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PRADINES-TYPE GROUPOIDS

Jan Kubarski

ABSTRACT, This paper is devoted to applications of the theory of
differential spaces in the sense of R.Sikorski to groupoids. By us-
ing these spaces, the notion of a smooth groupoid, much more general
than a differential groupoid, is defined here. The theory of folia-
tions is the source of such groupoids. Next, J.Pradines’ idea of
constructing, for every diff. groupoid, some vector bundle with na-

tural algebraic structures = callep the Lie algebroid of this diff,
groupoid - is used for smooth groupoids.

INTRODUCTION. The notion of a differential groupoid introduced by
Ch.Ehresmann [3] is a natural extension of the notion of a ILie group,
Dif 'erential groupoids (especially ILie groupoids) constitute an ap-
propriate direction for the development of certain geometric theor-
ies such as connexions and Lie pseudogroups. The works by J.Pradines
(111 # [15) were the landmark in the theory of diff. groupoids. The
atithor defined, for each differential groupoid & (over a manifold V)
some object - called the Lie algebroid of # - which is a vector bun=-
dle T;Q over V such that (Tg§)|x=Tux§X, Qxau'1(x), veV, a-the source,
u, - the unit over x. T:& has the property: there exists some natu-
ral bijection between the module of global smooth sections of this
bundle and the module of smooth right-invariant vector fields on $.
It enables one to carry an R-Lie algebra structure to the module of
all global sections of the bundle T:Q. This notion generalizes the
notion of a Lie algebra of a Iie group. Some new directions of the
development of the theory'of groupoids are described by J.Pradines
in [161. The theory of foliations (also that of pseudogroups) is the
source of the important nontransitive groupoids whose space is not
- in general - a manifold. For example, the subgroupoid 5quf a Lie
groupoid @ (over V) consisting of the elements for which the source
and the target lie on some leaf of a given foliation¥of V. However,
it is evident that one can always define on §¢ some natural structu-

This paper is in final form and no version of it will be submitted
for publication elsewhere.
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re of a differential space in the sense of R.Sikorski [19) (see al-
so [20],[21)), and it turns out that all operations in 5} are then
smooth as the mappings in the category of differential spaces. This
gives rise to the defining of the notion of a groupoid in the cate-
gory of diff, spaces. If, in addition, the sets¢x~1(x), xeV («- the
source in a given groupoid ¢ over V) are the so-called leaves of the
diff. space®, then this groupoid is called a smooth groupoid. 53 is
such a groupoid.

The present author’s observation show that, by following the idea
of J.Pradines, one can construct, for each smooth groupoid #, an ob-
ject A($), analogous to the Lie algebroid of a diff. groupoid, not
being - unfortunately in general - a vector bundle. The above examp=-
le 5; of a smooth groupoid have the property that the constructed
object A(Q?) is a vector bundle (although 37 is hardly ever diff.
groupoid). The smooth groupoids $ for which the objects A(2) are ve-
ctor bundles shall be call the Pradines-type groupoids. An especial-
ly important role will be played by those groupoids from among them

which are also the so-called smooth groupoids over foliations. They
are -.in the author’s opinion - a proper generalization of princi-

pal fibre bundles, for they enable one to build a sensible theory of
connexions (see [81,(91).

This work (in the considerable part) has come into being on the
basis of preprint (71 and is its extension.

1. PRELIMINARIES. First, we give two definitions fundamental for
our work: of a groupoid and of a differential space.

By a groupoid we shall mean (after N.V.Que [171) the system
(1.1) (®,x,B,V,+)
consisting of sets ¢ and V and mappings «,R: % — V, *:$3% % — & whe-
re &*% = {(g,h)e dxP; «g=Bh}, fulfilling the axioms (i) «(geh)=wh
and B(geh)=Bg for (g,h)e$*3, (ii) (feg)+h=f+(geh) for (f,g), (g,h)
e$x@, (iii) for each point xeV, there exists an element uxe§ such
that u(ux)=B(ux)=x, heu =h when ath=x, u, +g=g when Bg=x (ux is uniqu=
ely determined and called the unit over x), (iv) for each element h
e$, there exists an element h™ e ® such that O((h-1)=[3h, B(h-1)=uh,
h'h-1=uBh’ h-1'h=“uh (h~" is uniquely determined).

By a differential space (d.s. for short) (see R.Sikorski [191:([21)
we mean each couple (M,C) (sometimes denoted briefly by M) consisting
of a set M and a non-empty family C of real functions on M closed
with respect to (w.r.t.) localization and superposition with all fu-
nctions of C®class on the Catesian spaces. The set C is then called
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the differential structure of this space (d.str. for short) and M -
its support. More precisely, let us denote by T the weakest topolo=-
gy on M such that all functions of C are continuous. For AcM, we
denote by CA the set of all functions h:A —» R such that, for any x
€A, there exist a neighbourhood (nbh) Ue"t’c of x and a function geC
satisfying hlUnA=gliUNA. The closedness w.r.t. localization may be ex-
pressed in the form Cy=C. Denote by scC the set of all functions
P(gq(*)seeergy(e +)) where ¢ is a C ®_ function on R, g;€C, iem, m=1,2,.
««The closedness wer.t. superposition with all functions of C®%class
on the Cartesian spaces means that scC=C,

Every d.s. (M,C) is also considered as the topological space
(M,TQ) 1f C is a non—empty family of real functions on M, then C:=
=(sc C)M is the smallest d.str. on M containing G . C is called the
d.str. generated by C. If (M,C) is a d.S., then (A,C ) is such aspa-
ce, too, for any subset ACM and is called a proper differential sub-
space of (M,C) (proper d.subs., for short). C " is called induced from
(M,C) on A. (A,CA) is sometimes denoted by Mype

