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COMPLEX COHOMOLOGY AÜTOMORPHISMS OF COMPACT 

HOMOGENEOUS SPACES OF POSITIVE EULER CHARACTERISTIC 

Stefan Papadima 

Introduction 

Let G be a compact connected semisimple Lie group and let K be a 

proper closed connected subgroup of the same rank. Consider a common 

maximal torus and denote by V itң Lie algebra. One then has a pair 

of root systems, R= (R^CR CV) , and a pair of Weyl groups, 

(W
R
C:W

G
C1GL(V©F) ) 9 IFHRort, which naturally act on the polynomial 

graded algebra on V @ F .(gгadeđ by deg(V@p) =1), giving thus rise 

to a pair of graded subalgebras of invariants, (IG (F)CI~ (|p) ) .One knows 

that H*(G/K;f") = T. (F) / J
к ̂

 ЏІG ^ ( a s
 9

r a
 ed algebras, provided 

the degrees of the right hand side are doubled). Consider next the 

normalizers of the Weyl groups, N
G
(p)

= N

G
т r

v
бðF)(WG^ (and similarly 

for K) and the group N(F)=N
G
(F)П N

к
(F)f which naturally acts on the 

polynomial algebra on V @ F ' preserving the invariant subalgebras and 

thus giving rise to a group morphism p:N(p)—^AutH (G/K;F) t whóse 

image was considered in [_9J under the name of "cohomology automor-

phisms of Lie type". 

This paper is devoted to the study of AutH (G/K;([), centered 

around the general question: areall cohomology automorphisms of Lie 

type? This question makes sense for any characteristic zero field 

coefficients F (see \ß\ ) ; if K=maximal torus, then the answer is yés, 

for FHD/R й . Our first result her establishes the same answer for 

F=C
 a
^d gives a precise description of AutH (G/T;([), T = maximal to-

rus. Consider the orthogonal decomposition V^фV
1
 (corresponding to 

the infinitesimal splitting of G as a product of simple groups) and 

denote by D(IF)dGL (V@F)
 t n e

 subgroup of elements which act as sca-

lars of p* on each V
1
 ® F ( И R Д ) • 

Thto/tгm 7. p iò an iьomoкphiъm N(£)^-> AutH*(G/T; ([) and N(0 = 

=D(([).N(R) . 

For a complete description of N(|R), see [в] . 

If G=SU (n), then the conjecture of [4,7] on AutH*(G/K; ) is 

equivalent to the fact that all ß-cohomology automorphisms are of Lie 
t v
pє ( й ) f

 a n d w a s
 verified in many particular cases, by several 



218 STEFAN PAPADIMA 

authors. On the other hand, there are examples v/here not all p-coho-

mology automorphisms are of Lie type (see [9*] for |F
=
(ЙЛгЪ and the 

example given in the next section, for |F=C)/ therefore a more reaso-

nable question would be: wh n are all |F-cohomology automorphisms of 

Lie type? 

Our next result provides an equivalent formulation of this pro-

perty (FHRrC). Consider the graded F ~
v e c t o r

 space Qri^1^/1^ - ^c (si-

milařly for K) and the linear degree zero map Q.:Q
Г
—->Q induced by 

the inclusion i : l
г
d l

к
; denote its kernel by h

0
, its cokernel by 

h
e
 and set h=h°©h

e
. Since plainly Q. commutes with the obvious ac-

tions of N on Q_ and Qv, we may consider the odd, even and total dual 
Cз K — • • • — — ' — — 

homotopy representations of N in GL(h°),GL(h
e
) and GL(Һ), to be deno-

ted in the sequel by r°, r
e
 and r

T
 . Rational homotopy theory [l6\ 

J_i J_i L І 

identifies h°,h
e
 and h with the graded spaces of odd-dimensional, 

eVen-dimensional, respectively all multiplicative generators of 
Лж 

the |F-minimal model of G/K (and consequently with ("Jldđ (G/K) ®p) , 

(7Г (G/K) ®|F) , respectively (7T̂ (G/K) ©|F) , which explains our ter-

minology). Since G/K is formal, AutH (G/K) acts (up to algebraic ho-

motopy) on the |F-minimal model, thus inducing (genuine) representa-

tions in GL(Һ°), GL(h
e
) and GL(Һ), to be denoted by r° r

e
 and r 

(the precise construction of these dual homotopy representations 

of AutH*(G/K) is given in Section 2). 

