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Introduction 

All associative algebras and Lie algebras in this paper are de-

fined over the complex field C. 

Let L be the Lie algebra of vector fields on the circle. An ele-

ment of L is a field f ( VЃ )-т~^- where f ( vp ) is a Fourier polynomi-

al. Denote the module of tensor fields of type Л by F , \ £ C. An 
Л 

element of F is an expression g( ү ) (d/d̂ P ) , and (f •d/d¥? ) • (g-

X / \ Л 

• (d/dү ) ) ̂ ífg' - Af'g)(d/dvf ) • Here g is also a Fourier poly-

nomial. Fix the decomposition F. = V Q V_ where V = 

z{ g( vp ) (d/d<p ) : g(vp) = 2 asJ
2j' ̂ S f | and V_ = /g( VP ) (d/dvp) : 

: g(VP) = -гr j a e ) Г . Let P be the projection operator V — ? V_ 
1
 s<0

 S 3 

along V . Define a map G : L —i> End V_ as follows. Put (X)Y = 
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= P(X(Y)), X <= L, Y 6 V_; X(Y) is the result of the action of X 

on the tensor field Y. The map is "almost a representation", i.e., 

Im( ([x, үj ) - / (X), 0(Y)J ) is finite dimensional. Put w(X, Y) = 

= tr( ((x, үj) - / (X), (Y)J ). It is well known that w is a co-

cycle representing the cohomology class -2-(бЛ + 6 X + 1)-c 

where c is generator of H (L) given by the form (cf. [CлPJ ) 

c ( f ïŕf-' g 4"> = -ài ) ( f ,gn " f , , g , ) Ъг • (1) 

This statement has an equíva.lent form. Let L be the Virasoro 

algebra which is the central extension of L corresponding to c. 

ze X 
There is the natural pairing F x F , v > <C; (g-Лd/dү ) , 

g
2
(d/df )""

1 _
 ) —> 1

 g
i^2

d
? '

 L e t 'v+'~V- b e t h e a n n i h
i

l a t o r
s of 

V , V_ respectively. The pairing Ә£ determines the quadratic form 

on F + F_п_v - <^u+v, u+v)> = ^Є(u, v) . Put W_ = V_ + ~V_ and 

let H be the representation of the Clifford algebra associated to 

the form Эe such that there is a vector v é- H, W_-v = 0. As it 

is well known ( ţPÇJ ) , there is the action of L on H uniquely 

determined by the following conditions: 

a) L is contained in the normalizer on W. 

b) W is isomorphic to F\ + F_-_\ as an L-module. The central 

charge (i.e., the action of the central element of L on H) is equal 

to -2- (6 X 2 + 6 X + 1). 

The polynomial -2 (6 X + 6X + 1) appears frequently in [ A O ^ , 

L&^Jf L P J as the gravitational anomaly in two-dimensional confor-

mal field theory or in representation theory of Virasoro algebra. It 

is also closely related to Riemann-Roch theorem. Namely, let X > S 

be a family of Riemann surfaces. Then 

X 
c 1 ( J T , J x / s ) = (6 X 2 + 6 X + 1) Cl(J\ , C? ) (2) 

where Jl , i s the d i r e c t image in K-theory and J , i s the r e l a -
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tive tangent bundle. 

All these results are related to the problem of finding "local" 

proof of Riemann-Roch theorem or index theorem. The examples of such 

considerations may be found in [вsj, /ADKPJ where the Riemann-Roch-

Grothendieck theorem for one-dimensional families is deduced from 

the purely local facts on Lie algebra cohomology of vector fields. 

Our aim is to obtain corresponding local statement for arbitrary fa-

milies. 

Let Diff (S ) be the algebra of differential operators on the 

circle whose coefficients äre Fourier polynomials. Let tлC (Diff (S )) 

be the Lie algebra of finite matrices over Diff (S ) . As it may be 

deduced from the results of ]BGJ , [ғт], the cohomology H (Diff(S )) 

is the free skew commutative graded algebra with generators in di-

mensions 2, 3, 4,... . Denote by Xj the generator in dimension c<! . 

It has been shown in [~GFl J that H (L) is f reely generated by 

c, v" where deg c = 2 and deg V = 3. The action of L on F de-

termines the embedding > : L —* ^/^ (Dif f (S
1
) ) ^—> .^ t; (Dif f (S1

) ) . 

One has 

Ҷ* (Yl ) = -2(6/\2
 + 6 /\ + D-Kc (3) 

Ҷ>* Њ \ = -2(бX2
 + бX + D-K'V (4) 

where K, K
1
 does not depend on Д . 

The algebra Diff (S ) contains the subalgebra isomorphic to 

algebra Diff, of differential operators on C with polynomial co-

efficients. This subalgebra comprises the operators whose coeffici-

ents are of the form _/_. a e '
 x's . The intersection of Diff, 

and L is isomorphic to the Lie algebra W, of vector fields on C 

v/ith polynomial coefficients. According to [ғтij the cohomology of 

^ľlГ(Diff-,) is the free skew commutative graded algebra generated by 

£ , °^=3, 5, 7, ..., deg cf̂  = cK . Consider the diagram of embed-



18 Б.L.FEIGIN , B.L.TSYGAN 

d i n g s : 

кç * 
W^ — > D i f f ^ > ^ / ( D i f f ^ ) 

L - ^ > D І f f ^ S 1 ) — > < Г £ ( D i f f ( S 1 ) ) 

(IIer a map Diff—> tf/(Diff) a c t s a s fo l lows : X ^ X - E ^ , wher E ^ i s a matг ix 

e n t r y . For any odd c* , the r e s t r i c t i o n of r, t o - / ( D i f f ^ ) i s <^. The cohomolo-

gy o f W, i s n o n z e r o o n l y i n d i m e n s i o n s 0 a n d 3 ; t h e map H (L) ^ 

H (W,) i s a n i s o m o r p h i s m ( [ G F j ) . T h u s , i n s t e a d o f s t u d y i n g t h e em-

b e d d i n g L > ^ / / ( D i f f (S ) ) we may c o n s i d e r p u r e l y l o c a l e m b e d d i n g 

W, —-> - ť T / í D i f f , ) . F o r a n y L i e a l g e b r a L, t h e r e i s a h o m o m o r p h i s m 

i i - 1 * 
H (L) —-> H ( L , L ) . C o n s i d e r t h e c o m m u t a t i v e d i a g r a m 

x 

H 3 ( ^ / ( D i f f ^) ) - ^ - > H 3 (W^) 

^ ( ^ / ( D i f f ^ ) , ӯ/ íDi f f -^ )*) —Ь^-> H 2 ^ , W*) 

It follows from [ғTl] and [" F J that all arrows here are isomor-

phisms. Thus, formula (4) is equivalent to the following: if o(, á 

are generators of H2(W,, W,) and H ( -tf//(Diff̂ ) , ťrĄülff^) ) res-

pectively, then 

í*(в) = -2(6 X
2
 + б\ + 1)-K' (5) 

where K' does not depend on Д . It is not hard to show that (3) 

is also a consequence of (5). 

