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COMPLEX COHOMOLOGY AUTOMORPHISMS OF COMPACT
HOMOGENEOUS SPACES OF POSITIVE EULER CHARACTERISTIC

Stefan Papadima

Introduction

Let G be a compact connected semisimple Lie group and let K be a
proper closed connected subgroup of the same rank. Consider a common
maximal torus and denote by V ites Lie algebra. One then has a pair
of root systems, R=(R CRGCV) , and a pair of Weyl groups,

(W, CW,CGL(V@F)), [FR or {, which naturallv act on the polynomial
graded algebra on V@ F .(graded by deg (V@[F) =1), giving thus rise
to a palr of graded subalgebras of 1nvar1ants, (1 (F)CI (lF)) .One knows
that H (G/K,IF) = (F) /I aF) . i’ (F (as graded algebras, provided
the degrees of the rlght hand side are doubled). Consider next the
normalizers of the Weyl groups, NG(|F)=NGL v @F) (WG_) (and similarly
for K) and the group N(F)=NG N Ny (F), which naturally acts on the
polynomial algebra on V@|, preserving the invariant subalgebras and
thus giving rise to a group morphism p:N(F)'—-)AutHx(G/K;[F), whose
image was considered in [9] under the name of "cohomology automor-
phisms of Lie type".

This paper is devoted to the study of AutHx(G/K;ﬂ:), centered
around the general question: areall cohomology automorpvhisms of Lie
type? This question makes sense for any characteristic zero field
coefficients | (see [9]); if K=maximal torus, then the answer is yés,
for F=Q,R[6] . our first result here establishes the same answer for
[F=C and gives a precise description of AutHx(G/T;t[) , T = maximal to-
rus. Consider the orthogonal decomposition V=®Vi (corresponding to
the infinitesimal splitting of G as a product of simple groups) and
denote by D(IF)cGL(V®lF the subgroup of elements which act as sca-

lars of Ir on each V*@F (FR,().

Theorem 1. p 44 an Lisomorphism N(([)-'L>AutH*(G/T;0:) and N(()=
=D([) .N(R) .

For a complete description of N(R), see (8] .

If G=SU (n), then the conjecture of [4,7] on AutH*(G/K:@) is
equivalent to the fact that all {}~cohomology automorphisms are of Lie
type ([9]), and was verified in many particular cases, by several
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authors. On the other hand, there are examples where not all [F-coho-
mology automorphisms are of Lie type (see [9] for |F=Q,R, and the
example given in the next section, for F=[), therefore a more reaso-

nable question would be: when are all [F-cohomology automorphisms of

Lie type? .
Our next result provides an equivalent formulation of this pro-
perty (F=R,(). Consider the graded F-vector space QG—IG/IG Ig (si-

milarly for K) and the linear degree zero map Qi.QG—%>QK induced by
the inclusion i:&;c:IK; denote its kernel by h®, its cokernel by
h€ and set h=h°@h€. Since plainly Q, commutes with the obvious ac-

tions of N on QG and QK' we may consider the odd, even and total dual
homotopy representations of N in GL(ho),GL(he) and GL(h), to be deno-

ted in the sequel by rg, rE and T, - Rational homotopy theory [10]

identifies ho,he and h with the graded spaces of odd-dimensional,
even-dimensional, respectively all multiplicative generators of

the |F-minimal model of G/K (and consequently with (71 dd(G/K) ®F)

v even(G/K) ®lr) respectively (71 (G/K) ®[F) , which explains our ter-
minology). Since G/K is formal, AutH (G/K) acts (up to algebralc ho-
motopy) on the |F-minimal model, thus inducing (genuine) representa-
tions in GL(h°), GL (h®) gnd GL(h), to be denoted by rg, rg and ry
(the precise construction of these dual homotopv representations

of AutH*(G/K) is given in Section 2).