Let (M,C) and (N,D) be any d.s.’s. The mapping f:l —> N is called
(1) smooth if gefeC for geD. Then we write f:(M,C) — (N,D), (ii) a
diffeomorphism (diff. for short) if it is a bijection and f and £~
are smooth, (iii) an embedding if f:(M,C) —» (fml’thMl) is a diff,
By a product (M,C)X(N,D) we mean the d.s. (MxN,C¥D) where CXD is the
d.str. generated by {gepr,, geClu {hepr,, heD}. For 4CM and BCN we
have (CxD)AxB“chDB

Let V be any C ®-manifold. Then (v, CO(V)) is, of course, a d.s.
and Tcatv)c‘ Top V. What is more, the equality T, CO(V)= TopV holds if
and only if (iff) V is Hausdorff. In the Hausdorff case, for anyopen
set UCV (the notation: U&V), we have Cm(Vm)a CQ(V)U. In this con-
nection, we adopt the following definition [19): a d.s. (V,C) iscal=-

led an n-dim. differential manifold (d.man.) if, for each point xeV,
there exist a nbh Ue.'t'c of x, an open subset £ cR® and some diff.

9:(U, Cy) —> WL, Cm(an) )+ The topology T; is then Hausdorff. We
shall identify a Hausdorff c%%manifold V with the d.man. (v, CQ(V)).

Having d.s.’s at our dispogsal, we are able to give the following
(1.,2) DEFINITION. By a groupoid in the category of d.s.’s we mean
groupoid (1.1) in which & and V are d.s.’s and the mappings «,R:3 =V
g —ad, h>n!, WiV &, x> u,, as well as +:3%#% —& are
smooth (§#& denotes here the proper d.subs. of §x&),

We notice that u:V — 3 is an embedding-

From now, by a groupoid we shall mean a groupoid in the category
of d.s.’s and we shall sometimes say "a groupoid& " instead of "a
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groupoid ($,«a,B,V,)",

Homomorphisms between groupoids are defined in an evident manner.
(1.3) EXAMPLE., Let RCVxV be any equivalence relation on a d.s. V.
Then the system
(1.4) (R’Pr1 IR,prle,V,-),
where R is here the proper d.subs. of VxV and (y,z)(x,¥y)=(x,2), is
a groupoid called the groupoid of the eguivalence relation R, m
(1.5) EXAMPLE, Let " be any pseudogroup of smooth transformations on
a d.man. V. Then, for each k=1,2,.¢.., the set of jets {jxf, fel, xeDf}
CJ'(V V), with the d.str. induced from J (v,V), forms a groupoid. m

Groupoid (1.1) is said to be a differential groupoid (3] if & and
V are d.man.’s and a,B8:®% —> V are submersions.Adiff. groupoid is sa-

id to be a Lie groupoid [171 if it is transitive. A principal fibre
bundle P determines the Lie groupoid of Ehresmann PP™' [2].

2+ SMOCTH GROUPOIDS. The notion of a2 subspace of a des. can be fo-
und in [19] but it is too strong for us, so we adopt the following:

A des. (N%,D’) is said to be a differential subspace (d.subs. for
short) of a d.s. (N,D) if N‘cN, and for each point yeN’, there exists
a nbh UeTy, of y such that D’U=DU. Then we write (N4D’) & (N,D). If
D’=Dy, then (N4 D7) is a proper d.subs, of (N,D).

Any immerse d.subman. of a de.man. is an example of a d.subs.

By a leaf (k-leaf) of a d.s. (I,C) we mean a subset LcM if there
exists a d.str. D on L such that (L,D) is a d.man. (of dimension k),
(L,D) is a d.subs. of (M,C) and, for each locally arcwise connected
topological space X and a continuous mapping f:X —= (N, To ) such that
ffXl1cl, the induced mapping Fix — (L, D), x —> f(x), is continuous,
too. We notice that

(1) the d.str. D on L is uniquely determined,

(2) each connected component of (L,D) is equal to an arcwise con-
nected component of the subset L in (M, T ),

(3) L is a leaf iff any of its arcwise connected components is a
leaf,

(4) if (X,E) is any d.s. whose topology Ty 1s locally arcwise con-
nected, then, for each smooth mapping f:(X,E) —» (M,C) such that
ffX1cL, the mapping #:(X,E) — (L,D), x > f(x), is also .smooth.

Sometimes, the manifold (L,D) will be called a leaf of (M,C).

Each element of a foliation of a d.man. is an example of a leaf.

Now, we give the fundamental
(2.1) DEFINITION. By a smooth groupoid we mean groupoid (1.1) in
which the sets u'1(x), xeV, are leaves of the d.s. &.
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The set Ot'1(x) equipped with the suitable d.man. structure is cal-
led the leaf of this groupoid over x and denoted by @x, xeV.

The mappings
(2.2) Dh:PBh —> Py & > g°h,
hed, are diff.’s.

Every diff. groupoid is, of course, a smooth groupoid; the proper
d.subman. '&-1(x) of ® 1s a leaf over x, xeV.
(2.3) PROPOSITION, Groupoid (1.4) is a smooth groupoid iff each abs-
tract class of R is a leaf of V. In this case, the mapping
(2.4) Tx3Lx '—’Rx’ y > (%,¥),
is a diff. of leaves (L - the abstract class of R through x ). B
(2.5) THEOREM. Let (1. 1) be any Lie groupoid. Then, for an equivale-
nce relation R for which (1.4) is a smooth groupoid, the subgroupoid
(2.6) FR= (o,8)" 1R
equipped with the d.str. of a proper d.subs. of &, turns out to be a

smooth groupoid.
Proof, Of course, § forms a groupoid. Let xeV. Consider the sub-

mersion ! By § —> V, h > Bh, and take the abstract class L_of R th-
rough x. The inverse image B [L J forms in a natural manner an im-
merse d.subman. ﬁi of the d.man. éx’ characterized by the property:

- if Achx and the d.man. LxlA is a proper d.subman. of V, then

LA]a:@R and the d.man. §R 13-4 fa3 1S a proper d.subman. of . Of

course, ISR Q —-> I"x - the induc%d mapping - is a submersion. We have
to show that§ is a leaf of the d.s. §R, which is equivalent to the
fact that§ is a leaf of the d.man. éx