The statement about the coefficient -2(бЛ + 6A + 1 ) may be 

generalized to higher dimensions as follows. Let Diff be the al-

gebra of differential operators with polynomial coefficients and W 

be the Lie algebra of vector fields on C with polynomial coeffi-

cients. Let Д be a finite dimensional representation of -ťПL . De-

note by F. the space of tensor fields of type Д . The action of 
Л 
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tf on F provides the embedding ^f : W — ^ ^ d ' m (Diff ) 

Hilt (Diff ) . Throughout the paper, we denote -tfll< (Dif f ) by D . Consi­

der the commutative diagram 

H 2 n + 1 ( v \ _ ^ H2n+1(Wn) 

\ V 
H 2 n( D n, Dn) — ^ H'"(Wn, W n) 

It has been shown in \_PA , [FTlJ that the vertical arrows are bijec-

tive and H ( D ) is one-dimensional. 

Now recall the basic facts on Gelfand-Fuchs cohomology. Let 

p : E —> B be the universal bundle for the group GL (C) . Denote 

by Y the 2n-skeleton of B ; X = p - 1B . Then H*(W ) ̂  H (X ) -̂  n n n n n n 

([ G F ] ) . Consider the boundary map in the exact sequence of the pair 

(E, X ): H 2 n + 1(X ) —->H 2 n + 2(E/X ) . Clearly it is an isomorphism. The 

map of pairs (E, X ) —> (B , Y ) induces the homomorphism H (B /Y )-

—» H n (E/X ) which is also an isomorphism. We obtain that 

H 2 n + 1 (W ) ̂--̂  H 2 n + 2 (B /Y ) . But the latter space is in turn isomor­

phic to H (B ) , i.e., to the space of symmetric polynomials in 

n variables of degree n+1. The representation X determines the 

bundle J on B . Let J be the bundle corresponding to t h e stan­

dard n-dimensional representation of <<&]£ . Now, the "local Riemann-

Roch theorem" in this partial case states that the image of the ge­

nerator of H (D ) under the composition 

'2n+1(V(Diff )) -*H2n+1(W) ^H 2 n + 2U n, (f n n n (^7/ADiff )) -* H*"^ (W) —»IT^CB ) (6) 

is equal to (ch J • td J ) , where ch is the Chern character, 

td is the Todd genus and the subscript n+1 means that we take the 

component in H . The particular case of Riemann-Roch-Grothendi-

eck theorem stating that 
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c l < * ! ^X/S> = ^ (chTX/S- t d ^X/S) (7) 

may be deduced from the previous result. We hope to discuss this el­

sewhere . 

We may obtain an equivalent statement passing to relative Lie 

algebra cohomology. Consider the subalgebra -vt[, C W comprising 

the fields ^ a.. x. d/dx., a.. € C. It is easy to see that 

H2n(Wn, Wn) »H 2 n(W n,^/ n; W*) and H 2 n ( D ^ / - D*) — C. Thus, 

the image of 1 under the composition 

C •H^C Dn,/n; ty -^jP^ytj Wn) ^i?n+2(Bn) (8) 

is equal to (ch J • t d J ) , . This form of the "local Riemann-Roch 

theorem about c, (̂ ,̂  )" is most suitable for generalizing to high­

er dimensions. 

Recall that if p is a finite dimensional representation of a 

Lie algebra -^t , i.e., a homomorphism ^t —> tfC(£) , one may define 

the Chern character of p: 

ch(o) £ S**(-v£) ; (ch(o))(x) = tr expjo(x). 

** n i 
(Here and below we denote S = I ' S , etc.) It happens that this 

j* 0 

construction may be generalized to the representations over the rings 

A, i.e., to the homomorphisms L —> -CfU(A) when ^n is reductive and 

A satisfies certain homological condition. Assume that the Hochs-

child homology HH*(A) (cf. 1.1) is concentrated in unique dimension 

2n, and HH2 (A) ----> C. When A = C then n = O. We show (Proposi­

tion 3.1.2) 

H2n( 4n£{K) , p(tf ); Sq -CU(A)*) ^->C, q > O; 

HU(<tjt(A), P(*I); Sq(-y/(A)*) = 0 , q > Oj i < 2 \fl 0 

Consider the relative Weyl algebra W (<\((A) ; P(^l)) (cf. 1.1). The 
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above statement provides the maps 

C-^H
2n
(^/(A), p(ttf); Sq<jl(A Y) —^^Uvf^HA); p(^)) (lo) 

On the other hand, one has an isomorphism 

H
2 C
 (W*(^/(A), 9(f))) -^s'(o(^)*)P

(
'^

) \/l 

and thus a homomorphism 

H
2
 (W*(^/(A), -o(^))) - > S (̂ *) . 

Combining this with (10) one obtains the maps 

Yn
+
q ' C - > S

a
^ ( ^

f
 q > 0 . 

A simple trick allows to define also ^ . for j <_ n. Put 

•>--. (-I)
13
 (fЛo)ll) 

)Ł(P) = Z ЗJ-
' > j=0 j! 

Within our approach, the local Riemann-Roch theorem is the character 

formula for the special representation of the Lie algebra **fC ® <l v 

over the associative algebra Diff . Namely, let 4$ <= D as above 

and #/t = <t (<z)^> £1£(Diff ) = D ; we obtain the Lie algebra homo­

morphism </^ <£<ll ^-> D . In 3.2 we recall from [FTlJ that 

HH9 (Diff ) --̂  C and HH. (C) = 0, i 7- 2n. Thus, we are able to 
-ii n 1 * ft 

V * / P "iJL<£ %L * 

construct J- (o) . Identify S (^ l-n<-£W) with H (BGLn x 

BGL) . Put J = T (El 1/ C= 1 JsjTT where X , T are the univer­

sal bundles. The main Theorem 4.1.2 claims that 

)L (o) = ch E • t i T (11) 

Note that this formulation does not involve the Lie algebra W but 

only D . 

