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HIGHER ORDER ALMOST TANGENT GEOMETRY AND 

NON-AUTONOMOUS LAGRANGIAN DYNAMICS 

Manuel de Le6n Paulo R. Rodriaues 

Abstract.- This oaper is a seauel of a previous article |DLRl| . We 

aeneralize the intrinsical formulation 0* non-autonomous Laaranaian 

dynamics for Laaranaians deDendina on hiaher order derivatives with 

respect to the time. The study is develoDed from the almost tanaent 

qeometry point o^ view. Some aeometric structures are examined. The 

hiaher order Poincare-Cartan theory is Dresented in terms of the al̂  

most tanaent structures. 

Key words: Almost tanaent-qeometry, Laaranaian dynamics,non-autonomous. 

Mathematical A.M.S. Classification: 58^/70H. 

1.- Introduction. 

In a nrevious naner (de Le6n & Rodriaues (see |DLR1|)) we have exami 

ned the intrinsical descriDtion of the non-autonomous (or time deDen 

dent) Laaranaian formalism in the framework of the almost-tanaent 

qeometry (see Clark & Bruckheimer |CB|). We have seen there, for ins­

tance, that the theory of connections nronosed by Grifone (|Gl|, |G2|) 

is more simpler than the theory for the autonomous (or time-indeDendent) 

situation. Also, the intrinsical version of the Poincare" -Cartan form in 

terms o* the almost-tanaent structure was investiaated (see also the 

paDer o* CramDin, Prince & ThomDSon |CPT|). 

The DurDose of the present article is the extension o* our studv to 

the formalism of non-autonomous Laaranaians hiqher-order derivatives. 

The study of hiaher order theories, from some different Doint of 

views, has been obiect o^ a certain number of authors: for exam.Dle, 

Aldaya & Azclrraaa (AA1|, |AA2|, de Le6n & Rodriaues |DLR2|, ^ranca-

vialia & KruDka |*K|, Garcia & M U * O Z |GM|, Horak & Kola"r |HK|, Kol&r 

\y\, KruDka |KR|, Shadwick |S|, Tulczview |Tl|,|T2|. In the Leon & 

Rodriaues |DLR2|, for exaraDle, we have clarified how the autonomous 

hiaher order situation is formulated in terms of the almost tanaent 

aeometry machinery (we suaaest to the reader the naner bv CramDin, 

Sarlet & Cantriin |CSC|, where a different aDroach is Presented, ai 
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ven emphasis on the role of the higher order differential equations). 

A non-autonomous (resp. autonomous) Lagrangian formalism for a higher 

order particle Mechanics is given by a real smooth (C ) function L 

defined on the jet bundle j"(R,M) of all smooth functions from R to 

M (resp. on the bundle JQ(R,M) of all smooth functions from R to M 

with the source at the origin OeR). Here, k is the highest order of 

derivation involved in the variables from which L is dependent and 

M is the configuration manifold. As these bundles may be identified 
k k k 

with RxT M and T Mfv. respectively, where T M is the tangent 
bundle of order k of M, we may transport the geometrical structu-

k" * k res intrinsically defined on TVM to JL(R,M). We use this fact to 

give the corresponding intrinsical formulation on J"(R,M). 

The present paper is organized as follows. In section 2, we give so 

me basic definitions and results necessary for the development of 

the theory. In section 3, we characterize the semisprays of higher 

order by means of the higher order almost-tangent geometry. In sec­

tion 4 , we introduce a kind of connections (called dynamical connec 
k k-1 tions) on the fibration J"(R,M);—>J" (R,M). Section 5 and 6 are de 

voted to study the relationship between senisprays and dynamical ;«-

connection. Finally, in section 7, we show that the Poincare-Cartan 2-

form may be constructed by using the almost tangent structure of 

higher order and prove that there exists a dynamical connection who 

se paths are solutions of the generalized Lagrange equations. 

l.~ Notations, definitions and some^results. 