Let X be any locally arcwise connected topological space and f:X
—->§ - any continuous mapping such that f[X]C§'R. Take an arbitrary
point t eX. By the submersivity of B x? there exmt nbh’s Wa:§ and
W&V of f(t ) and Yo =B( i‘(t )), respectively, and a diff. ¢: "l -> leRs
s=codimL ’ such that u,ll W — w, h r—. pr, v}(h), is equal to B W,
Take any subset TalL e containing Yor such that L 15 is a proper de

subman. of V. Put U=¢~' (ixR®). Of course, U=(Wn&i)n 8.~ Tz}
and ¢ BR - —» L x¥RS, h > (h), is a diff. Let B= £ ' [Wl. Thenf(B]

CW(\@X, so the image of the mapping-b of1B (whichis equal to B -fIB)
is contained in wnL o From the assumption about R it follows that
$lo£1B:B — L 1is continuous. Fut H= (! °£13)" (01, BeTop X and
4‘1°le B — L w1 is continuous, so is lenq 1o(uj; ofI1B J)Zole) :B —
§x|U' The free choice of t €X implies that f:X ——-§ is continuous.s

_ ALGEBROID OF A SMOOTH GROUPQOID., The present author’s observa-
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tions show that by following the idea of J.Pradines (12}, (131, one

can construct an object analogous to the Lie algebroid of a diff. .
groupoid for groupoids from a much wider class, namely for smooth
groupoids.

We first recall the notion of a tangent vector and the tangent d.
s. over a d.s. By a tangent vector to a d.s. (M,C) at xeM [191 we me=-

an each linear mapping v:C —s R such that v(feg)av(f)eg(x)+f(x) v(g)
for f,geC. All tangent vectors at x form a vector space which is de-

noted by T,(M,C) and ca}led the tangent vector space at x. By thedi-
fferential at x [20] of any smooth mapping f:(M,C) —> (N,D) between
d.s.’s (M,C) and (N,D) we mean the linear mapping f %1 (M,C)

)(N D) defined by the formula f (v)(g)=v(gof), geD, veT (M (DN
If (N’D) is a d.subs. of (N,D) and i:(N%D’) & (N,D) denotes the in=-
clusion, then, for yeN’, i*y.Ty(N,D ) — Ty( N,D) is a monomorphism;
with its help the space Ty( N/ D’) is identified with the vector sub-
space Imi__ of Ty(N,D).

Let (M,C) be any d.s. We put

(1) T(Ivl,c)nl_)xeM x(M C) (the disjoint union of all tang. spaces),

(ii)Jr:T(M,C) — M - the canonical projection,
(1i1) Tc-(scﬁ)T(M’c) where C={geXr; geC}u {dg; geC} (dg:T(M,C) — R,
v > v(g)).

Following A.Kowalczyk [5], the d.s. (T(M,C),TC) is called the tan-
gent des. to a des. (M,C). Any (smooth) section X:M —» T(M,C) of Jr is
called a (smooth) vector field on (M,C). The smoothness of X is equ-
ivalent to the fact that X(f)eC for feC. We shall denote the C~modu-
le of all smooth vector fields on (M,C) by ¥(},C).

In the sequel of this chapter, we fix a smooth groupoid (1.1).
Let C and D denote the d.str.’s of P and V, respectively. This dete-
rmines the system

(3.1) (A(é)’P’v)
in which (1) A(®) is the proper d.subs. of the tangent d.s. T® with

the support LJ Tuxé CT@ (we recall that § denotes the leaf of &
" over x, x€V), (2) p:a(@) — V is the pro;jection defined by p(v)=x
iffe veTuxﬁx. Of course, p is smooth. The structure of a vector space
is defined in each fibre of p. Unfortunately, system (3.1) is not -
in general - a vector bundle (even if V is a manifold). However, it
has some interesting properties described in theorem (3.7) below.

A vector field X on @ is called ana-field if X,€T,3,, hed, An
o-field X is called righte-invariant (briefly r-i) if (Dh) (x )=X -h’
g,h€ P and xg=Bh, where D, are mappings (2.2). It is easy to see that
the Lie bracket of smooth r-i vector fields is such a field, too.All
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smooth r~i vector fields on @ form an R-Lie algebra (we.r.t. the Lie
bracket) and a D-module (w.r.t. the multiplication feX:=feB+X) deno-
ted by },‘R(Q). SecA($) - the vector space of all global smooth sect-
ions of p - forms a D-module, too.

Each smooth r-i vector field X determines a smooth section

X,V — A(P), X > Xugs

of p. The mapping
(3.2) £%(8) — seca@), x r» X,
is a homomorphism of D-modules. Conversely, we have the following
(3.3) PROPOSITION. For each quecA(@, there exists exactly one smo-
oth r-i vector field on$, denoted by 7, such that

(%) Ny = Nyr XEV.
The mapping '
(3.4) Sec A(®) ——’.{R(Q). N +— n,9

is an isomorphism of D-modules, inverse to (3.2).

Proof. Let 7eSec A(@) A r-1 vector field 7’ on $, such that (%)
holds, is defined by the formula

(%) Th' (Dh)*uﬁh(ﬂﬁh)' hGQI
which proves the uniqueness. To show the existence, we must prove
that the vector field 71' defined by (#x) is r-1i and smooth. This fir-
st fact is easy to see. To prove the second, we take an arbitrary f
€C. For hed, we have q’h(f)s'qo B(h)@shag > fo(+)(g,h)s From the as-
sumption that +:3% % — & 1is smooth we have fo(- )e(CXC)i,E . We fix
he@ and find a nbh ,_Q,s’t'cxc of (ugh »h) and a function fecxc such
that fo()IQN(E *3) = fl.n,n(ﬁ*@) Thus, for h from some nbh of h
we have qh(f)aqos(h)(f( ,h)). The function $sh > Y(h)(F(+,h)), whe-
re Y:$—» T8, g +>n°B(g), belongs to C; see the lemma below. m
(3.5) IEMMA, Let (M,C) and (N,D) be any d.s.’s and Y:(N,D) —>
(1(M,8),7C) - any smooth mapping. Then, for any smooth function ¥
€CxD, the following function Nax > Y(x)(¥(.,x))eR belongs to B.