The local Riemann-Roch theorem for tensor fields is the charac­

ter formula for the representation p which is a composition 

0 ^ v * h a *lt * 
4i[n —> WR -̂-> Dn. Identify S itvn) * with H (BGLR) (orBn 

above). Let J , J be as above. Then 
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w__ ̂ " • td J , ch (pv ) = ch J • td 

The contents of the paper are the following. In §1 we, proceed­

ing in spirit of [ADKPJ, L T J, give a geometric construction which 

relates the usual Riemann-Roch-Grothendieck theorem to the above lo­

cal theorem. In §2 we construct the generalized characters of repre­

sentations. In §3 we make the technical computations concerning the 

cohomology of Diff and D . In particular, we select the distingui­

shed generators in H n(D , <nl ®<<}l; Sq D ) . In §4 we state and 

prove the local Riemann-Roch theorem (11). In §5 we study in more 

detail its particular case - the local Riemann-Roch-Hierzebruch for­

mula. Recall that for any pair -4JL cz. -- where L is a Lie algebra and 

-i?2 a subalgebra reductive in L (cf. 1.1) one may define the Chern-

Weyl homomorphism S(<7*) --V H2* (L, <1 ; C) (cf. 5.1). Define the 

"local Euler characteristic" )L to be the image of the distinguish­

ed generator of H n(Dn, tft <§> $1 ', D ) —* C under the map 

H2n(Dn, <jtfn ®yl; D*) ^ ^ ^ n ' f^n@f^' C) ' T h e n (Theorem 5.1.1) 

t = c(ch £ • td J ) n . 

In the beginning of our work we were inspired by the article of 

Losik [LJ. His paper contains a calculation in Weil algebra of Lie 

algebra of a formal vector fields similar to our. 

The first author had lectures in Srni during a winter school 

"Geometry and physics" about Riemann-Roch and Lie algebra cohomolo­

gy (January, 1988). I (B.L.F) am grateful to organizers of this 

school for their hospitality and participants for their interest. 
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§1. Geometric formulation of the main tneorem 

1.1. Preliminaries. Here we recall the well known results and 

constructions from homological algebra. 

Let L be a Lie algebra and M be a module over L. Consider 

the standard complexes 

C*(L, M) = /\*(L)®M; d : C*(L, M) > C^(L, M) ; 

d(X1A .../\Xk(^m) = <-i (-l)1+j [x±, x.^/l ...A'^ A ... A'x. /\ ...+ 
1 f i <. j <: k J J 

(-1)J-X1A...AX.A... X^XTn; (1) + ^ - » - - - -o 
lii*k 

C*(L, M) = Hcm(C( A*(4
 M); d : C*(L' M) "^C*+1(L, M) ; 

(dOJ)(X1,..., .^+1) = -2LJ (-i)1+jCJ( [xi, x.],...,1̂ ,...,/x.,...) + 
H i< j^ k+1 J J 

+ .^L (-1)1"1 X. 6J(X.,,..., x\..., X, ) (2) 
l£i£k+l 1 L 1 k+i 

Put H*(L, M) = H*(C*(L, M) ) ; H* (L, M) = H*(C*(L, M) ) (cf. [CE] ) . 

These groups are called the Lie algebra (co)homology groups of L 

with coeffients in M. Now, let <1 be a Lie subalgebra of L. Assu­

me that -̂ 7 is reductive in L, i.e., that <r1 is a reductive Lie 

algebra and L is a direct sum of finite dimensional L-modules with 

respect to the adjoint action. In this case we define the relative 

(co)homology H*(L,-crL; M) to be the (co)homology of the complexes: 

C*(L, <j, ; M) = ( /\*(L/.<w ) <£M) ; C*(L,̂ 7 ; M) = Hem { A*(L/^), M) 

with differentials (1) and (2) respectively (|_FJ) . One may, with the 

obvious changes, give the analogous definitions for the cases when 

L is a Lie superalgebra ([LeJ), or a differential graded algebra 

( [QJ) / or a topological algebra ((.FJ) . If M = C with trivial ac­

tion of L then we put ^("CT, M) = H* (-C1) etc. 

Now we shall define the Weyl algebra of L (cf. [FJ) . Let £[£] 

be the free skew commutative graded algebra with generator ^ , 
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deg £ = 1. Denote by L CfJ the differential graded Lie algebra 

L (Sp (C[£3 with differential acting as follows: d( £<£)£) = {,(£) 1; 

d( lg> 1) = 0 . Put 

W*(L) =C*(Lf£]); W*(L) = C, (L [t[ ) . 

* 

The complex W is called a Weyl algebra of L. It is clear that 

W , W* are c6ntractible. If <<JL is a subalgebra reductive in L 

then we put 

W* (L, <t ) = C* ^It], ^1 <g 1); W* (L, ̂ 1) = C* (L [e], tf <§ 1) . 

One has the projection 

W*(L, tt ) -> W*M ,-fy 

which is clearly a cohomology isomorphism. Thus, 

H^K(W (L,<^)) --> S*CCJ ) ; H^K+±(W (L, 07. ) ) = 0 . 

If p : 4 —.> L is a Lie algebra homomorphism such that P(^2) is 

reductive in L then one has a characteristic homomorphisms 

H2k(W*(L, j3(^))) <-— S k M * ) -

It is clear that 

W*(L,itf ) = ©W i' 2 n(L,^p) = 0 C i ( L , ^ ; Sn <n/) ; 

if d is the differential in W* then d = d1 + d2, d1 : W
1 , 2 n —> 

—>W i + 1' 2 n; d2 : W
1'2* ^wi-l--2(n+l); ^ ± g t h e d i f f e r e n t i a l (1) . 

Thus, there is a spectral sequence E P / q = Hp (L, -CI ; Sq L ) =p 

HP+q(W (L, 'trt))- Similarly for the absolute case. 

Now recall the basic definitions on the Hochschild and cyclic 

homology. Let A be an associative algebra. Then Hochschild homolo­

gy of A is the homology of the complex C*(A): 

Ck(A) = A <^
k+1>; S : Ck(A) -* Ck_1(A); 

k 
d(aQ® . . . ® a-̂ ) = a1<§) . . . ® \aQ + , 2 (-1)1 aQ® . . . <g) a . ^ ^ ® . . . r x ) ^ 
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This homology is denoted by HH*(A); one has 

HH*(A) -^ Tor*^ A (A, A) , 

(cf. JJCEJ ) , where A° is the algebra opposite to A. Put 

T(a Q <2> ... ® ak) = (-l)
n a1 <g) . . . ® ak ® aQ; 

HC*(A) = H*(C*(A)/im(l - T: )). 

This is the cyclic homology of A (/cj, [FT]). It is related to Lie 

algebra homology by the following ( JLQ], [FT]): 

H*(^(A)) ^ S*(HC.^_1(A)) , (3) 

where ~W(A) is the Lie algebra of finite matrices with coeffici­

ents in A. 
* 

One may define the Hochschild cohomology HH to be the cohomo-

logy of the complex dual to C*(A) and the continuous cohomology 

HH of topological algebras. One may also define the Hochschild and 

cyclic homology of superalgebras and differential graded algebras so 

that the isomorphism (3) holds (cf.^Bj). 