Troughout this paper it is assumed that all differential structures 

are of C°°- class (smooth). Let R be the field of real numbers .M a m-di-

mensional manifold and (RxM; p,R) the corresponding (trivial) fi­

bred manifold. By Sec (RxM) we denote the set of all sections of 

(RxM, p, R). Locally (RxM) is characterized by coordinates (t,y ), 

l^A^m. The manifold of k-jets of sections seSec (RxM), denoted by 

J (R,M) is locally given bv coordinates of tvpe (t,y ,vi;...ryv ) , 

lsk<~ (when k=0, the Ju(R,M)=RxM). If seSec (RxM) then s (t) or 
k k k 
j.s denotes the corresponding k-jet of s at teR. By a :j (R,M)—>R, 

k k y y 
6 :J (R,M) — > M and TT :J (R,M) — > RxM, we denote, respectively, 

y y y 
the canonical projections sw(t) — > t , sw(t) —-> s (t) and sv(t)—> (t, 
s(t)). The map sk:R — > J k (R,M) , t—>s k(t), such that sk(t)eSec (J^RxM), 
k a , R) is called k-jet prolongation (or extension) of seSec (RxM). k If seSec (RxM) and s (t) is the corresponding k-jet of s at teR 
then locally we have: 

yA=sA(t), yA= 1 JilsNt), -«i«k. 
l i. d t i 
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The factor 1/i! appears only for technical reasons, lie may adopt 

the following coordinate system for :jfc(R,M) : (t,q ,q , . . . ,q ) , 

where qA=S A (t) ,qA= (dVdt1) sA (t) , Ui£k. Clearly, we have: 

qA = (i!) yA, Osisk, UAm. 

As (RxMf p,R) is a trivial bundle we may identify maps from R to 

M with sections of (RxM,p,R) as well as their k-jets. Thus we put 

Jk (RxM) = jk(R,M) (= the k-jet manifold of all maps from R to M). 
k k 

Futthermore, we notice that J (R,M) can be identify with RxT M in 
k k k 

a natural way by the map s (t)—> (t,(d/dt) (s(t)),...,(d /dt ) (s(t)) f 

where T M is the tangent bundle of order k of M, that is 
k k ' 
T M = JQ(R,M) is the k-jet bundle of all maps from R to M with 
source at the origin OeR. 
Let g : J (R,M)—>R be a smooth function. Thus d is the Tulczjew's 

k+1 operator which maps g on a function dmg on J K (R,M) locally 
.L " ~ 

expressed by 

i=0 9Y i 

(for an intrinsical definition of d see |DLR2|,p.80). 

Definition (2.1). Let N be a (k+l)m-dimensional manifold. An endomor 
k+1 ~~ 

phism S : TN—>TN such that rank S = km and S = 0 is called 

almost tangent structure (of order k). The couple (N,S) is said almost 

tangent manifold (of order k). 

A first interesting result says that for all manifold M its tangent 

bundle TM is endowed with an almost tangent structure (see Godbillon 

| G | ) . Furthermore, for any integer k, there exists a family of endomor 

phisms J : T (TkM)—>T (TkM) , Ursk, such that J- :T(TkM)—>T (TkM) is 
k an almost tangent structure (of order k ) on T M. For l^r^k, one has 

j r = ( J ; L ) r . 

(see de Le6n & Rodrigues |DLR2|, p.24-31). For a local coordinate sys 
A A A 

tern (y ,y-,...,v.) the endomorphism J has the following expression: 

k**r 
j * .£ — | S dyA (2.2) . 

Also, there exists on T M a family of vector fields C , lsrsk, loca 

lly given by 

=r ' Z 'i+1>^+l " " i - '(2.3, 
^r+i 
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When r -= 1, then C., is called the (generalized) Liouville vector 

field. One has 

Cr " JlCr-l ( o r Cr = ^r-l0!5 ' r* 2 " 

y 
Definition (2.2). Let £; be a vector field on T II. We say that E, is 

a semispray (or a (k+l)th order different equation) if J-£ = C-
k A curve s : R—>I1 is called a path of E, if s is an integral 

curve of £, that is, 

(d/dt)sk = E, o sk . 

Therefore, s is a path of E, if and only if verifies the following 

system of differential equations: 

k+1 
I d A ^A, A /-,/•-. v A /jk/jj-ks A. 
j-y —5^-f s = £ (s , (d/dt) s ,. . ., (d /dt ) s ) , 

where the semispray E, has the local expression 

C=kf (l+l)yj+1 -k+f-TK (2-4)-
1 = 0 3yi 3Y(k) 

(for further details, see |DLR2|, p. 54-58). 