Proof. Put Y,:N — T(MXN), x > (Y(x),8 ), where B 6T, N denotes
the null vector. We prove that Y,:(N, D) — (m(MxN),T(cxﬁ)) is smooth.
CxD is generated by B= {gopr,; g€ ﬁ}u {hepr,; heD}, so (51 ™(CxD) is
generated by E={8°I[,86E}u{d8 SGE} To see the smoothness of Y,,
we have to notice only that ;-Y €D for LeE. In the end, we see that
(x> Y(x)(F(+,x))) = don €. =
(3.6) DEFINITION. By a vector pseudobundle (over a d.s. V) we mean
each system (4,p,V) containing d.s.’s A and V and a surjective smoo-
th mapping p:A —= V inwhose fibres some structures of vector spaces
are defined and the following properties hold: :

(1) +:A0A —> A, (V,W) > v+w, *:BRXA —» A, (r,v) > rev, are smo-
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oth mappings where A@A denotes the proper d.subs. of AXA with the
support {(v, w)€AxA; pv=pwl,

(2) for 20y number meN, any smooth sections 21, ...,E of p and any
set UcV (necessarily open) such that the vectors & (x),...,E (x)
are linearly independent for xeU, the mapping

P: VIUXR — A, (x,a) HZ a t(x)s
is a diff. onto its image.

Let (4,p,V) and (4%,p% V") be two vector pseudobundles. By a homo-
morphism between them we mean a pair of smooth mappings (h,H), h’V-»V’
H:A — A’, such that p“eH=hep and for each xeV, Hy 4 —> Alh(x)

a linear homomorphism of vector .spaces. If V=V and h=id, then this
homomorphism is called strong and denoted by one letter H. All vec-
tor pseudobundles and homomorphisms form a category.
(3.7) THEOREM. System (3.1) is a vector pseudobundle.

Proof. Extending sections §1,...,£meSecA(§) to smooth vector fie-
lds on & (for example, to r-i vector fields), we see that the theo-
rem is an immediate consequence of the following lemma. B
(3.8) LEMMA, The tangent d.s. T(M,C) to a d.s. (M,€) 1s a vector
pseudobundle,

Proof. The smoothness of + and ¢ is easy to see. Now, take meN,
any smooth veckor fields XiseeerX € ¥(M,C) and any subset UcM (not
necessarily open) such that the vectors X (x),...,x (x) are linearly
1ndependent for each xeU and define q:M UxIRm — T(M, ﬁ), (x,a) >
Z al Xi(x) The smoothness of ¢ is evident. To prove this for ¢~
we put pry: :UXR™ — U, (x,a) > x, and p°:UxR™ — R, (x,a1,...,a ) —>
as, sgm, Of cou.rse Pre? 1=7|:ItyI:leR ] is smooth. S0, it suffices to
show that P e? le (TC)‘y [usg™y * For this purpose, we notice that

? (Z alx, (x))=a , and we take any point x €U and functions £ ’
...,fmec such that X (fj)(x )=8 £213. Then, for some nbh U of X,
we have: detlX (f )(x)];‘ O xeff and we can deflne the mapping
$:0 — Gl(m,lR), X > [Xi(f )(x)J. Let ~lod(x)= [cs(x), 3, keml, xel.
For F:RZ m R, (x1,...,x ,y R ijijj’ we have

(1) F(cfem, e, PoX, df ,...,dfm)e(’l‘c)‘,‘.imj,

(2) I‘(c1-7c,...,csox,df1,...,dfm)m t01n @ (0xE™)
=p o m LUlnq[UxB 1 which ends the proof. m

For g,neSecA(#), we put
(3.9) LgnD: -[!,q
and take the mapping B,:A($) — TV, v > B,v. For any geSec a($),
the r-i vector field §"on & is B-related to the vector field B’E‘N)
(3.10) DEFINITION. The system

(3.11) (A(3), I,-D, By)
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is called the algebroid of the. smooth groupoid &.

The fundamental properties of system (3.11) are described by
(3.12) THEOREM, (a) The system (SecA($), k+,+B) is an R-Lie algebra,

(b) the mapping SecE,:SecA(t})—» ¥(V), £ > E,*og, is a homomo=-
rphism of Lie algebras,

(¢) the equality Mg, feqD = f+MgyD+ (Be£)(£)*n holds for g,
€ Sec A(@) and feD.

Proof. (a) is easy to see, (b) Let g,quecA(Q). Since ¢ is B-
related to Byef and p” - to B,ep, therefore [§371 is B-related to
(Byct,Beon1. Also, [, 7D is B-related to B,o L§,7 1, thus by (3.9)
and by the surjectivity of B, we see that B, Lk, = (B,o€,B,°7].
(c) followg from the equality IX,foBeY)= £oB¢[X,Y1+ (ByoX )(£)°B-Y
for X,Ye¥ ($) and feD. m.

The properties of system (3.11) deseribed in theorems (3.7) and
(3.12) suggest the following definition of an abstract algebroid.
(3.13) DEFINITION. By an algebroid we mean a system
(3.14) - (A, Iy Dyy)s ’
consisting of (1) a vector pseudobundle A= (4,p,V), (2) a mapping
f+,*D:Sec AXSec A —> SecA where SecA denotes the D-module of all
smooth sections of p (D - the d.str. of V), (3) a mapping r:A -» TV,
such that (a) the system (SecA ,*,«}) is an R-lie algebra, (b)
the mapping Secy:SecA—> ¥ (V), & +>70&, is a homomorphism of Lie
algebras, (c) EKf,fnd= £+[%,7D +(y° §)(f)-7 for §,peSecA, feD,

If A is a vector bundle (over a manifold V), then (3.14) is sim-
ply a Lie algebroid in the sense of J.Pradines [121, [13].