Tho,oKQ,m 2. Suppoòo. that tho. unipotcnt кadical [ÒQQ. c.g.[б\) oţ 
tho. LinQ.aк algcbкaic gкoup AutH (G/K;([) iь tкivial. Thcnviò onto i^ 

and only ii r
Є
(N(f))=r

Є
(AutH*(G/K;F)), F=C,IR. 

We remark that the assumption on the unipotent radical is always 

fulfilled if G is simple (by the main result of [ll] , which states 

that the identitycomponent of AutH (G/K;£) is a 1-dimensional alge-

braic torus)'. On the other hand r turns out to be quite manageable 

(see Sections 2,3). 

Thcon.cm 3. l£ Q- iь òimplc and W
к
 iò a noxmat òubgкoup o£ W ,tho.n 

all complcx cohomologij automoяphiòmò o£ G/K aкc 0/ Lio. tijpc. 

We should point out that the statement above is false for real 

coefficients (see Section 3). Needless to say, complexification is 

often a useful device; in our case, it turns out to be rather obli-

gatory, which finally reformulates our main question as: when are 

all complex cohomology automorphisms of Lie type? 
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1. Compact Lie groups modulo maximal tori 

We begin by making some preliminary remarks, on the way of 

proving Theorem l.As a notational simplifying convention, we are 

going to suppress the subscript G (recalling that, when K=T, R is 

void and W is trivial) . Denoting, fôr |p=|R or Cr Ьy A(p) the sub-

group of GL(V©|p) consisting of those elements whose цatural ac-

tion on |F[y©|Fj preserves the ideal generated by I (|F) , notice that 

N (|p)CA (p) , that there is a natural group norphism ; 

p : A(F)—*>AutH*(G/T;F) which extends 

our p in the theorem, and which is an isomorphism ([8], Prop.2.1); 

[8] also gives that A(|R)=N(|R). Complexification induces inclusions 

A(R)CA({) and N(|R)CZN(C); to be more precise A (R) =A(C) П GL (V) and 

N(|R)=N(C)П GL(V) . 

We claim now that it will be enough to show that 

(1) A(C)CIA(R).D(t) 

Indeed, knowing this we immediately deduce that A(C)=N(C)# hence 

our first assertion of the theorem, and next that N (C) =N (|R) .D (C) • 

The other assertion is a consequence of the fact that N(|R).D(C) = 

=D(C)-N(|R)
r
 which in turn' follows from the fact (proved in [8J ) 

that the action of N(|R) on V permutes the decomposition V-^фV
1
. 

Choose a system of simple roots for R.S= IІS (S czv ) , and consi-

der the associated positive roots, R . C R . 

l.l. Le.mma. Voк any gЄA(C) and Ьoћ. any aéR the.ћ.e. dxlьt (untquгly) 

t éC and Ç[-,̂ R_i. Лuzh that g (a) =t .q^ . a a > a a 

Proof. Uniqueness is clear. The existence proof is essentially 

the proof of Theorem 1.1L8J. Denote by n the number of positive 

roots, recall that dim(G/T)=2n and consider the nonzero degree n ho-

mogeneous polynomial function on (V@C) defined by 

(2) J(x)=<x
n
,[G/т])

 ;
 xé(V®C)* 

Also consider the nonzero degree n homogeneous polynomial J_=lГ L t o __ a 
a€-R+ 

where L (x)=x(a), x^(V®C) • 0 n e infers from Llj that J is a nonzero 

complex multiple of J . If gєA(C) then clearly Jog is a nonzero multi-

ple of J, hence g permutes the irreducible factors of J (up to non-

zero complex scalars), i.e. given any aéR, there exist t^Ç and b^R 

such that La*g =t.Lb, that is L , , =Lfc b , whence g(a)=t.br which 

gives the lemma. 

1.2. Ldmma. Vlx gєA(C) and feeep the. notatlonò of tho. p>ю.víou& 
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Iгmma. I tf a,btR and a+b€R thгn t_€|R* it and only i^ t
ь
fc|R*. 

a 

Proof. Suppose that t
a
e|R*, but t,4-/R* and write that 

9
( a ) =

V
q
a ' 9

( b
>

=
V

q
b ' 9

( a + b ) = t
a+b'

q
a+b

= t
a-

q
a

+ t
b^b-

 E q u a t i n
^
 t h e 

imaginary parts of the last equality, we find out that q , and q, 

are proportional, which implies that the roots a+b and b are propor­

tional (over |R) , whence a+b=tb, which is absurd. 