(Let us remark that if we adopt the coordinates (t,q , . . . /<!-,) r then 

s is a path of £ if and only if it verifies the following system 

of differential equations: 

k+1 
d A "A , A /-./-..v A /̂ k/-j,k. A, 
— T T T T s = £ (s t (d/dt) s , . . . , (d /dt ) s ) , 

dt k + 1 

where E, is locally given by 

5 =.E
n
 qi+l 7A + ^ — A >' 

i=o aqi dqk 

Let us remark that on T M there is defined an appropiate exterior 

calculus induced by J-: ah inner product on p-forms 

P 
iT u {X, , . . . ,X) = I a) (X1,...,J1X. ,...,..,, Xn) Jl X p i=l L X x D 

and an exterior differentiation d defined bv dT = i T d - d iT . 
Jl ~ Jl Jl Jl 

A proof of the following result may be found in |DLR2|, p.95-99. 
k 

Theorem. Let L : T II—>R be a regular Lagrangian (that is, the 
2 A R 

Hessian matrix (3 L/3y, 3y, ) is of maximal rank everywhere). Consi-
2k-l der the following closed 2-form on T M 
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ML = " d d J 1

 L + TT d T d d J 2

L - TT d T 2 d d J 3

 L + - - + ^ k KT d T k " l d d J k

L 

and the i n t r i n s i c a l equat ion 

-- <-L = d EL ' ( 2 ' 5 > ' 

where 
EL = C..L - 2 r d r r ( C 1 L ) + - ^ d T

2 ( C 3 L ) + . . . + (-l) k '" : L-^- d ^ " 1 (CkL) - L. 

Then 
2k-l 

(1) co is a symplectic form on T M, 

2k-l 

(2) The vector field £ given by (2.5) is a semispray on T M , 
that isf J-C = C- , 

(3) The paths of £ are the solutions of the Lagrange equations 

E (-1)1 - 4 (H--) = 0 . 
i=0 dt1 9q. 

3.- The generalized evolution space. 
y • y 

We have remarked that Jw(RfM) may be identified with RxT "M ahd so 
we may transport the geometric structures needed to develop the auto 

k k ~" 

nomous Lagrangian formalism on TVM to J (RfM) via this ideritifica 

tion. We call J (RfM) the (generalized) evolution space. Thus we 

have the following induced endomorphisms on J (RfM) : 

J- = Jr - C r fi dt, lsr^k. 

Locally : 

Jr =BE 3/9yr+i ® dyj - ( E (i+l)yj+1 9/9yr+i) ® dt , 

and it is clear that we may define in a similar way as we do for the 

autonomous case the operators i_ and d_ . The following equali­

ties are easily obtained: 

J J 
r r 

J , . 0 / 3 t ) = - C , , 
r 3 / 9 y r + i , r + i ^ k ' 

JrO/3y?) = JrO/ayJ) = 0, ' r+irt. 

-* _ 
Let Jr be the adjoint operator induced by J on the exterior 
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k k 
algebra A(J (R,M)) of J (R,M). Then we have 

J* (dt) = 0, 
0, i<r, 

-* A 

J (dy.) = 
r
 -A 

^i-r '
 r
^

i
^

k + r
-

1
/ 

where 

e
A
 = dy

A
 - (i+1) y ^

+ 1
 dt , 0*i«k-l. (3.1) 

(we remark that, if we adopt the coordinates (t, q ,...,q,) introduced 

in section 2, then we put 

e
A
 = dq

A
 - q

A
 dt, 0^i^k-l, 

and we have 

)
A
 = i! (

 Л
)) 

i i 

Definition (3.1). A vector field £ on JV(R,M) is said a semispray 

(or(k+l)-th differential equation), if and only if <E3t 6.>= 0 and 

<S,dt> = l,0*i$k-l. 

We can easily prove that a semispray E, is locally given by 

k-1 
E, = 3/3t+ I (i+1) yA - 3/3vA + £Aa/3yv (3.2). 

i=0 

Therefore, we have 
y 

Proposition (3.1). A vector field E, on JV(R,M) is a semispray if 

and only if J-£, = C, and J-C = 0. 

Definition (3.2). Let £ be a semispray on J (R,M) . A curve 

s: R—>M is said a path of £ if s
k is an integral curve of £. 

From (3.2) we deduce that s is path of £ if and only if s satis 

fy the following system of differential equations: 

1 d k + 1y A _ A (3.3) . 
kl dtk+i - Ck ' 

:(Let us remark that, if we adopt the coordinates (t,q ,...,q, ), then 

s is a path of E, if and only if it satisfies the following system 

of differential equations: 

dk +l s A = -A / 
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where k_._ 
ç = э / э t + z cтЛ э/э c,л + çЛ э/э cтЛ ) 

І=O ^ x " x ' к 

4,-Dynanical connections on J (R,M). 