1.2. Generalized characters. Let L be a Lie algebra and A an 

associative algebra; assume that 77 is a Lie algebra homomorphism 

from L to A. The map 7\ determines the homomorphism U(L) —? A 

of associative algebras and the induced homomorphism HHTJr(U(L)) > 

—> HH*(A) . It is easy to see ([CE]) that HH*(U(L)) is isomorphic to 

the Lie algebra homology of L with coefficients in U(L) with the 

action ^-u = fu • u / , t^L, u £ U(L). The module U(L) is iso-

morphic to S (L). Thus, we obtain a set of mappings 

/^(Tf) : H±(L, S
k(L)) -> HH±(A). (4) 

They are analogous to the classical invariant polynomials and 

to the characters of finite dimensional representations. To explain 

this, recall that if A = MN(C) then the unique nontrivial charac-
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ters (4) are the mappings 

J. £(3T) : HQ(L, Sk L) -^HHo(A) ^ C ; 

]r 

the elements of Horn (H (L, S L ) ; C) are the invariant polynomials 

of degree k on L. The character acts as follows: 

,kC/7) (̂ ) = tr( 07 U )k), /(f L. h 
Now let A be such that HH. (A) = O for all i J. n and HH (A) -̂> 

—> C where n is the fixed non-negative integer. 

Examples. 1) A = M (C); n = 0. 

2) Let V be an infinite dimensional vector space, End V the 

algebra of all linear operators V —•>• V and J the ideal of End V 

consisting of all operators with finite-dimensional range. Put I = 

= End V/J. Then HH-^I) '—? <C and HH^I) = 0, i j> 1. 

3) HH (I® n) ^ C; HH.(I® n) = 0 , i 7- n. This follows from the 

Kunneth isomorphism for HH^ ( [ CEJ ) . 

4) Let Diff be the algebra of differential operators in C n 

with polynomial coefficients. Then H-n(Diff ) -^ C, HH.(Diff ) = O, 

i 7- 2n (cf. §3) . 

Proposition 1.2.1. 1) The cohomology H ('Cj 1(A) ) is the free skew 

commutative graded algebra with the generators "O ,, V -, *7 _, 

. . . , where V €= H . 

2) The cohomology H (<ni(A) , S -tfr£(A) ) (which is the first term 

* * 

of the spectral sequence converging to H (W )) is the free skew com­

mutative algebra with generators *7 +2v+-\ ' k £ O, and <J , ^ 

H n(^t(A), Sk^fU(A)*), k > O. (The differentials in the spectral se­

quence map 10 to j and j to zero.) 

Proof. The statement 1) follows from (3) and from the fact that 

HC n + 2 ±(A) = C, i J 0, and HC.(A) = 0 elsewhere (which may be de­

duced from [ F T ] , T h- 1.2.4). The proof of 2) (with the technical re­

finement which we shall need below) contains in §3. __9 
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Let A be a topological algebra. The main example for us is the 

algebra of differential operators on (C (we shall also denote it by 

Diff ) whose coefficients are the formal series in n variables. 

The topology is induced by the Tv. -adic topology on (C fx, , . . . , x "J 

where "rn is the maximal ideal of the origin. Then it may be easily 

shown that HH~n(A) --̂  <C, HH1 (A) = 0 , i f- 2n, and that Proposition 

1.2.1 holds for the continuous Lie algebra cohomology of 'PJt(A) . 

Let 77 be the natural representation of til I (A) in M j00 (A) (i.e. 

in the associative algebra of finite matrices over A). The charac­

ters 

/ % n
( 7 r ) : H n ( ^ ( A ) ' s k ^ ( A ) ) ->HHn(A) --> C 

are the elements of Hn(tJ^(A), Sk(-cji(A) ). It may be shown that 

?£<*> - K-
1.3. Geometric constructions. 

Let M be a nonsingular complex manifold. Consider, following 

FpJ , an infinite-dimensional manifold M of all formal coordinate 

systems on M. A point of TT is a couple (m, f) where m £ M and f 

is an -̂c-jet of a map U —> C where U is a neighbourhood of m in 

m, f(m) = 0 and the Jacobian of f in m is nonzero. It is clear 

that M is a projective limit of finite-dimensional complex mani­

folds. There is an action of the Lie algebra W on M. Recall that 
n 

W consists of vector fields x, f. c) where f. are formal 
n A .c—x i x . l 

ls-i .5 n i 

power series in n variables. Introduce the Ya-adic topology on W . 

Throughout this section we shall regard all the objects connected 

with W equipped with the topology. In particular, the Weyl algebra 

of W is by definition the complex of continuous cochains of the 

differential graded topological Lie algebra W ££j . 

The action of W on M determines the structure of a principal 

homogeneous space on M. This means that there is a W -valued one= 
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form _7L such that d̂ r? + %/5?,j£j = O (the Maurer-Cartan equation) 

and that for any point s € M the map _£p : T —> W is an isomor­

phism (where T is the tangent space to M in s). 

The Lie algebra W contains a subalgebra of linear vector fields 

of the form ^j a..x.d , a. . £ <C, which is isomorphic to -tf/L ((C) 13 1 x. i] J n 

(or simply Ĵ{,n) •
 T n e action of -d/t ° n M is integrable to the ac-

tion of the group GL (C). The quotient space M/GL (C) is homoto-

pically equivalent to M. 

Let J\ : S —-> N is a bundle whose fibers are nonsingular n-di-

mensional compact complex manifolds (N and S are nonsingular). We 

shall construct the bundle Jj : S —.> N. A point of S is a couple 

(s, f) where s € S and f is an 00 -jet pf a hplomorphic map 

U —^ C where U is a neighbourhood of s in the fiber of 77 and 

f (s) = 0 , f nondegenerate in s. The projection Zf\ maps (s, f) 

to 3T (s) . It is clear that for n £ N Ji _1(n) = Ji~1(n). 

The fibres of Ji are the principal homogeneous spaces. This 

means that for any fiber there is a W -valued form on it which sa­

tisfies the Maurer-Cartan equation. We define a connection on S to 

be a W -valued 1-form which is invariant under the natural action n 

of W and coincides with ZJL on every fiber. It is easy to show 

that such a form does exist. 

A connection determines a homomorphism from the Weyl algebra 

W (W ) to the de Rham complex iac-s' of the manifold S. The relative n o 

Weyl algebra W (W , •#£ ) maps into y - r ^ . Note that the spectral 
* * ** * * Q 

sequence converging to H (W (W )) (resp. H (W (W , tn£ ))) maps in­

to the Leray spectral sequence of the fibration S —> N (resp. 
S/GL —^ N). In particular, E P , 2 q - E P' 2 q - HP(W , *7£ ; SqW*) maps n _i_ z n $ n n 

into H2q(N, HP(F)) where "F is the fiber of the fibration S/GL
n —> 

—?> N. Note that F is homotopically equivalent to the fiber F of 

the fibration S —> N. For p = 2n, H n(F) — * C . Thus, we have 
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constructed the homoraorphisms 

H2n(Wn,-i^n; S
q W*) ^ H2q(N). (5) 

Remark 1.3.1. The above construction is analogous to Weyl's de­

finition of characteristic classes. Indeed, let G be a semisimple 

Lie group and 5 a G-fibration with base N. The Weyl homomorphism 

is the map H° (tJ7, Sq^l ) —^ H (N) . In our case, the elements of 

H (fT, Sqtft ), i.e., the invariant polynomials on , are replaced 

by the elements of H n (W , <^ir ; Sq W ) . Now we shall describe the 

general situation. 