For two algebroids (A, I+, *D,r) and (A% [-,<D’ ,y’) over the same
des. V, by a (strong) homomorphism between}éhem we mean a homomorp-
hism of vector pseudobundles H:A — A", such that (1)7'» H=y, (2)
SecH: SecA — SecA” is 2 homomorphism of R-Lie algebras.

Any strong homomorphisn F:$ —» $° between two smooth groupoids
determines a homomorphism of their algebroids F,:A(3) — A(F) v >
F,v. The covariant functor & —> A($), F +> F,, obtained above is
called (like in J.Pradines [13]1 for diff. groupoids) the Lie functor.

It is possible -that definitions (3.6) and (3.13) are too general.
The answer to the following question will solve this problem.

(2.15) THE FIRST OPEN PROBLEM. Is each algebroid isomorphic to the
algebroid of some smooth groupoid? If the answer is negative, .find
any necessary and sufficient conditions for the algebroid to be iso-
morphic.

4., FTRADINES=-TYPE GROUFQIDS.
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(4.1) DEFINITION. By a groupoid of Pradines type we shall mean any
smooth groupoid (1.1) in which V is a d.man., and system (3.1) is a
vector bundle.

(4.2) EXAMPLES, (1) Differential groupoid(11)is of Pradines type. In-
deed, A(3)% w*T™% where T%¢ = Keroye

(2) The groupoid of the equivalence relation R determined by a fo-
liation F of a d.man. V is of Pradines type. Indeed, A(R)% TF .

(3) The smooth groupoid §R, defined in theorem (2.5) with the help
of an equivalence relation R for which the family of abstract clas-
ses is a foliation F of V, is a groupoid of Pradines type. In fact,
A(§R)= E,," (TF) is a vector subbundle of a($). m

By the remark following definition (3.13), we obtain
(4.3) COROLLARY. If(11)is a groupoid of Pradines type, then system
(3.11) is a Lie algebroid.

(4.4) THEOREM. Smooth groupoid (1.1) in which V is a d.man. is a
groupoid of Pradines type iff

(i) for each vector veA($), there exists teSec A($) such that E(pv)=vy,

(ii) the function Vax > dimA(i>)lx is constant.

Froof, "3 " is evident, "€ ". Let xeV and let (v1,..,,vm) be any
basis of A($),. Take Eyse.erE €5ec A() and a nbh U of x in V such
that §,(x)=v,, iem, and the vectors 51(y),...,§m(y) are linearly in-
dependent for yeU. We need notice that

q’:leRm —_ p_1 tul, (y'a1,...,am) — Ziaizi(y)
is a diffeomorphism. This is an consequence of theorem (3.7). ®

Now, let R be any equivalence relation on a deman. V. In the the-
orem below, we give the complete answer to the gquestion when thegro-
upoid of R is of Pradines type. We see that - because of statement
(2) - this theorem may be considered as the next_generalization of

= e e e o e o

(4.5) THEOREM. The following conditions are equivalent:
(1) (1.4) is a groupoid of Pradines type with dimes-k, xeV.
(2) The family F of all arcwise connected components of all abstr-
act classes of R is a k-dim. foliation.
(3) (a) (1.4) is a smooth groupoid, and
(b) there exists a subset L <R such that
(1) A < &L where A ={(x,x)eVxV; xeV},
(ii) Lu is a proper n+k-dim., d.subman. of VxV,
(1ii) pr, 1R :{) — V is a submersion,
(iv) for each xeV, the proper d.subman.
QL i=(pry 1067 (x)
of £ is an open d.subman.of the leaf R_.
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(4) There exists a subset L =R such that
(1)+(4iii) as above,
(iv") D( )[..Q. NN, N, for (x,y)eR,
v) connected components oi‘ the manifold R x? x€eV, (see lemma
in [101) are equal to arcwise connected components of the setRx inVWxv,
Proof. (1)3(2). Let us take any abstract class L of R and xeL. We
define on L a d.str. of a d.man. in such a way that the mapping Tyt
L—>R, y*r— (x,¥), 18 a diffeomorphism. L is an immerse subman. of
V.From the fact that R, is a leaf of VxV we see that connected compo-
nents of the manifold L are equal to arcwise comnected components of
the set L in V, so the connected compone..t B of x of the manifold L
is an element of ¥, and T, B, = (pr2) (x, x)[A(R)'x]= (pr, lR) < [A(R) 1.
Since (prle)" :A(R) — TV 15 a monomorphism of the bundles, we see

that TF= Im(pr IR), is a vector subbundle of TV, Thus (2) resultsnow
from some version of Frobenius® theorem [1,p.86].

(2)#(3). Condition (a) follows from the observation that eachab-
stract class of R is a leaf of V (w.r.t. the definition contained in
chapter 2). To prove (b), we take any nice covering {(Ul,cpi,R ); ieN}
of ¥, n=dimV, Let us denote by Qx the plaque of the chart (Ui'q'i)
which contains x, eri' Like in the proof of theorem 2 from paper
[10], we see that L) = Ui‘Q'i’ where L, = {(x,y)evxV; xeUy, yeQi }» has
properties (i)+ (iii). To show (iv), we notice that the inclusion
.Qxc-b R, is an immersionm, and that dim.('l.x= dime.

(3)3(4). Let L fulfil (i)#% (iv). Condition (iv’) holds in an evi-
dent manner. To show (v”), it is sufficient to notice that the manifo-
14 ﬁx is equal to the leaf Rx’ xeV.