Theorem 2. Suppose that the unipotent radical (see e.g.[6]) of
the ELinean algebraic group AutH*(G/K;m) 45 thivial. Thenp is onto Aif
and only 4if ri(N(F))=rg(AutH*(G/K7F))r F=C.R.

We remark that the assumption on the unipotent radical is always
fulfilled if G is simple (by the main result of [lﬂ , which states
that the identitycomponent of AutH*(G/K;E) is a l-dimensional alge-

braic torus). On the other hand r., turns out to be guite manageable

L
(see Sections 2,3).

Theonem 3. 14 (5 48 simple and Wy 44 a normal subgroup of WG,then
all complex cohomology automorphisms of G/K are of Lie type.

We should point out that the statement above is false for real
coefficients (see Section 3). Needless to say, complexification is
often a useful device; in our case, it turns out to be rather obli-
gatory, which finally reformulates our main question as: when are

all complex cohomology automorphisms of Lie type?
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1. Compact Lie groups modulo maximal tori

We begin by making some preliminary remarks, on the way of
proving Theorem 1l.As a notational simplifying convention, we are
going to suppress the subscript G (recalling that, when K=T, RK is
void and Wy is trivial). Denoting, for [F=R or [, by A(F) the sub-
group of GL(V@JF) consisting of those elements whose npatural ac-
tion on lF[V@[F] preserves the ideal generated by 1t (F), notice that
N(F)<A(F), that there is a natural group morphism ;

p : A(E3—J>AutH (G/T,E3 . which extends
our p in the theorem, and which is an isomorphism ([8), Prop.2.1);
[8] also gives that A(R)=N(R). Complexification induces inclusions
A(R)=A([) and N(R)<N(([); to be more precise A(R)=A(@)n GL(V) and
N(R)=N(C) \ GL (V) .

We claim now that it will be enough to show that
(1) A(0)=aR) .o()

Indeed, knowing this we immediately deduce that A(()=N((), hence
our first assertion of the theorem, and next that N({)=N(R).D(().
The other assertion is a consequence of the fact that N(R).D(()=
=D(f) .N(R), which in turn follows from the fact (proved in [ﬂ)
that the action of N(R) on V permutes the decomp051t10n V=0V,

Choose a system of simple roots for R,S—Jis (stev'), and consi-

der the associated positive roots, R,CR.

1.1. Lemma. For any geA(() and for any a€R there exist (uniquely)
* =
taQC and q,€R, such that g(a)=t .q,.

Proof. Uniqueness is clear. The existence proof is essentially
the proof of Theorem 1.1[8]. Denote by n the number of positive
roots, recall that dim(G/T)=2n and consider the nonzero degree n ho-

mogeneous polynomial function on (VG@E)* deflned by

(2) gx)=(x", [6/1) , xetv@D*

Also consider the nonzero degree n homogeneous polynomial J,= [ | L,
aeR
where L, (x)=x(a), xé(VQQI)*. One infers from [1] that J is a nonzero
complex multlple of J,- If geA([) then clearly Jogx is a nonzero multi-
ple of J, hence g nermutes the irreducible factors of Jo (up to non-
zero complex scalars), i.e. given any aeR, there exist teﬂ and beR
such that L_eg *=t. Ly, that is Lg(a) b ! whence g(a)=t.b, which
gives the lemma.

1.2. Lemma. Fix geA(() and keep the notations of the previous
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Lemma. 1§ a,beR and a+beR then taeR* i and only if tbeR*.

Proof. Suppose that taeRx, but tb*—IRx and write that
g(a)=ta.qa, g(b)ftb.qb, g(a+b)=ta+b.qa+b=ta.qa+tb.qb. Equating the
imaginary parts of the last equality, we find out that 9.+b and qy
are proportional, which implies that the roots a+b and b are propor-

tional (over R), whence a+b=%tb, which is absurd.