The tensor fields J
r
 and J on J (R,M) pernit us to give a 

characterization of a kind of connections for the fibration 

J
k
(R,M)—>J

k_1
(R,M). 

Definition (4.1). By a dynanical connection, on J (R,M) we nean a 

tensor field r of type (1.1) on J (R,M) satisfying 

F J
k
 =
 "

J
k'

FJ
k
 =
 "

J
k'

J
i

r = J
i

r = J
l ' (4.1). 

By a straigthforward conputation fron (4.1) we deduce that the local 

expressions of r are 

r(9/9t) = - E i y^ 9/9v, + rA9/9y£ 
i = 1 l - i - l K 

r(9/9y^) = 9/9yA + r ^ B ' 9/3y£ , 0«i«k-l, 

r(3/3yj) = - 9/3yJ . 

A B The functions r , r will be called the conponents of r. Fron the 
3 local expressions above, it is easy to prove that r - r = 0 and 

rank r = 2kn. So r is an f(3, -1)-structure on J"(R,M) (see |YI|). 

Now, we associate to r two canonical operators 1 and n given by 

2 2 
1 = r , n = - rz + i. 

Then we have 
l2 = l,n2 = n, ln = nl = 0,1+n = I , 

and,so, 1 and n are conplenentary projectors locally given by 

l(9/3t)= - E yA 3/3yA , - (rB + i Y ^ ' ^ b t / t y l . 
i = 1 1 1 1 i=l 1 A K 

l (3 /9y A )= 3/3yJ , mO/3yA) = 0 , (4.2) 

k k . 
m(9/9t) = 9/9t + E i yA 9/3vA 1 + (r

B + E iyA r(i"1)B) 9/9yB, 
i=l x "1""± i=l 1 
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Osijjk, l^A,B^m . 

If we put L = Im 1, M = Im m, then we have that L and M are 

complementary distributions on J (R,M), that is, 

T Jk(R,M) = M © L . 

Furthermore, from (4.2), we deduce that L is (k+l)m-dimensional 

and M 1-dimensional. In fact, L is locally spanned-by 

{9/9y. , O^i^k} and M is globally spanned by the vector field 

k k 
K = m(9/9t)=9/9t+ I iyA 9/9vA + (rB+ 1 iyA r(i"1}^) 9/9yA (4.3) 

i=l 1 X 1 i=l ' i A K 

From (4.3) we deduce that £ is a semispray of type 1 on J (R,M) 

which will be called the canonical semispray associated to r. 

2 
Since we have r 1 = 1 and Tm = 0, then r acts on L as an almost 

product structure operator and trivially on M . Because M = Ker r, 

r is said to be an f (3,-1)-structure of rank (k+l)m and paralleliza 

ble kernel. 

Now, we put .. 

h = - (i+r) 1, v = - (I-r) 1. 
2 2 

Then we have 

hC = 0,h(9/9yA) = 9/9yA + (l/2)r(i)* 9/9y£,h(9/9yA) = 0, 

v£ = 0,v(9/9yA) = (-l/2)rU)* 9/9y^v(9/9yA) = 9/9yA, (4.4) 

0^i^k-l, IsA , Bsm. 

I f we p u t H = Im h and V = Im v , t h e n we have L •«= H © V , where V 
k Jc-1 

i s t h e v e r t i c a l d i s t r i b u t i o n d e f i n e d by t h e f i b r a t i o n J (R,M)—S»J^ (R,M). 
Hence, we deduce t h a t 

T J k (R f M) = M © L = M $ H © V . 

(So, r d e f i n e s , i n f a c t , a c o n n e c t i o n on t h e f i b r a t i o n 

J k ( R , M ) — > J k _ 1 ( R , M ) ) . 

L e t HA = h O / 9 y A ) , V A = 9 /9y A , O s i s k - l . Then , from ( 4 . 4 ) , we have 
1 1 K 

rt- = o, TH* « HJ , rvj = - \rj , 

h? = 0, htfj = HJ , hvj = 0 , (4.5) 

VZ = 0 , vH^ = 0,vV^ = V^ . 
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k 
From (4.5) we deduce that a dynamical connection r on J (R,M) 

induces an almost product structure on J (R,M) given by three comply 

mentary distributions for the eigenvalues 0,+l and -1. Fufcthermore, 

( C , H . , VY} is a. local basis of vector fields on J (R,M) . In fact , 

M = < K >, H = <HA >,V = < \f̂  > ; {£, HA , V^} is called an adapted 

basis to the f (3,-1)-structure defined by r. An easy computation in 

local coordinates whows that the dual basis of 1-forms is given by 

{dt, eA , i|;A }r where 

/ =-(rA+ \ s _yJr<--->g)dt - 4 ± y
 ( 1- 1 )X-l + < (4-4)' 