(4)=%(1).Let us assume that a subset LLcCR has properties (i)+
(iii), (iv?) and (v9). Take any abstract class L of R and xeL. Via bi-
Jection Vx‘I‘ —> ﬁx’ y +> (x,y), we define some d.str. of a d.man. on
L such that y, is a diff. By property (i) of Rx (see lemma in 11031),
we see the correctness of the definition of the d.man. L, while by
property (i1) of K - that the inclusion L V= (L Lo §_ S (x3xV
=, V) is an 1mmersion. In view of assumption (v*), the family F of
all arcwise connected componentsof all abstract classes of R is equal
to the family of all connected components of all manifolds L obtained a=
bove. Let xeBe¥. From the definition of ﬁ we see that L) czﬁ 5 thus
(4.6) T B= (prz)*(x x)[T(x x).n, l.

Put 10 nKerq,,«=pr1 1. It is a vector subbundle of order k of
the tangent bundle T., which implies that u*T™Q, (4:V —» £, x v
(x,x)) is a vector bundle of order k over V. Since :u*T™Q —» v,
V (prz),v, is a monomorphism of vector bundles (see the proof of
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theorem 2 in [10), part (2)= (1)), therefore, by (4.6), we see that
TF is a vector subbundle of TV, which implies that ¥ is a k-dim. fo-
liation and, next, that each element Be¥ is a leaf of V. Thus each
d.man. L obtained above is a leaf, too, which gives that ﬁx is aleaf
of groupoid (1. 4) Then, this last is a smooth groupoid. We have
A(R)|x= T(x x) < = (T "Q')l(x x)c TR. To finish the proof, we need no-
tice the equality of d.s.’s A(R)= T™ .Q. . Since A(R) is (by defini=-
tion) a proper d.subs. of TR and T"‘.Q. - of T2, it suffices to
show that T&L is a proper d.subs. of TR, but this results from the
following lemma used to the situation when L <+R. =

(4,7) LEMMA. If (M%,C%) is a d.subs. of (M,C), then the tangent d.s,
(T(M%C”),TC”) is a d.subs. of the tangent d.s. (T(M4,C),TC), what is
more, if for UeT., the equality C’U = Cy holds, then (f['C’)ﬂ,quJ

=( Tc)']l"-llUl where t': (1 C’) — M’ is the projection. In partlcular,
if (w,C”) is a proper d.subs., then (T(M, C’), TC’) is such, too. ®

(4.8) DEFINITION, By a k-dim. nice structure of groupoid (1.1) we
shall mean any subset L c @ such that

(i) utvic &),

(ii) £L is an n+k-dim. proper d.subman. of &,
(iii) «18d: L)L — V is a submersion,
(iv) D, 10N, af, =« 10)"1(x), hed, x=«h, y=Bh,

(v) connected components of the d.man. 5 (see lemma below) are
equal to arcwise connected components of the subset u'1(x) ind.
(4.9) 1EMMA. If &L c ® has properties (i)# (iv) above, then, for each
point er, there exists exactly one k-dim. c®-manifold § with the
support o (x), such that, for each hex (x),

(a) Dh[.Q.yJa:i

(b) D LQ.y .Q.y h['Q'yh'§ is a diff.

The manifolds §x have the properties: (i) D. th - fqh is a
diff., (ii)§ are Hausdorff, (iii) 5 are d.subs. of $, (iv) if,
in addition, this groupoid is a smooth groupoid with dim§ =k [=k’
and the man. § has a countable basis], then [k=k’ and) the leaf &,
is equal to ix’ xeV,

The proof is similar to that of the lemma from [10]. We only pro-
ve properties (ii) and (iv). To prove (ii), we first notice the con-
tinuity of the inclusion ;) 5 —» ¢ in some nbh of any point hex” (x)

J § :nDh[.Q.BhJ '—h"ﬂ th'" (éBh’C§ ) = ($,C).
Next, (ii) follows from the fact that (3, 'rc) is Hausdorff. To prove
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(iv), we notice that the idemtity map ;x —-§x is an immerse bijecti-
on between manifolds of the same dimensions [4,p. 1011, =

(4.10) THE SECOND OPEN PROBLEM. Are the manifolds ix leaves of & ?
(4.11) DEFINITION. By a nice structure of smooth groupoid (1.1) we
ahall mean any nice structure of this groupoid for which §x=‘ Qx’ x€eV,

We see that L« @ is a nice structure of smooth groupoid (1.1)

i f (i)+(iii) as in (4.8), (iv) “Q’x is an open subman. of .

The notion of a groupoid with a nice structure is closely connec-
ted with the notion of "un morceau differentiable de_groupoide" in
the sense of J.Fradines [11].

(4.12) THEOREM. A smooth groupoid which has a nice structure is of

Pradines type.
Proof. Let £ be a nice structure of smooth groupoid (1.1), k=

=dimi> Then T%() :=Ker(e«t1f)), is a vector subbundle of TSL of order
K. 'l‘hus '.[""._Q. =T .Q. is a vector bundle of order k over ufVl.
Next, we see that A(§)|x Tu (§ )= Tu €9} ) (T 'Q')|u , and that, by
(4.7), T is a proper d.subs. of ‘l‘é. Thus A(®) = I"‘.ﬂ. vy 28 d.sds,
which implies that A(®) is a vector bundle. ®
(4.13) THE THIRD OPEN FROBLEM. Has every Pradines-type groupoid a
nice structure?
(4.14) REMARK. Let a family ¥ of immerse connected submanifolds of V
(covering V) be given. Take the groupoid (1.4) of the equivalence
relation R whose family of abstract classes is equal to ¥. We see
that theorem (4.5) can be formulated as follows:

The conditions are equivalent:

(1) R is of Pradines type,

§ (some version of Frobenius’ theorem [1,p.86] )

(2) ¥ is a foliation,

$ (some generalization of Godement’s theorem [_10])

(3) R has a nice structure. =
(4,15) EXAMPIE. Let G be a non-connected Lie group. G is, of course,
a Lie groupoid with the one-point manifold of units. Each (open)nbh
U of the neutral element eeG is a nice structure of this groupoid.
It is well known that each connected nbh Use generates only the con~-
nected component of the element e in G. =

Let S be any subset of algebraic groupoid (1.1). By the groupoid
generated by £L we mean the smallest algebraic subgroupoid ¥ of &
containing ) . It is easy to see that W consists of all finite pro-
ducts h +...°h, only, where hie.Q.u.n_,"1 (._()_,"1={h"1,- hefd}), ign, neN,
(4.16) PROPOSITION., If fL is a nice structure of groupoid (1.1) and
¥ is the subgroupoid generated by() , then the set Wx=-\¥nu'1(x)
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is an open-closed subset of Ex’ xeV.