1.3. End of proof of Theorem 1. Pick a simple root aiesi, for
any i. Given ge¢A({), write g(ai)=ti'bi' with tiet* and b €R, (by
Lemma 1.1). Define deD(() by d=di§g(t£l) and notice that gd(a;)=b;
eR*.R+, for any i. Given any ciesl, choose a path connecting cy to
a; in the Cogeter graph, repeatedly apply Lemma 1.2 to gd and conclu-
de that gd(Sl)c:R¥R+c:V, for any i. Since S is known to generate V
as an R-vector space [1] , we infer that gdeGL(V), hence gdeA(R),which

proves the desired inclusion (1) and thus finishes the proof of

Theorem 1.

1.4. Conolﬂany. For a genernal maximaf hank subgroup KC=G we have
N(C)=D(() -N(R) .

Proof. We have just seen that NG([)C:D(I).GL(V), hence N({)
D(().N(R) (since D(F)=N(F), due to the fact that WG=XW;, with
Wéc:GL(V » and similarly for Wy). The other inclusion is clear.

1.5. Example. Consider U(3)c=SO(7) (Example 6.9 of[9]). We have
noticed there that p(N(R)) consists of grading R-automorphisms (i.e.
those which act on H2j as tj.id, for some teRx) and exhibited an
[F-cohomology automorphism (FR,({) which is not a grading [F-automor-
phism. By the previous corollary p(N([))=P(Cx).p(N(R)) will again
consist only of grading (-automorphisms, which shows that not all

automorphisms of H*(So(7)/U(3);¢) are of Lie type.

‘2. The dual homotopy representations

We start by constructing the dual homotony reoresentation Ty of
AutHx(G/KﬂF) in GL(h) (F=R,(). In order to do this, we begin by recal-
ling the classical construction of a free dga model of H*(G/K). Set
M=IKQ§A6G, where aG is the desuspension of the graded [F-vector space
QG and the degrees of.IK and QG are defined by doubling the usual
degrees of |F[V®[F] . A section of the canonical projection IZ—)QG de-
fines a degree 1 linear map d:Qd-J;IK, which extends to a differen-
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tial d:M->M (by setting d(I,)=0). A dga map mo:(M,d)—”(H*(G/K),O)

is defined by mOII =canonical -projection and mo(ﬁG)=0; it induces an

K
isomorphism in cohomology Given any dga(A,d), consider the graded

vector space A /A at , denote bv Q (following [5]) the induced diffe-
rential and define Q (a,d) H (A /A A ,Qd), noticing that thlS cons-
truction is natural with respect to dga maps. In our case Q (M,d)

is independent of the choice made in the construction of d; more
precisely an(M,d)=(he)n and an—l(M,d)=(h°)n, for any n (with the
notations of the Introduction). Given geAutH*(G/K), the general theo-
ry (cf.[lQ]) guarantees the existence of a dga map g:M—>M (which is
unique up to algebraic homotopy) with the property that maﬁﬁ!gmo. It
follows that Q(g) :Q(M,d)—>Q(M,d) depends only on g, and we construct
the dual homotopy representation ry by setting rH(g)=Q(§)eGL(h).

far as the dependence on [ is concerned, we just have to notice that
*(6/k; 0)=H* (G/K;IR) @ (which embeds AutH*(G/K;R) into AutH® (G/K;()
by complexification), that h({)=h(R) @ (embedding GL(h(R)) into
GL(h([))), and that (choosing A(R)@C( as d([)YrH(Csrestricts to
rH(m). ’ ’

This construction is "geometric", from the point of view of ra-
tional homotopy theory (recall that the homotopy classes of self-
maps of the rationalization of G/K are in natural bijection with
the graded algebra endomorphisms of Hx(G/K;Q), see Eﬂ). A second
(simpler) construction will better suit our purpose here. Abbreviate
H¥(G/K) to H¥ and set r(g)=Q(g)¢GL(Q(H*,0)), for any geAutH*. It is
immediate to see that Q(H*) =h® and that r(g) r (g). (For the second
assertion, recall that g m =id, which shows that r(g)—Q(H g) , next
that there is an obvious degree zZero map Q(H A,0)—>Q(A,d), natural
in the dga(A,d) and which equals the identity when d=0, apply this
naturallty property to mg (M,d)—4>(H*M,O) and deduce that ngen(M,d)=
=0 (5*M,0)) .