1.3. End of proof of Theorem 1. Pick a simple root a.CS
1
, for 

any i. Given g£A(C), write g (a^ =ti .b^, with t^C
 and b^R,,, (by 

Lemma 1.1). Define d*D(C) by d=diag(t7l) and notice that gd(ai)=bi 

€tR -R.t for a nY i- Given any c.^S1, choose a path connecting c^ to 

a. in the Coxeter graph, repeatedly apply Lemma 1.2 to gd and conclu­

de that gd(S1)cz|R.R+<-Z.V, for any i. Since S is known to generate V 

as an R-vector space \J\ r we infer that gd€GL(V), hence gd€A (|R) ,which 

proves the desired inclusion (1) and thus finishes the proof of 

Theorem 1. 

1.4. CoiollaKy. To>i a go.ne.tial maximal tank Aubgioup KCG we havo. 

N(C)=D(C) -N(R) . 

Proof. We have just seen that N Q (C)C3D (C) -GL (V) , hence N(C)CZ 

D(C> -N(R) (since D (F)C=N (F) / due to the fact that W =xwi, with 
i t b J 

W cGL (V) , and similarly for W„) . The other inclusion is clear. 

1.5. Example. Consider U(3)cziSO(7) (Example 6.9 of[9]). We have 

noticed there that p(N(|R)) consists of grading |R-automorphisms (i.e. 

those which act on H -̂  as t-'.id, for some te|R ) and exhibited an 

IF-cohomology automorphism (p^R/C) which is not a grading f-automor-

phism. By the previous corollary p(N(C))=p(C ).p(N(|R)) will again 

consist only of grading C~automorPn:-smsf which shows that not all 

automorphisms of H (SO (7)/U (3) ; ([) are of Lie type. 

2. The dual homotopy representations 

We start by constructing the dual homotopy representation r„ of 

AutH (G/K;|F) in GL(h) (FHR'C)- I n order to do this, we begin by recal-

ling the classical construction of a free dga model of H (G/K). Set 

M=I K®/\Q , where Q r is the desuspension of the graded p-vector space 

Q G and the degrees of I„ and Qc are defined by doubling the usual 

degrees of F[y®Fj • A section of the canonical projection Ir->Q de­

fines a degree 1 linear map d:Q '—^I„, which extends to a differen­

ce J\ 
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tial d:M->M (by setting d(IR)=0). A dga map mQ:(M,d)-» (H*(G/K),0) 

is defined by m II =canonical projection and m (Q~)=0; it induces an 
O I J\ O Cj 

isomorphism in cohomology. Given any dga(A,d), consider the graded 

vector space A /A-A , denote by Q. (following L5J) t n e induced diffe-

rential and define Q (A,d)=H (A /A-A ,Q,), noticing that this cons­

truction is natural with respect to dga maps. In our case Q (M,d) 

is independent of the choice made in the construction of d; more 

precisely Q 2 n (M,d) = (he) n and Q211"1 (M,d) = (h°) n, for any n (with the 

notations of the Introduction). Given geAutH (G/K), the general theo­

ry (cf.^lO]) guarantees the existence of a dga map g:M—»M (which is 
unique up to algebraic homotopy) with the property that m g —gm . It 

follows that Q(g):Q(M,d)—>*Q(M,d) depends only on g, and we construct 

the dual homotopy representation r by setting r
ң
(g)=Q(g)éGL(h). As 

far as the dependence on |p is concerned, we just have to notice that 

H*(G/K;C)=H*(G/K;|R) ®([ (which embeds AutH* (G/K;|R) into AutH*(G/K;C) 