Let L be a Lie algebra, E —^ N a fibration with the fiber F, 

L acts on E and the fibers are principal homogeneous L-spaces. Then 

one may define a connection form -JL, on E. Let p : L —> /?t be a 

Lie algebra homomorphism. The composition p -vSz? is an @Z -valued 

connection form on E. This form determines a map from W {01) to 

JL T- which induces the morphism of spectral sequences and thus the 
JLJ 

maps 

HP(07, Sq0l*) H2q(N, H PF). 

If L contains a subalgebra ^> whose action is integrable to the 

action of a Lie group H then one may construct the following charac­

teristic homomorphisms: 

HP(<jT, ?(/>'• SqOL) -7> H2q(N, HP(F/H)). (6) 

Now let A be an associative topological algebra such that the 

continuous . Hochschild cohomology is concentrated in dimension 2n 

and HH n (A) - C. Let p be a continuous homomorphism W —*• <Hl{A) , 

such that p(tff£ ) is reductive in -t#£(A). The above constructions 

give the following mappings for any fibration F —J S —y N where S 

and N are compact complex manifolds: 
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ifg(j>) : C — H 2
n ( ^ ( A ) , jD(^/n); S q Cji(K)*) 

Ž "cX'/.' -*<>-H2*(H). 

* 

(7) 

(The left isomorphism follows from Proposition 1.2.1 and from the 

Hochschild-Serre spectral sequence; see §3 for more detail.) 

Definition 1.3.2. Set 

= 2ľ (-Dq үn ch(p) = /j (-D̂  Y
f7
(9) (D/q! £ H (N) 

1 q=0 q J 

(here and below we write H for I f H g ) . 
q *0 

So, we have put in correspondence to a representation of W in 

A the distinguished elements Y (p)(1) in every even cohomology 

group. Our next aim is to relate these elements to the characteris­

tic classes. 

Let S —^ N be as above. Let G be a complex Lie group and 

sTi : P —-> S - holomorphic G-bundle. Define following /_ -PJ an infini­

te-dimensional manifold P. A point of P is a couple (s, f) where 

s £ S and f is defined as follows. Let U be a neighbourhood of 

s in the fiber of S —->• N and U, a neighbourhood of the origin in 

C ; then f is an oo-jet in J\ s of a morphism 7i U — U, * G 

which is nondegenerate in Jl s and commutes with the action of G. 

In other words, f is a formal trivialization of the restriction 

of Ji to the fiber of S —;> N together with the formal coordinate 

system in the fiber. The map p : P — N, p(s, f) = T (s) , turns 

P to be a bundle whose fibers are principal homogeneous spaces over 

a Lie algebra which we shall now describe. 

Let <1 be the Lie algebra of G and -*] ( C n) = 7̂ Q£ <ci [^, . . . ,x |\ 

the Lie algebra of .tl -valued formal power series with the commuta­

tion law 

[g2 ® a r g2 g)a2] = jgv g ^ ® a2 a2, g±6 <£ , a± 6 C^,..., x j J 
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The Lie algebra W acts on <s1 ( C/ ) by derivations, and we denote 

by Wn £* "Cl( (?n) the semidirect product of W and HI ( (y ) . This al­

gebra contains a subalgebra ^/5n 6> #£ , ^{^ C WR, ^L <* <f® 1C 

Ĉ >1( (/ ) . Let A be, as above, a topological algebra whose Hochs-

child cohomology is concentrated in dimension 2n and HH n(A) = 

= €; let p : W j>C H1 ( (/ ) —>-tf/£(A) be a Lie algebra homomorphism. 

Then one may, as above, obtain the following maps: 

^fq(p) : C - > H2n w/(A) , P(fln®4l ) ; Sq(^r /(A)*)) - > 

H2n(WntX<X((^n), f / n ® # ; S q ( W n k ' t / ( ^ n ) ) * ) - ^ M --* 

Put, as in Definition 1.2.2, 

ch(p) = 2] (-i)qTq(p) (D/q- (7») 

Let Q be a finite-dimensional representation of *07 . It is clear 

that w
niV^t(£?n) acts on the space Q {& €lxi' • • • ' x

n / •
 S o w e o b~ 

tain the map 

W n ^ < O -> ^ d i m Q(Diffn> ~* ̂ D i f f n > • 

Denote the composition by p(Q). Furthermore, let X be a finite= 

dimensional representation of -tfju ; it determines the representation 

of W in the space of formal tensor fields of corresponding type. 

This provides a homomorphism 

PA
 : Wn - ^ d l m ^ - ^ V ^ ^ D l f f n > -

Theorem 1.3.3. 

(8) 

(9) 

where 57 * is the transfer in cohomology, C (Q) is the vector bundle 

associated to the representation Q, J „ , is the relative bundle 

of tensor fields of type A and J ~/N is the relative tangent 

c h p (Q) = ^ i * ( c h Ć ( Q ) ' •td 7" 
S/N5 

ch p 

Д 
= Jï * ( c h S/N 

• t d 7 
S/N* 
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bundle. 

Our further plan in the following.- In §2 we shall represent the 
* 

left hand sides in (8), (9) as the transfers of the elements of H S 

which are the images of certain cohomology classes of the Weyl al­

gebras under the characteristic homomorphisms (5). Furthermore, we 

shall formulate the theorem which express these classes in terms of 

the characteristic classes. This latter result is a purely algebraic 

theorem about the Lie algebra cohomology which shall be discussed in 

detail in §§ 4, 5. In §3 we state and prove some technical results 

on Hochschild cohomology and Lie algebra cohomology. 

§2. Algebraic formulation of the main theorem 

2.1. The universal cohomology classes of relative Weyl algebras. 

Let A be an associative algebra such that HH (A) ^ € and 

HH. (A) = 0 , i 7- n. Assume n > 0. Let -XTt be a Lie algebra and p : 

^7 7" <Ji(A) a homomorphism such that o (tl) is reductive in 

iTtlsiA) . Our aim is to define the distinguished cohomology classes in 

Hn+2^(W*(*j/{A), o(tJ )). 