We move now to the proof of Theorem 2. The first step is the fol-
lowing self-evident remark (in our second setting)

(1) r§°p=r§
(We point out that it is not difficult to see that the same holds
for r®). It follows that without any other assumption we .always ha-
ve ri(N(F)M:rE(AutH*(G/K;F)) (and similarly for ;O) and equality
must hold if p is onto.

In order to prove the converse we invoke the following geheral
fact: if H is a connected finitely generated commutative graded al-
gebra then Aut(H) is a linear alqebraic group and ker r (where
r(g)=Q(g), as above) is a unipotent subgroup of Aut(H). Proof:
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(sketch) :set Q(H)=Q and use a sectién of Ht—9>Q(H) in order to write
down a finitely generated presentation of H
(2) 0—>J—>A—E> H—0
which exhibits Aut(H) as a quotient of the subgroup of Aut(/\Q) con-
sisting of elements which leave J invariant. If r(g)=id, geAut(H),
then g comes from some feAﬁt(AQ) (leaving J invariant) and r(f)=id
(since Q(P) is a isomorphism); but then clearly f must be unipotent,
hence g is also unipotent.

If the unipotent radical of AutH*(G/K;C) is trivial, then
rg must be monic (for [F=C and consequently also for [F=R). Given the
equality (1), rE(N(F))=r§(AutH*(G/K;F)) forces then p to be onto.
Theorem 2 is proved.

We close this section by saying a little more about ry. First
G (of NG in GL(QG)) and

in GL(Q.,)), whose restrictions to N fit intg an exact
K

of all, we have natural representations r
ry(of Ny
sequence
o Qi e
(3) 0—h —>Q; — >0y —>h —0
The main result (which is of great help in making explicit compu-

tations, see e.g. next section) is the following.

2.1. Proposition. 1§ F is a finite subgroup of NG(R) which
Leaves some Wr-chamben invaniant, zthen Qg and V are Lisomorphic as
F-modufes. The same also holds for K.

Proof. Implicit in the proof of Lemma 3.2[&], when G is semi-
simple. We briefly discuss the extra-arguments needed for the gene-
ral case (K might not be semisimple!). We are going to supress the
subscript G and recall from [9] that one has an orthogonal decompo-
sition V=v"® V_ (with V'=fixed points of W and Vi =R-span(R)) and

compatible splittings W={I}x W and NGL(V)(W)=GL(VW)xNé¥1V X where
W

RCV, is the root system of a semisimple group. These splittings
induce F-module splittings V=VW®VW and Q=VW€BQSS, where the F-modu-

Y are the same, and we are thus reduced to the

le structures on V
already settled semisimple case.

This can be used for example in the following way: since
rK(v)=id and rG(v)=id, for any veW,, we may work with N/WK instead
of N, fix a pair of Weyl chambers, CGC:CK,denote by [r] the class of
neN mod Wy and (remembering that the elements of N act on WG and
WK-chambers, see[? ’ é]) we may always suppose that n has been nor-

malized, i.e. n(Cy)=Cy, cf.[1] (here and in the following statement
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IF=R) . By[1] again, there is a unique ueW, such that n(Cg)=u(Cg).

2.2, Conollany. Suppose neN(R) is normatized and of finite onder.
Then the charactenistic polynomials of rp(n) and n (respectively of

re(n) and u—ln ) codincide,

3. Complex versus real coefficients. Examp;es

This section is devoted to the proof of Theorem 3. We are dealing
in fact with a root system pair, R=(RKc:RGc:V), where RG is supposed
to:be normalized (i.e. V=R—span(RG)) and irreducible, and Ry is a pro-’
per closed ([? ,.q ) subsystem. We may also suppose that RK is nonvoid

(otherwise we are done, by Theorem 1).