by complexif ication) , that h (([) =h (|R) © C (embedding GL(Һ(|R)) into 

GL(Һ(([))), and that (choosing d(|ft)(g)C as d(£) )*r (C) restricts to 

r н (IR). 
This construction is "geometric", from the point of view of ra-

tional homotopy theory (recall that the homotopy classes of self-

maps of the rationalization of G/K are in natural bijection with 

the graded algebra endomorphisms of H (G/K;Q,) , see [зj ) . A second 

(simpler) construction will better suit our purpose here. Abbrëviate 

H*(G/K) to H* and set r(g)=Q(gKGL(Q(H*,0) ) , for any geAutH*. It is 

immediate to see that Q(H )=he and that r(g)=re(g). (For the second 

assertion, recall that H m =id, which shows that r(g)=Q(H g), next 
ifc 

that there is an obvious degree zero map Q(H A,0) —*> Q(A,d), natural 

in the dga(A,d) and which equals the identity when d=0, apply this 

naturality property to m Q: (M,d) —**• (H*M, 0) and deduce that Q,
even(M,d) = 

=Q(H*M,0)). 

We move now to the proof of Theorem 2. The first step is the fol-

lowing self-evident remark (in our secońd setting) 

(1) r^.p=r^ 

(We point out that it is not difficult to see that the same holds 

for r ). It follows that without any other assumption we always ha-

ve rЄ
(N(F) )Cr

e
(AutH*(G/K;IF) ) (and similarly for r°) and equality 

must hold if p is onto. 

In order to prove the converse we invoke the following general 

fact: if H is a connected finitely generated commutative graçled ąl-

gebra then Aut(H) is a linear alqebraic group and ker r (where 

r(g)-Qíg), as above) is a unipotent subgroup of Aut(H). Proof: 
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(sketch) :set Q(H)=Q and use a section of H—»Q(H) in order to write 

down a finitely generated presentation of H 

(2) 0->J-^AQ-^->- H—*> 0 

which exhibits Aut(H) as a quotient of the subgroup of Aut(/\Q) con­

sisting of elements which leave J invariant. If r(g)=id, g€Aut(H), 

then g comes from some feAut(AQ) (leaving J invariant) and r(f)=id 

(since Q(P) is a isomorphism); but then clearly f must be unipotent, 

hence g is also unipotent. 

If the unipotent radical of AutH* (G/K;([) is trivial, then 

r® must be monic (for |F=C and consequently also for |p=|R) • Given the 

equality (1), r^ (N (F) ) =r^ (AutH* (G/K;|F) ) forces then p to be onto. 

Theorem 2 is proved. 

We close this section by saying a little more about rT. First 
Li 

of all, we have natural representations r„ (of N^ in GL(Q^)) and 

rK(of NK in GL(Q )), whose restrictions to N fit intg an exact 

sequence 

(3) o-^h°-^Q G i-»QK-^h
e-^0 

The main result (which is of great help in making explicit compu­

tations, see e.g. next section) is the following. 

2.1. Proposition. Î -F is a finite subgroup o£ N (|R) which 
leaves some W^,-chamber invariant, then Q„ and V are isomorphic as 
F-modules. The same also holds £or K. 

Proof. Implicit in the proof of Lemma 3.2 [sJ, when G is semi-

simple. We briefly discuss the extra-arguments needed for the gene­

ral case (K might not be semisimple!). We are going to supress the 

subscript G and recall from [V] that one has an orthogonal decompo­

sition V=V W© V w (with VW=fixed points of W and Vw=|R-span (R) ) and 

compatible splittings W={l\x W and NGL(V)(W)=GL(V
w)*N^W

(v )* where 

R C V is the root system of a semisimple group. These splittings 
T 7 ' W 

induce F-module splittings V=V © V w and Q=V ® Q S S ' where the F-modu-

le structures on V W are the same, and we are thus reduced to the 

already settled semisimple case. 

This can be used for example in the following way: since 

r (v)=id and rG(v)=id, for any veWK, we may work with N/WK instead 

of N, fix a pair of Weyl chambers, CrC:CK, denote by [nj the class of 

n^N mod W„ and (remembering that the elements of N act on W r and 

WK-chambers, see [8 , 9J) we may always suppose that n has been nor­

malized, i.e. n(CK)=CK, cf.[l](here and in the following statement 
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IFHR) - By[l] again, there is a unique ueWf such that n(CG)=u(CG). 

2.2. Corollary, Suppose n€N(|R) is normalized and o£ finite order. 

Then the characteristic polynomials of, --V(n) and n [respectively o{ 
_ 1 • J\ 

r (n) and u n, ) coincide. 