The very simply proof of this proposition is omitted. ®
(4.17) CPROLLARY., Let ¥ be any foliation of a d.man. V. Then each
nice structure of ¥ ,i.e. each nice structure of Fradines-type gro-
upoid (1.4) of the equivalence relation determined by F, generates
the entire groupoid. B
(4.18) DEFINITION., By a nice_groupoid we shall mean a smooth groupo-
id @ for which there exist nice structures ) of & and ‘O‘o of the
groupoid of the equivalence relation

(4.19) Rg = {(x,7)eV4V: Vy(ah=x, Bh=y)lc VAV,
respectively, such that the mapping
(4.20) (B : QL — L)

is a submersion.

For a nice groupoid ®, the mapping Exzéx — (Rg)y» b > (x,Bh),
is a submersion of leaves, xeV.

The next theorem gives a class of nice groupoids. We need for
this another notion from the theory of d.s.’s.

Let (M,C) and (N,D) be any d.S.’s. Smooth surjective mapping
f:(M,C) — (N,D) is called strong coregular if for some natural num-
ber n the following property holds:

- for each point xel there exist nbh’s Ue'rc and WeT, of x and
f(x), respectively, and a diff. ¢ :(U, ¢y) — (i, D IX(R", cCHR™)) such
that f1U=pr o .

(4.21) DEFINITION. Groupoid (1.1) is called strong coregular if
(4.22) (c(,B).§—-»R!

is a strong coregular mapping (Rg - the proper d.subs. of VxV).
(4.23) EXAMPLE., Groupoid (2.6) is strong coregular. Indeed, («,B):
$ — VxV is strong coregular because it is coregular between d.man.’
8. The strong coregularity of §R follows now from

(4.24) lemma. If (M,C) and (N,D) are d.s.’s and f:(M,C) — (N,D) is
a strong coregular mapping then for each subset NC N the mapping
fIM: (M’,CM,) — (N’,DN/), where M’af’"[N’], is strong coregular, too.
what is more, if (N%,Dy.) isad.man., then (M’,QM,) is a d.man., too. g
(4.,25) THEOREM. Each strong coregular groupoid & for which the grou-
poid Rg is of Iradines type is a nice groupoid (in particular, is of
Pradines type).

Iroof., Let{)_. be any nice structure of Ri’ Put £ :=(d, B)_1 [.Q, l.
By lemma (4.24), .Q. is a proper d.subman. of $ and mapping (4. ?O) is
a submersion. Now, we show that Ll has properties (i)+ (iv) from de-
finition (4.8) for k=dim ) ~dim V. (i) and (ii) hold in an evident
manner. (iii) results from the equality a1f) = pr1°(o(,f5)lﬂ.. To show
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(iv), take an arbitrary he ®and put x=ah, y=Rh, From the assumption
That (b, is a nice structure of Rg we have D(X’y)[.ﬂoy]n @ FN. 0 A
Now, (iv) follows from the continuity of1(o(,r5)lﬂx:.ﬂ.x — L), and
the equality Dy LO..IN O = ((,8)10,) ~ w(x'y)tﬂoy]nﬂoxl . Lem=
ma (4.9) states that, for each point xeV, there exists exactly one
k-dim. d.man. §x with the support 01'1(x), such that (a) z_a'nd (b) from
that lemma hold. Finally, it is sufficient to show that ?,x is a leaf
of ® for each xe6V. First, we notice that the mapping Exzéx —_ (Ré)x’
h +> (x,Bh), has the property:

- for each point (x,y)e(Rg),, there exists a nbh Wa (Rg), of (x,p

such that (a) (Ré)xlw is a proper d.subman. of the d.s. Rg, (D)
x18=1 w3 is a proper d.subman. of the d.s.d .

Indedd, for (x,y)e(R;)x, we can put W‘D(x,y)moy]' Now, the theorem
follows from the lemma below. W

(4.26) 1EMMA., Let (I5,C) and (N,D) be any d.s.’s. If g:(M4,C) — (N,D)
is a strong coregular mapping and (1%,C’) and (N4D’) are d.subs.’s of
(M,C) and (N,D), respectively, such that (1) (N4D%) is a leaf of
(N,D), (2) W=t [N], (3) for each point xeM’, there exists a nbh
UeT), of g(x) such that Dy=DY, g~ [UT ., and Co-1pyy = Cp-1uys

then (M%C’) is a leaf of (M,C).

The proof is identical with that for the analogous fact proved in
theorem (2.5). ®

From this theorem we see that the strong coregular groupoid §R
from example (4.2)(3) is a nice groupoid.

Now, we explain the notion of the strong coregularity of smooth
groupoids in the domain of differential groupoids. X
(4,27) PROPOSITION, If (1.1) is a strong coregular differential gro=-
upoid with the connected space §, then equivalence relation (4.15)
is regular in the sense of Godement [18,Ch.III.§121.

Proof. One should prove that (a) Rg is a proper d.subman. of vxV,
(b) pr1:R§ —» V is a submersion. We see that (a) results from the
lemma below and the assumption of the strong coregularity of (4.22),
while (b) - from the equality o= pr1o(tx,l3). ]

The following lemma comes from the work by W.wWwaliszewski [241.
Now, we give a new short proof of this fact.