3.1. Lemma, Under Zhe above assumptions, W, is a normal subgroup
of Wy 4 and only Lf R has two root Lengthsand Ry=Long roots of Rg.

Proof. Given an arbitrary root system R, it is immediate to see
that the roots of a given length f form a subsystem Ry (eventually
void, or equal to R). If a,beRp and a+beRr, we compute the square of
the length of a+b as (a+b,a+b)=f2(2+(a,b)))f2, since the Cartan inte-
ger <§,b) must be equal to 0 or*1, see [i]. This shows that the roots
of maximal length of R form a closed subsystem (which is nonvoid and
proper if R has more than one root length). On the other hand the
Weyl group W(Rf) is always normal in W(R). Slightly more generally,
given an arbitrary root system RCV and an isometry f €0(V), £ nor-
malizes W(R) if and only if f(R)CR (since it is enough to check f
on the generators of W(R), since fsaf—l=sf(a)' a€R - where Sv denotes
the symmetry with respect to the hyperplane orthogonal to veV - and
since the only symmetries in W(R) are those of the form Sa' aeR - see
[i]). Half of our statement is thus verified. Finally assume that,WK
is normal in WG. As we have seen, this means that WG(RKR:RK. Since,
as it is well-known [i] all roots of the same length of an irreducible
root system are conjugate under the action.of its Weyl group, this
leaves us with two possibilities (Ry being proﬁer and nonvoid): either
RK=(RG)1ong or RK=(RG)Short (and of course forces R, to have two root
lengths). It can be easily checked (e.g. by direct inspection) that the
short roots of RG do not form a closed subsystem, whence the lemma._

3.2. Proof of Theorem 3
We are going to check separately the various cases (for both

F=C and R). The classification [ﬂ says that RG mus be Bf(fWZ),




224 STEFAN PAPADIMA

Ct(fka), F4 or G% and R must respectively be Df Af, D4 or A2.
In all cases V=R
(X ,...,Xf) and euclidean metric, R

, with standard basis {ei,...,ezg, coordinates
G will be in standard form, as
in [g , and with a standard choice of simple roots.

Given a commutative graded algebra A, graded by even-dimensional
degrees, and a positive integer m, we define an algebra of the same
kind, denoted by m+A, by simply multiplying by m the deqgrees of A.
Notice that A and me«A have the same group of automorphisms. The
reason for waisting time with such a definition is that the proof
of our theorem dposteriori gives the following curious result: if
K is normal then Hx(G/K;F)=mH*(U(n)/T;F) for some
m and n; we have no apriori explanation of this phenomenon. Any way,
in what follows it is good to bear in mind that AutH*(U(n)/T;F) is
generated by F* (which acts by grading [F-automorphisms) and the sym-

G is simple and W

metric group Sn (which naturally acts by permutation of coordinates

inIRn)—see [d], and Theorem 1 of this paper. As far as Aut(m.H*(U(n)/
/T;F)) is concerned, there is one more point: given tde, it acts on
m. H as gr (t) =t'.id on (m. Hx)2m1 2i,