Definition (4.2). H (respc M © H) will be called the strong (resp. 

weak) horizontal distribution. 
k r 

Remark. Since J (R,M) is a fibred manifold over J (R,M), lsr£k~l, 
k r 

we may consider connections oh the fibration J (R,M)—>J (R,M) , 
l^r^k-1 . The study of this type of connections will be elaborated in 

a forthcoming paper 

5.- Paths of a dynamical connection. 

Definition (5.1). A curve s in M is called a path of a dynamical 
k y 

connection r on J (R,M) if and only if s * is a weak horizontal 
k k 

curve in J (R,M) , that is, the tangent vector s (t) belongs to 
(M © H) , , for everv teR . 

sK(t) 

Since a tangent vector X to J (R,M) is in M © H if and only if 

\\) (X) = 0 , we deduce, from (4.4) , that s is a path of r if and 

only if satisfy the following system of differential equations: 

- -.k+1 A ,. k - / . - x , ,i B 
1 d , y - rA + T X

 r
( l" 1 ) A d Y (*> i\ 

k. dtk+l i = 1 (il). B d ti 

From (3.3), (4.3) and (5.1), we easily deduce the following 

Proposition (5.1). A dynamical connection r on J (RfM) and its 

associated semispray £ have the same paths. 

6_L̂  Semisprays and dynamical connections on J (R,M) . 

In this section, we prove that to each semispray £ of type 1 on 

J (R,M) there exists canonically^associated a dynamical connection. 

Let £ be a semispray of type 1 on J (R,M) and suppose that £ 

is locally given by 
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5 = 3/3t+yA3/3yA+2yA3/3yA + . . . + kyA3/3yA_1 +5
A3/9yA (6.1) 

Then a direct computation from (6.1) shows that 

|5,3/3t| = -35A/9t 3/3yA , 

U,a/3yA|= -acB/3yA 9/3ŷ  , (6.2) 

U,3/3yA|= -ia/ayj.! -acB/3yA 3/3yB , isi*k. 

Now, put 
r = —- L 2f + — (1 - 5fi dt) . 

k+1 5 1 k+1 
From ( 6 . 2 ) , we have . 
r ( 3 / 3 t ) = - \ iy A 3/3yA + _Z_ e

A - -__ « iy B 3 ?
A /3yB 3/3yA • , 

i = l 1 1 _ 1 k+1 k+1 i = l 1
 I K 

r(9/3yA) = 3/3yA + ---- 3CB/3yA . 3/3y? , Os i sk- l , (6.3). 
1 1 k+1 1+1 K 

r 3(3/ 3 yA) = -3 /9yA . 

From (6.3), we deduce that r is a dynamical connection on J (R,M) 
'Xi 

whose associated semispray £ is locally qiven by 

X = 9/9t + _ iyA 9/9yA - + tK 9/9yA , 
i=l x 1 _ 1 K 

where 

>A = 1__S rA 

k+1 

Let us remark that, if k=l, then r= - L 3f and % = £«. This case has 

been discussed in |DLRl| ; in the sequel we only consider the case 

k*2. 

Since £ is different from £, it is neccessary to modify r in order 

to obtain a dynamical connection V whose associated semispray is, 

precisely, £ . To do this, we put 

r = r-(s- K) fi dt . 
A simple computation shows that 

((?-Ofl dt)0/3t) -_ 2(--k> C
A 9/9v

A , (6.4). 
k+1 "K 

((£-£) fi dt)(9/9yA) = 0 , 0*i*k 
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From (6.4), we easily deduce the following. 

Proposition (6.1). ? is a dynamical, connection on Jk(R,M) whose 
associated semispray is, precisely, £.(Obviously, for k=d, we have 
? « r •- - L53f) . 

7.- The generalized time-deoending Poincar^-Cartan form. 

Let L: J (R,M) — > R be a non-autonomous regular Laaranaian of order 
2 A B k on M , that is, the Hessian matrix (3 -V^y- . 3 . / - . ) is non-singular. 