3. Complex versus real coefficients. Examples 

This section is devoted to the proof of Theorem 3. We are dealing 

in fact with a root system pair, R= (R-.C-VC-N) , where R_ is supposed 

to be normalized (i.e. V=^-span(R )) and irreducible, and R is a pro-' 

per closed (p2 , l] ) subsystem. We may also suppose that R.. is nonvoid 

(otherwise we are done, by Theorem 1). 

3.1. Lemma. Under the above assumptions, WK is a normal subgroup 

o& Wr ifi and only i& Rr has two root lengthband R=long roots ofi Rr. 

Proof. Given an arbitrary root system R, it is immediate to see 

that the roots of a given length £ form a subsystem R£ (eventually 

void, or equal to R) . If a,beR-p and a+bfcR, we compute the square of 

the length of a+b as (a+b,a+b)=f (2+^a,by)^ri , since the Cartan inte­

ger ^a,b^ must be equal to 0 or-tl, see [.lj • This shows that the roots 

of maximal length of R form a closed subsystem (which is nonvoid and 

proper if R has more than one root length). On the other hand the 

Weyl group W(R£) is always normal in W(R). Slightly more generally, 

given an arbitrary root system R C V and an isometry f € 0 (V) , f nor­

malizes W(R) if and only if f (R)c:R (since it is enough to check f 

on the generators of W(R), since fS f" = S f ( a ) '
 a^ R " where S denotes 

the symmetry with respect to the hyperplane orthogonal to veV - and 

since the only symmetries in W(R) are those of the form S , a€R - see 
a 

[Y] ). Half of our statement is thus verified. Finally assume that W K 

is normal in Wp. As we have seen, this means that ^ G ^
R K ^ C R K # S i n c e ' 

as it is well-known £l] all roots of the same length of an irreducible 

root system are conjugate under the action.of its Weyl group, this 

leases us with two possibilities (RK being proper and nonvoid): either 

RK=(RG)., or R K=(RQ) abort ^
and o f c o u r s e forces Rr to have two root 

lengths). It can be easily checked (e.g. by direct inspection) that the 

short roots of Rp do not form a closed subsystem, whence the lemma. 

3.2. Proof of Theorem 3 

We are going to check separately the various cases (for both 

IF=C and |R) . The classification [l] says that R^ mus be B-p(f?/2), 
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D 

Cf (i>/3) # F4 or G2f and RK must respectively be Df, A., D, or A2. 

In all cases V=)R^, with standard basis { e . M . M e f j , coordinates 

(X-,...,Xp) and euclidean metric, Rr will be in standard form, as 

in [l] / anc^ with a standard choice of simple roots. 

Given a commutative graded algebra A, graded by even-dimensional 

degrees, and a positive integer m, we define an algebra of the same 

kind, denoted by m«A, by simply multiplying by m the degrees of A. 

Notice that A and m»A. have the same group of automorphisms. The 

reason for waisting time with such a definition is that the proof 

of our theorem ^posteriori gives the following curious result: if 

G is simple and WR is normal then H*(G/K;f)=mH*(U(n)/T;f) for some 

m and n; we have no apriori explanation of this phenomenon. Any way, 

in what follows it is good to bear in mind that AutH (U(n)/T;p) is 

generated by p (which acts by grading p-automorphisms) and the sym­

metric group S (which naturally acts by permutation of coordinates 

in |Rn)-see [s] , and Theorem 1 of this paper. As far as Aut(m.H (U(n)/ 

/T;p)) is concerned, there is one more point: given t€p , it acts on 

m.H* as gr (t)=t1.id on (m.H*)2mi=H21; for m=l, this is an usual gra-
iu 

ding p-automorphism; if p=£ or JF=JR and either m is odd or ts|R , then 
1 /m 

gr (t)=gr/, (t
 / ) and we still get usual p-grading automorphisms 

(which are of Lie type) . On the other hand, if F=IR and m is even, 

then gr (-1) is not an |R-grading automorphism, and this explains 

the different behaviour of real coefficients, see the remark below. 

In what follows we will ckeck that always in our list S czp(N(|R)), 

for n)2 (remember that AutH*(U(2)/T;P)=p*), thus settling the case 

P=t and finishing the proof of Theorem 3, and also check that grf-l) 

€p(N(R)), if PG=B-P or G2- The discussion of real coefficients will be 

completed by the next remark,namely by showing that gr (-l)ep (N (|R) ) 

if RG=Cf or F4. 