ding F—automorphlsm- if F=C,or F9R and either m is odd or teR then
1/m

for m=1, this is an usual gra-
grm(t) gra(t ) and we still get usual [F-grading automorphisms
(which are of Lie type). On the other hand, if F=R and m is even,
then gr_ (-1) is not an R-grading automorphism, and this explains
the different behaviour of real coefficients, see the remark below.
In what follows we will ckeck that always in our list S C:p(N(R)),
for n)2 (remember that AutH® (U (2) /T; F)=F ), thus settling the case
F—C and finishing the proof of Theorem 3, and also check that gr, (-1)
¢cp(N(R)), if R G=Bf or G,. The discussion of real coefficients will be
completed by the next remark,namely by showing that grn, (- l)#p(N(R))
if R Cf or Fy. f
W R=(Dpc=B ) .H* (6/K;F) =u* (s*7 ) = fH*(U(z)/T b.
In terms of Weyl groups invariants u* (G/K;[F) is generated by the
Euler class e=Xy ... Xf, with the relation e2=0. Consider the linear
transformation w(Xl,...,Xf)=(—xl,...,Xf), weWGc:N(R) and notice that
p(w)=gry(-1).
(2) R= (A2C:G2). As it is well-known, u* (G,/sU(3) r)—
=0* (s6 ;F)=3.8% (U(2)/T;F), Moreover gry(-1)=gr, (- 1)ep (R®) .
By the above discussion, in these two cases all [F-cohomology
automorphisms are of Lie type, for both |[F=( and [R.

(3) R_(Aicch) It is equally well-known that H*(Sp(f)/Sp(lL)£ iF)
=2.H (U(f)/T,F)=F[¥l....,Xt]/(pl,...,nf), where Py is the j-th elemen-
tary symmetric function of Xlreeer X3, and that Sfc:W CN(R) and acts
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by permutation of coordinates ([l])

(4) R—(D4cF ) . Since W is normal in W(,, we ‘know that W(,cAut(RK)
(the group of automorphisms of the root system RK [l]), see the proof
of Lemma 3.1. We also know that Aut(RK)-Dgraut(SK) x Wy, where Sg are
simple roots of Ry, Dgraut(S ) denotes the automorphism group of the
associated Dynkin diagram, whose elements leave the W —chamber C

invariant, see [1]

In our case, Dgraut (S )= =53
WG Aut(R ), by a cardlnallty argument, see [1] it follows that
I =(I )S3 (the invariants of 83 in Ix ) and that Proposition 2.1 is
avallable, for S3CNK ([R) As a greded vector ‘space, it is well-kncwn
that Q —Q @Q @Q , with d1m Q _dll'[lQ, =1 and dim Q 2 We also know
that S3 acts trivially on Q, , -Since S3CO(V) and Q is generated by
the W-invariant metric on V. On the other hand geS3 is known to act
on V via the permutation of the R-basis of V given by the simple
roots ajrdy,a3,3, of RK which fixes a, and coincides with g on the
remaining roots " hence V-is isomorphic as an S3—module with U@V(AZ) ’
where U is 2-dimensional and trivial and V(Az) is the 2-dimensional
irreducible defining representation of the Weyl qroup w(a,) S
Using Prop051tlon 2.1 we deduce that IG=F[(Q (Yo} )@ﬂ@F[Q @lF W(A2)
where Q —V(A ), hence H® (G/K; F)=4. H® (U(3) /T #F). Finally s CWGC:N(IR),
by constructlon.

3

3.3. Remark. If RG=C£(£7/3) or R.=F, then not all real cohomology
automorphisms are of Lie type. In the first case notice first that
[R)=|R+xw ([8]), hence N( |R)=|R+ XW. Given the concrete description
of H™ (G/K; R) we see that the assumptlon gr, (- 1)ép(N(R)) would imply
that le[R .W(Az 4), hence -1¢W(Ap_ 1), which is absurd. If R, =F, the
same argument shows that gr, (= 1)¢p (|R xWG) . But in this case too we
have N([R)=lR xW This can be seen as follows: the split exact sequen-
ce which descrlbes N, R) [8]
1->R" xw -—>N SR = Graphaut (Sg)—> 1
(in which Graphaut(SG) ZZ ' with nontrivial element say g) restricts
to an exact sequence (see [9])
1->R" x W,—>N (R)—>Graphaut (C)—> 1
If ge¢Graphaut(C) then necessarily o-(g)eN (]R) But we know (cf.
[9]. 6.8) that for any long root beF, (g)S s(g)"i= 4 Where a is

short, hence Graphaut(C)—{l} and N(IR)=|R x W as asserted.

G'
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