(4.28) LEMMA, If (M,C) and (N,D) are connected d.s.’s and (M,C)x(N,D)
is a d.man., then (M,C) and (N,D) are d.man.’s, as well. A

Proof. Take x €M and y eN and put m:=dimTy (1,C), n:=dim Tyo(N.D).
Of course, k:=m+n= dim(MxN,CXD). There exist some nbh’s Ué'rc and .W
€T, of x and ¥,» respectively, and & diff. ¢ :(wa,CIwa)-——*
(Q,cRR" )y, ) for some open subset LLaR". e put U, :=4lUXY}] and
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W1 :=¢y[{xo]xw] and take the diff.’s )
P4 =?("y0):(U'CU) g (U1)C%R;)U )s
5= (X +):(H, D) — (W, CXRE), ).
From the main theorem of paper [61 we infer - diminishing U and W, if
necessary - that there exist some diff.’s
4200, CRR )y ) = (4, 6XR™) 0, ))s 1y BT,
by CRRE)y ) = (0 CRR™)g, ), L o B
Hence the superposition
(4’1°‘l’2)°(‘?1"?2)'q’-1 geen 'Cm(le)_(')_, ) — (ﬂ1xn2’ca)(ﬂk)ﬂ1)(ﬂ2)
is a diffeomorphism. Therefore ﬂ1xﬂz is open in R®, so .(2.1 and

2
are open in R™ and R™ , respectively., B

e o 2o 2 B e s o e e S S e S O e e WD P 42 o G o o G S G o G g W e S

- ————— - - " - = T — - - - - " " o > T W o -

ent theorem (4.29) - as a generalization of Frobenius’ theorem.

First, we recall the definition of a d.s. of the class i)o‘ Follo-
wing P.G.Walczak [22], we denote by 90 the largest class D of d.s.’s,
fulfilling the conditions:

(i) the class of d.man.’s is contained in 9,
(ii) if (1M,C)eD, then dim T (M,C)<= for each xel,

(iii) if (M,C), (1,C")eD, £:(M,C) —» (11,C’) is a smooth mapping
and, for some xeM, the differential f*x:Tx(M,C) — Tf(x)(M',C’) is an
isomorphism, then there exists a nbh U of x open in Te such that
fIU:(U,CU) — (f[U],C'f[U]) is a diffeomorphism.

F.G.Walczak [231 proved the following

THEOREM. A des. (},C) belo:xgs to i)o iff, for any xeM, there exis-
ts its nbh UGTC and a d.man. M such that U is contained in the sup-
port of f, dimM = dim 7 (M,C) and Cy= c“’(M)U.

The class i)o is closed w.r.t. proper d.subs., i.e. if (M,C)eD and
AcV, then (4,C4)eD, (see [23] and [61). Thus, the space of the smo-
oth groupoid § , constructed in theorem (2.5), is of the class ‘Do.
(4.29) THEOREM. A generalization of Frobenius’ theorem.

Let (1.1) be any Pradines-type groupoid such that
(i) the d.s. ® is of the class D,» V is paracompact,
(11i) the groupoid Ry is of Pradines-type,

(iii) Ex@x —> (Rg),s xeV, are submersions,

Then (1.1) is a nice groupoid.

Proof. Making use of a local extension of § to a d.man. and of so-
me fact from the theory of fifferential equations, one can prove.
(4.30) LEMMA. Let x€V, and let E,,...,gkeSecA(é) constitute a basis
of SecA(%) over a nbh WaV of x, such that (a) Bee&yeee,Buf, e
=dimV, constitute a basis of X(V) over W, (b) By En”:--nﬁ*'gk' 0.
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Then there exists £)0, K)0 and an open nbh Uc W of X, such that
Exp: X(-K,K)xU —&, (a,7) =9 ,ale)s
exp: X(-K,K)xU — RgcVxV, (2,y) =¥y (&),

are diffeomorphisms onto their images .n,U and ‘QoU (with d.str.’s in-
duced from & and VxV, respectively) and the diagram

X(-K,K)xTU _’-QJU

lor ICH:)

X(-K,K)xU — 0y .

commutes, where qpy,a(’) and q’y,a(’) denote the integral curves of the
k

vector fields i, nooy
121a ] and 1219. B, £

passing through u_, and y, respevtively. =

According to that lemma we find a covering 11={Us}ses and families
of deman.’s {Qy; Ue U, {‘O‘OU" vedll. Let '-Uibe any open covering
of V su h that U’ are compact for UM and W:=10’; U%€ Mlis a re-
finement of a covering M.

Next, making use of strong paracompactness of V we refine starli-
kely ) to some open starlike iinite covering w={wt}teT‘ Let

Sty A3) = H Wy QUG U1 CU m=m(t), teT.

- s1t) s()?
In this connection,

w,cvu Nn...NU

8(ty) s(t)
and if Wyn Wy # @ then W UWy, cU,,NU_ . For each tel we take
the basis of Sec A($) over W, consisting of all restrictions to W, of
all elements of the basis over Usm considered in lemma (4.30). Ma-
king several times use of the same fact from differential equations
(this time to the manifolds ‘Q‘Us) we obtain:

For each teT there is Kt70 such that the mappings (defined as abo-

n
ve) Exp: X(-Kt,Kt)ﬁwt —~—> 3§ and exp: )((-Kt,Kt)xwt —> Rgc VxV
are diffeomorphisms onto their images LDy, L2 4» (a,B8):02y — 0 .
i CQ n e e nﬂ and CQ’ n LN
is a submersion, 'Q‘t Us(eﬁ Uﬁ(tm) 'Q'ot S
o Therefore, if WyN W, #¢ then
N udd, cQy .
s(e)
From the construction, we see that .ﬂ.t and 'Q’t' are k-dim. submani-
folds of the k-dim d.man. Ly, » S0 they are open in the last mani-
fold. This‘implies that Q &4V, and QT U8 4 o Then
.,Q,tc‘ﬂ, ;;:Ut,ﬂ.t and .Q,otcz'.n,o-.: Ut.n.ot .

Hence {) and ()  satisfy the required conditions. ®
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