(1) R=(D£dB£) .H*(G/K;F)=H*(S2I;P)=f.H*(U(2)/T;F) . 

In terms of Weyl groups invariants H (G/K;p) is generated by the 
2 

Euler class e=X1 ... X£, with the relation e =0. Consider the linear 

transformation w (X-^ . . . ,X£) = (-X^ . . . ,X-p) , weW&cZN (|R) and notice that 

p(w)=gr£(-l) . 

(2) R=(A 2CG 2). As it is well-known, H* (G2/SU (3) ;|F) = 

=H*(s6;P)=3.H*(U(2)/T;P)f Moreover gr3 (-1) =gr]L (-l)€p (R*) . 

By the above discussion, in these two cases all f-cohomology 

automorphisms are of Lie type, for both p=C and |R. p 

(3) R=(A*CZCf) . It is equally well-known that H* (Sp (f)/S p(/L) ;p) 

=2.H*(U(£)/T;|F)=P[x2f ...,x|j/(Pl,...,p£) , where p. is the j-th elemen­

tary symmetric function of X-,, ,Xf, and that S^dW^CN (|R) and acts 
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by permutation of coordinates (£lj) . 

(4) R=(D4ciF4). Since W is normal in W , we know that WrcAut(RK) 

(the group of automorphisms of the root system R
K/L--J) .- s e e t n e proof 

of Lemma 3.1, We also know that Aut(R„)=Dgraut(Sv) oc Wv. where Sv are 

simple roots of RK, Dgraut(SR) denotes the automorphism group of the 

associated Dynkin diagram, whose elements leave the W -chamber C„ 

invariant, see flj. 

In our case, Dgraut (SK)=S3-

W =Aut(RK), by a cardinality argument, see Pll. It follows that 

I =(IK) 3 (the invariants of S^ in IK) and that Proposition 2.1 is 

available, for S3cNK(|R). As a graded vector space, it is well-known 

that Q*=Q 2®Q 6©Q 4, with dim Q2=dimQ6=l and dim Q4=2. We also know 
2 2 

that S3 acts trivially on Q, , since S^CZO (V) and Q, is generated by 

the W-invariant metric on V. On the other hand geS3 is known to act 

on V via the permutation of the |R-basis of V given by the simple 

roots a1,a2,a3,a4 of R which fixes a2 and coincides with g on the 

remaining roots J hence V is isomorphic as an S^-module with U©V(A 2), 

where U is 2-dimensional and trivial and V(A2) is the 2-dimensional 

irreducible defining representation of the Weyl group W(A2)=S3. 
Using Proposition 2.1 we deduce that IQHFJJQ 2 ©ft6) ® F J ® F [ Q 4 @lN W ( A 2 ) * 
where Q4=V(A2), hence H* (G/K;F) =4 .H* (U (3) /T;|F) . Finally S3cWGC=:N (|R) , 
by construction. 

3.3. Remark. If R =C£(.cfy3) or RG
=F4 then not all real cohomology 

automorphisms are of Lie type* In the first case notice first that 
N G ^ M R xWG^D*~Pf n e n c e N(|RMR x^ r- Given the concrete description 

of H (G/K;R) we see that the assumption gr2 (-l)Gp (N (|R) ) would imply 

that -l€.(R .W(A£ 4), hence - K W ( A ^ j ) , which is absurd. If Rr=F4 the 

same argument shows that gr4 (-l)ip (^ x W f ) , But in this case too we 

have N(|R)=|R xWG« This can be seen as follows: the split exact sequen­

ce which describes N r (|R) [j3j 

1-»|R+ x WG-*NG(|R)^Graphaut(SG)--^ 1 

(in which Graphaut (SG) -IL-y * with nontrivial element say g) restricts 

to an exact sequence (see[9j) 

1->|R+ xWG—=VN(|R)—^Graphaut(C)-—>1 

I f g£Graphau t (C) t h e n n e c e s s a r i l y cr(g)£NK (|R) . But we know (c f . 

| V ] f 6 .8 ) t h a t f o r any l o n g r o o t bfcF4|cr(g) Sb<«r(g)" =S & , where a i s 

s h o r t , hence Graphaut (C)=£l^ and N(|R)=|R+x WQ, a s a s s e r t e d . 
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