Let (L,157) be a pair consisting of a Lie algebra L and a subal-

gebra "CT reductive in L. For any integer j, define a subcomplex 

W*(L,-c7; j) in W*(L,<7). Recall from 1.1 that W* = <£> W 2 and 

d = d, + d0, d, : W^ Oor --> W^ , 9rr; d0 : W^ 0 —> W ... 0 , ,, . Put 1 2 1 P/2q p-l,2q 2 p,2q p+l,2(q-l) 

W*(L,-G1; j) = <£> W * 0 1m(d : W * -> W. *) ; 
<r P >j p ' D ' 3 ' 

wfj)(L,^) = W*(L,^7)/W*(L,«1; j). 

Lemma 2.1.1. Assume that H. (L,-F7; sqL) = 0 for all i < j and 

q > 0. Then 

H±(wi
j) (L,^)) ^ Hi(L'^/ } ' -- ̂  J? 
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Hj+2q(wf
j) (L,-07)) -->H.(L,itf; SqL) , q> 0; 

Hj+2q+l(WiJ)(L'^)) = °' q >°-

Proof. This follows immediately from the spectral sequence con-

verging to H^ (W^ } (L,̂ 1 )) . fflt 

Thus, we get the maps 

iJ+2q ( W* ( L'^ ) ) ^ H j ( L ' ^ = 

'T 

H - ^ ^ W ^ L , ^ ) ) — ^ ( L , ^ ; SqL) 

where j is the minimal dimension in which H^(L,^7; S ° (l)) 7- 0. We 

also have the dual maps for cohomology. 

Now, let A be an associative algebra such that HH^ (A) —> & and 

HH. (A) = 0 , i f- n; n y 0; let p : -CI —> "flu {&) be a homomorphism 

such that P(^l) is reductive in -iff- (A). Then the above construction 

together with Proposition 1.2.1 (cf. also Proposition 3.1.1) provid­

es the homomorphisms 

H2n+2q (W*(<Ĵ (A), P W > -^ H
2 n

(^ A )' P(^); sq^^A)*) 

and, dually, (5) 

H2n+2q(W*(^Ll(A), P(^)) <r- H 2 n ( ^ A ) , P(tf); S q^(A)*) «£-<f 

On the other hand (cf. 1.1), there is a map 

H2m(W*(<^A), P(«J)) -^ Sm(^*) . (6) 

Within our approach, the Riemann-Roch problem is the problem of exp­

ressing of the distinguished elements given by (5) in terms of the 

homomorphism (6). 

Before discussing this, we should like to construct the maps ana­

logous to (5) in lower dimensions, i.e., for H where i £ n. 

Let CL ~ € be the one-dimensional Abelian Lie algebra. Define 

the representation 0 of 7̂ S 00 as follows: 

(g,oC ) =p(g) + U-l, Чź Ч , <£b Űl, 
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Replacing <r7 by <H + QC in formulas (5) , (6) , we obtain the maps 

n+q 
e 
j=0 

>
q + n
 : C —> S

n +
Ч (( řвŕtfГ) *) ̂ *

Л
 - ^

П € ) q sЭ<2*)f q ^ O (7) 

Let vp -2 be the homogeneous component of degree j in ^f a+ 

Lemma 2.1.2. For any q, Y
q + n
 = ^q+n+1' 

Proof. This follows immediately from the definition of f -1 

(cf. 4.1 for more detail). -
a 

Put 

f{f] = j ^ 0 (-i)3(f3/j:)(i)e n sUy*)7', 

where «f
j
 = t

n + q
' 5 >>°-

Thus, for a representation p :-VJ > -tft£(A) we have constructed 

its character which is an invariant formal series on -^ . Let A,, A2 

be two algebras such that 

HH (Ax) = HH (A1) —?C; HH (A2) = HH (A2) "^ C. 

* 2 fn+m^ -v. 
Then, by Kunneth i somorphism, HH (A1 <S> A2) = HH u M A ^ A ^ —, 

----*' C. For p. - ^2 —* -4/;(A.) one may define 

J°l®f2 : "J -^t^i^V' 
( f l ® ^ 2 ) ( - J ) = P l ( J > ® X + 1 X / J 2 ( ^ ) -

Then V (p, <2> p2) = ̂  (P-,) • jC (p2) .If °i' °9 ~ t w o r e P r e s e n t a t i -

ons of in A, then p, (Dp? is a representation: 

/ f i ( #) ° 

and 

(Pi a p9 ) ы) = 

/ ( f i®f 2 ) = /<fi> + /(f2»-
2.2. Riemann-Roch theorem for Lie algebra cohomology. 

Here and below we denote tfr/(Diff ) by D . Consider, as in §1, the 
/j** -"-

 n 

homomorphism <?/£n ®^}^ ^ Dn which is the composition 

^in®^l C->^n^^{^n) C^Dn- Identify s* < ^ ® #̂> ^ "̂  ̂  wi with 
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* 
H (BGL X BGL). Let X , X" be universal vector bundles over BGL , 

n n n 

BGL respectively. Put J = ^ S i ; C = 1 @ TT . Put in correspon­

dence to the character of the representation p the element 

y. (p) € HH* (BGLR ,* BGL) . 

Theorem 2.2.1. ^ (p) = ch <f • td J . 

An analogous statement may be easily formulated for the character of 

the representation ^ ^ —>. W —> D corresponding to the represen­

tation of W in the space of tensor fields. 

2.3. Relation to §1. Let P ->• N be, as in §1, the fibration 

whose fibers are principal W t>< *}£( Cf ) - homogeneous spaces. The 

connection ._-7c determines a map 

W*< Dn' /n®/> "* W*(Wn^(^n) , ̂ n e / > -^r/fc^ GL 

and the map 

Cp : S f ^ ^ ^ ^ ' ^ ^ ^ V * ^ , ^ ^ / ) ) -^H2*(P/(GLn^ GL)) 

It is easy to see from the definitions that the element ch(p) £ 

H**(N) from the formula 7' of 1.2 is equal to ^ic
CP( ¥- (p)) . Thus, 

to deduce Theorem 1.3.3 from Theorem 2.2.1 it suffices to show that^P 

is the Chern-Weyl homomorphism of the fibration P —>'P/(GL * GL). 

con-Denote L = WR £<-*]£( (P^ , -*7 = ^ t R &-*)U Consider a -^-valued 

nection form on L, i.e., a <^L -equivariant projection operator 

0 : L —^'*7- Put 0 (X, Y) = 0(/x, Y ] ) - [Q (X) , e(Y)J. Define a ho­

momorphism of differential graded algebras 

vf : W*(-J» * VI* (L) • 

We need only define UJ on the generators 

( í nrt-=?<£) é W1; ( X : ^Ł -*£)£ W 2. 

Put 

(̂ tf)(X) = /(9(X)); ( fA)(XA Y + £Z) =-A(c0(X,Y)) + A ( £6(Z)). 

