R. Besides x. ‘75'3'65’ X, s=1,2. Take

(V= {(x,y)eVxV; xeU and yeQx}
where Q denotes the plaque of (U,9) through x. We prove that N 18
open in R. First, we note (as about -.O.- in the proof of theorem 2)
that ¥ is a proper n+k-dim. C -submanlfold of V¥V, Thus £¥is an
n+k-dim, proper submanifold of the n+k-dim. manifold R, so it is
open in R. Further, since (x;l,x’i)¢.ﬂ,’ and’ (x;l,xli) -5 (%1%, )»
therefore (xo,x defY, which leads to a contradiction because x
€Qx, implies (x,,x Jeld.

From the above it follows that there exists a C%-atlas on V con-
sisting of some chart (U,q) distinguished by F such that (i):(4iii)
hold for a=aq. Let JF be such an atlas. With the help of #, we shall
construct a C®%atlas on the topological space V » such that the
projection Ir:V —»V/ is a submersion. First, i‘rom the equality

1II‘JrlU]] = pr [pr1"1 [U]], UcvVv, we get the openess of the projection
X. Next, taking a chart (U,q)e A, we define G: 0 — k(agq), where i
=X[Ul, in such a way that the diagram

v —ZX L7
(%) ¢ p, @
R'xK(aqg) —2+ K(ag), Po(%¥) =7,
comutes. Of course, we must put §(L):=py(¢(x)) for x€UNL, Lel..
The correctness follows from the fact that UNL contains exactly one
plaque. The continuity of @ follows from the equality 5-1 (A)=

(o]
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' =I[q71[kaA1], Ac:K(a?), whereas the openness - from @IBl=
—pzlq[ﬂ 2 [(Bl1N Ull, Bcl. The bijectivity of § is evident. In the end,
we take two charts (U,qa) and (W,{)e A such that ﬁnw;l g We prove
that ¢o§ is of C®class, For the purpose, we put @:=%" 'tinWicV.
We notice that ® is saturated by abstract classes of R, and (0]
=NONU = 1O®NW1 = TN #W. Now, we prove - auxiliarily - that
&lﬁﬂﬁo’]ﬂ@:V'@ —¢i0n ﬁ]q:ﬁn"k is a submersion. In order to do this,
we consider the diagram
((@nux)NR 22 @nvu
(%%) przlsub. . @1sub.lﬁ5olﬂ®nu (fgsl.)mersion)
® 208 31Tn )
From (¥) we get the submersivity of §.MI@NU=§ TN WeX1@NU, whe-
reas from dizgram (%%) - the submersivity of anl'l@ Changing ¢ to ¢,

we get the smoothness of *‘I N 1®. To prove that of \P‘? - it is suffi-
cient to analyse the diagram below:

Tex® _—J 1006
0 118, gav v

Yo
w ?
3nW] . =
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