As it is well-known, the Poincare-Cartan 1-form determined by L is 

k 

2k-l the 1-form 0_ on J (R,M) given by 
Lt 

9 L =.^ P A d qi-l " E L d t ' (7-1), 

where 
. k-i . . 

p^ = E (-l)3(d_)D(3L/3a* ) , U i s k , (7.2). 
A j = 0 L J 

and k 

EL \i± «£ pi -L •' 
Here, {pj" , Isisk } are the generalized Jacobi-Ostrogradsky momentum 

coordinates and Ey is the Hamiltonian energy correspondina to L . 

Taking into account (2.1) and (3.1), we easily deduce that 0 can 

be re-written as 

0T = d- L - JL d_(d- L)+ -J. d_2(d- L)-... + (-l)k —1 dk'1(d-- L)+L dt, 
L J l 2! T J2 31 T J 3 (k-1): T Jk 

and the Hamiltonian eneray becomes 

E_ = C-L - -± d_(C?L)+ -1 dl (C-L)-...+(-l)k — i d k _ 1 (C L)-L . 
L X 2\ T Z 3 I T J (k-1)! l K 

Consequently , the Poincare-Car tan 2-form i s a iven by 

°L " d 6L ' 

Then, from (7.1), we have 

(j.L)
km / dt jt 0 (7.3). 

2k-l Hence n and dt define a contact structure on J (R,M) (see 

|BL|). Thus, there exists a unique vector field £ on J (R,M) 

satisfying 
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i fiL = 0 , dt(£L) = 1 (7.4) . 
L 

Since dt(£j.) = 1, then £ is locally aiven by 

C- = 3/3t + I XA.3/3qA_1 +C
A3/9qA

k (7.5). 

Because i_ QT = 0 , we have 
?L L 

0 = nL(CL. 3/9qfk) = d e
L (? L fV9q2 k ) 

= - (32L/3qA3q^) (q A
k - X ^ ) . 

Then, the reoularity of L implies that 

YA _ A 
*2k~ q2k ' 

A A 
Now, let us suppose that X. = q. , l^i$ss2k-2. Then we have 

o = nL(cL,3/3q
A_1) = d e_(eL»3/9q^.1) 

= - o V a q J *<& (qA_i - X_-l} • 

A A 
Therefore, we also have X = q -, • Hence (7.5) becomes 

s-1 S w l 

r = 9/9t + _ qA 9/9 A + £A 9/9qA , 
" i=l 1 qi-l K 

or, equivalently, 2, 

CL = 9/9t + E iyA 9/37^! + ?A 9/9yA (7.6). 

9V —1 
Then, from (7.6), we deduce that £L is a semispray on J (R,M). 

Moreover, we have 

•LVMA 

Now, takinq into account (7.2), (7.7) becomes 

A, _ ,, ,-T/- A,, ^ , , 1 xk, ,^k-l 

Ç (pj) - ЭL/ЭqA
 = 0 (7.7). 

5 (3/3q
A
) -C

L
(d_(3L/3q

A
)) +...+ (-1) ̂ ^ (dt^"

1
 (9L/3q

A
) ) -3L/3q

A
=0 (7.8) 

L 

Hence, if s is a path of £ , then, from (7.8), we have 

_ (-1)1 ! -Sit (JUL.) = 0 
i=0 1# dt1 9q^ 
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2k-l 2k-l 
alona the canonical prolonaation s of s to J (R,M), 
Therefore, we have proved the following. 

]r 
Proposition (7,1). Let L: J (R,M)—> R be a non-autonomous reqular 

Laqrangian of order k on M . Then the vector field £ satisfyina 
2k-l (7.4) is a semispray on J (R,M) whose paths are the solutions 

of the generalized Lagranae equations (7.9). 

We call E, the Laarange vector field for L 

Now, taking into account Proposition 5.1 and 6.1, we have 

v 
Theorem (7.1). Let L : J (R,M)--»--> R be a non-autonomous reqular La-

granqi'an of order k on M and let £T be the Laqranqe vector 
L 

field for L . Then there exists a dynamical connection r on 
L 

2k-l J (R,M) whose paths are the solutions of the generalized Lagrange 

equations corresponding to L . This connection is given by 

rL = r - (£-5L) a dt , 

X ^U. K—1 ^ 
where r = - -r L J + ------- (I-£L -_- dt ) , and £ is the associated 

L 
semispray t o r . (Here, J- i s the canonica l t enso r f i e l d of type 

? k - 1 
(1 ,1) on J^ (R,M)) . 

Remark.- Obviously, if k=l , we have 

r _ o, (see DLR1 ) 
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