It is easy to see that Y i s well defined and that the induced map 

W (-#, </l) —-> W ( L , til) is a quasi-isomorphism which is cohomology 
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inverse to the characteristic homomorphism of 1.1. On the other hand, 

let 27L be a connection form on P. Then 0 c ££ is the ( rfv ® ^lC )_ 

valued connection in the fibration P -=» P/(GL x GL). The direct ve­

rification shows that the composition 

Q~ <- W*(Wnpĉ /(̂ n)) «- \* (^l^e^l) 

is exactly the Chern-Weyl homomorphism associated to the connection 

9 ° X • Thus, we have shown that Theorem 2.2.1 implies Theorem 1.3.3. 

§3. Homology of the algebra of differential operators 

3.1. Relation between Lie algebra homology and Hochschild homo­

logy. Throughout this subsection, A shall denote an associative al­

gebra such that HHn(A) = C, HH. (A) = 0 , i j- n; n > 0. 

Let T be a Hochschild cocycle representing the basis cohomolo-

gy class of HHn(A). Set 

Hr(Xl,ml/"-' xn+l-mn+l) = ^ sgnGr*tr {m6V ' 'm6n 1 V l ) Z (X6l' •'' ̂ o n ' W 

n 

for X. e A, m. £ <&£(£). It is easy to verify that CO is a cocyc­

le of the standard complex C (ijL(A) , -0\\,(A) ). Consider a map 

/i* : S*(^(A)) —> <rj((A); 

/iqCx^ ... -xq) = ^ ^ x61 ... x6q, x±6 yg(A). (1) 

q 

It is clear that /u* is a homomorphism of modules over the Lie al­

gebra s<ttC (A) . Consider the dual homomorphisms /u : Sq(^£(A) ) «-£— 

<— 4f\C(&) and the induced homomorphisms 

ju* : C*(tyt(K), Sq(^«A)*)) <r- C* (<f(A) ,<§b(A)*). 

Proposition 3.1.1. 1) For q > 0, Hn (*p(A) , Sq^fV(A)*) -^ 

^C and ^(tyUA), Sqm£(A)*) = 0, i <£. n. 
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2) The cocycles u CJ^ represent nonzero cohomology classes. 

Proof. Let C [£] denote a superalgebra with one generator 

and one relation £ = 0. Let A [&] = A<g>c/j£j. One has 

H*(^(Af£3), C) ^> ® K*«rff(A) , Sq-fUA)); 

on the other hand 

U* (iff/?(A U] ) , C) ^ » S*(HC^_1(A/.£j ) ) . 

Compute the cyclic homology of the superalgebra ALC-7. One has 

EH±(c[£] ) °* C2, i > 0; 

1 2 

the basis in this space consists of the elements Cj . and CO . re­

presented by the cycles £ & . . . & £(g> 1 and £"<§) . . . & £ respecti­

vely. Let B be the differential in Hochschild homology (cf. [_ FTJ) ; 
1 n -I 

then BU). = 0 , BCJ. = CO . . From the spectral sequence converging 

to cyclic homology ( [FT J, Th. 1.2. ) one sees that 
HC±(C [i] )/HCi(C) - ^ C , i > 0, 

9 

and that the generators in these spaces are CO .. Now consider the 

analogous spectral sequence for A L £j . Since the differential B 

is compatible with the Kunneth isomorphism, one has 

HC*(A££]) ^ H C # _ n ( c C £ 3 ) ; 

HC* (A ZH ) /HC* (A) -> HC*_n (C [E] ) /HC*_n (C) ; 

thus, 

HC±(ACCI] ) = 0, i< n; HCi+n(A [*£_] ) -^HC±+n(A) © C, i £ 0; 

the generators in these supplementary summands are the images of the 

elements c4. T CO, under the map HH* —i> HC^. Here oC is a genera­

tor in HH (A) and. T is the exterior multiplication in Hochschild 

homology (cf. £ C E J ) . This proves the statement 1) of the Proposition 

(and also Proposition 1.2.1). The statement 2) follows immediately 

from the explicit form of the isomorphism (1) (cf. fLQj, [FTJ). To 
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prove 3) note that ±f o( is a cycle of C* (g//(A) , inC (A) ) and 

0) (C<) 7-0 then rX-l^ 1 is a cycle of C* H7^A) , S q ̂ /(A) ) and 
x 

(yu Ĉ L) (o( *1 ) = 6-L (<* ) 7̂  0. Thus, the cohomology class of ja cj 

is nonzero for q > 0. 

Let ~t)T be reductive in -£7uA) , q > 0. 

Proposition 3.1.2. 1) Hn(tf?̂ (A),tf7; Sq^/f(A)*) -^ C; 

H 1 (t̂ f(A) , tff ; Sq^/(A)*) = 0 , i< n. 

2) Let 6J bea generator ±n H n (tf/#A) ,^ ; ^lMA) *) . Then yu* CJ 

generate H n (^(A) ,^ ; Sq^C (A) *) . 

Proof. Proposition 3.1.1 together with the Hochschild-Serre 

spectral sequence imply that 

HL(4JC{Ą)fţ } Sq^/(A)*) Í-^H^C^ПA), Sq
- /(A)*), i <- n. ið 

3.2. Hochsch±ld homology of the algebra of differential opera­

tors. 

Theorem 3.2.1. ( [FTl]). HH2n(Diffn) ̂ > C; HH±(DiffR) = 0, 

i 7- 2n. 

Proof. In order to prove the Theorem and to find the explicit 

form of the Hochschild cocycle representing the unique nontrivial co-

) we shall use the Koszul resc 

<32 . „ _ n 4 « ®2/-inJ„<»2. 

homology class of HH (Diff ) we shall use the Koszul resolution 

from [K]. Let C = C0 = Diff®2 ; C. = Diff ®2 <$) Diff ., ; C = 0, U J o z ± ± ± ± l ' 

± > 2; d± : C± -> C i_1 , ± > 1; 

d1(x1<s>x2, x3(2>x4) = (x}c>®x2 - x1<g)3x2) - (x3x<2x4 - x3c3xx4), 

d2(X1(g)X2) = (Xxx®X2 - X1<ĝ xX2, X1̂ (5pX2 - X± (g)^) 

for X. 6 Diff, , here 3, x 6 Diff * crfx, 2)1 , x3-/3x=l. It is clear that d. d.=0 
i 1 1 L J i--l l 

and that (C*, d*) is a free bimodule resolution of Diff,. Thus, 

HH*(D±ff-) ^H*(C*<£> Diff ) ; 
Dif f x <2> D ± f f 1 

i t i s easy to see that the r ight hand side i s isomorphic to <C and 
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concentrated in H2. The basis element is represented by a cycle 

1 £ Diff, ^ C9 x Diff.. 
Dif f 1 ® Dif f

 X 

This proves the Theorem for n = 1. The general case follows from the 

Kunneth isomorphism and from the fact that Diff ~-v Diff.. n. 
n 1 

Corollary 3.2.2. H 2 n ( D , D*) -^ <C; H1 ( D , D*) = 0 , i < 2n. n n n n 

Proof. This follows from Proposition 3.1.1. 2C 

Remark 3.2.3. Recently Brylinski and Getzler [BGJ and Wodzicki 

/_wj proved the isomorphism 

HH. (Diff M) ---£ H
2 d i m M ~ i (M, C) 

1 DR 

where M is an affine nonsingular algebraic manifold and Diff M 

is the ring of regular differential operators on M. The analogous 

statement holds when M is a C -manifold. 

3.3. The cocycles of the algebra of differential operators. 

Let T be a Hochschild cocycle whose cohomology class generates 

HH2(Diff1). Let 6J^ be as in 3.2. 

Lemma 3.3.1. There exists such 2-cocycle TT that 

C j j E n ( f ^ + f ) , E 1 1(ga+ /
J), E1:L- 21 hk c-

k) = 

^ b vf(k+l)q _ f(k+l) f _ f(k +2) g _ q(k+2)f I h \ 

k > 0 V k+1 (k+1) (k+2) ' V 
(O) (2) 

for all f, g, vp , W , hk e c[xj. 

Proof. For any algebra A, let B*(A) be the bar resolution of 

the bimodule A: 

Bn(A) = A ® ( n + 2 ) ; b : Bn(A) -* B ^ ( A ) ; 

n 
b (a_ 1 <& . . . <g> an) = ]>1 (-1) 1 a^ <& . . . <£> a i _ 1 a i ® . . . <5p aR 

(cf. (CEJ). Then the standard complex C*(A) (1.1) is isomorphic to 
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B* (A) (%; A. We shall construct the chain map ^f* : B^ (Diff, ) —-> 
A&A° L 

—± C* where C* is the Koszul resolution from 3.2. Then we shall de­

fine a cocycle t to be the composition of Kf2 ^rfff ^n'ff^NSvff"^ 

with the linear functional C on C2 ̂ -iff oOn-ff Diff, ------£ Diff, 
~T ^k 1 1 

which sends /̂ h, o to h (0). The functional T~ shall be a cocycle 
because ^ is a 2-cocycle of the complex dual to C* &L . f f ~~ n. ff Diff,. 

We construct Y* as follows. The homomorphism which puts in cor­

respondence to an operator it's symbol is an isomorphism between 

Diff, and C~X, | } ; identify Diff.. and <c/x, y, £ , 9J using this 

homomorphism. We have in C* for f,g£ c/x, y, £ , V I • 

d 2 f = (( \~ ?" Vf' (x ~ y + V f ) ; d]-(f/ g) = (x " y + V f + ( i ~ ? ~ "y)g)* 
Consider a complex C^: 

C°2 = C°Q = c[x, y, | , y ] ; C° = C/x, y,| , ̂ ® 2 ; d? : C? -> C ^ ; 

d 2 f = ( ( ^ - ^ ) f ' <x - y ) f )? d i ^ f ' g) = (y - * ) f + ( £ - ? ) g . 

It is easy to verify that the map exp(o> a ) provides an isomor-

ph ism c* -> c°- Inđeeđ, 

ft- - V . . зм= 
У 

e 

f--- У -,.H]. V JЛ 
Put C_1 = Diff 1 ^ C [ x , | j ; C ^ = c £ . , | j ; d o ( X 1 ® X 2 ) = X ^ ; 

(d°f ) (x , | ) = f(x, x, £ , j ) . 

It is clear that the above isomosphism may be prolonged to an iso­

morphism of augmented complexes C* — ? c*. This follows from the for­

mula of symbol of product. The augmented complex admits a construct­

ing homotopy s. : C. —* C. ,, i y -1: 

(s^f) (x, Y,\,y) = f (x, | ); sQf = (tf, t'f); S;L (f, g) = tg; s± = O, i ̂  1, 
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where 

(tf) (x, y, £ , *i ) = fU, y,f ,?) -.E(x, y, $,t ) . 

(t'f) (x, y, | , V ) = f(X' Y'*'*^ I f(X' * ' * ' * > I 

direct verification shows that s. ,d?+d.,,s. = 1 for all i. 
i-l i i+l i ro 

l 

Now we shall construct, following to [CEj , ch. , a chain map 
p̂ = © ^f . using induction on i. 
1 i * 0 1 

Put 

%( Zs k o* ® Zhe ^ ) = Z7 gk(x)h^ (y) ̂
k ?e. 

k, C 

Let s' = (.£> s! be the constructing homotopy of the augmented comp­

lex C*; s ! = e i > s. e I >. Assume that the maps j . , j < i, 

are already constructed. Let ©\ 6 B.(Diff,) be of the form 

1 CD X ® . . . ® X±_1 <S) 1. Put 

T\(OO = s:_x f._-_ bo<; 

for an arbitrary c?C we define lf\ (c<) using (Diff,) ® (Diff°) - li­

nearity. 

Proceeding in such a way we obtain for any operators X , X, 

with symbols f , f, respectively: 

L I ~ V y - x J 

y>2 (1 (2) X Q ® Xx ® 1) = 

= e 

(we use t h e n o t a t i o n <p = 4> (x, y , | , p ) - ^ (*/ y , f , | ) ) . 

l e t XQ = f£ + <f , X1 = gci + | I , where f, g , If, f , € cfxjf. Now 
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Put A f (x, y) = — . We obtain from the formula for T 0: 
' 2 x - y 2 

f2(i<2>xo®x1®i) = oMf-g(y) -,4f-g(y)-£ -A f -g(y); 

the image of the chain X (g) X, ® 7 h , y in C0 ® Diff, ^ 
° X K 2 Diff.,® Diff ° L 

—>Diff, has t h e symbol e q u a l t o 

J 2 Q l im (c^kcjyZ}f - o k A c p ) ( x , y ) - g ( y ) h k ( x ) + ( . . . ) | ; 

the proof of the Lemma follows now from the equalities 

lim ^k a Af = f(k+2) ; 
y-^x X Y (k+1) (k+2) 

l i m ^ k A f = —-— f(k+1) . m 
y->x k+1 

Remark 3.3.2. It is interesting to compare Lemma 3.3.1 with the 

computation in [AQKPj of the restriction of "Japanese 2-cocycle" to 

$1 1 
the algebra Diff1 (S ). 

Remark 3.3.3. It would be very important to find a SariifcKcjol* 

formula of the Hochschild 2-cocycle of Diff,. 

Let X be a 2-cocycle of Diff, constructed in Lemma 3.3.1 and 

®n * 

TT = X where (x) is the exterior multiplication HH (A) (x) 

HH (B) ̂ > HH (A ® B) (dual to the comultiplication HH* (A © 3) -̂ -̂ > 

—^HH^(A) (g, HH*(B)). The proof of Lemma 3.3.1 together with the 

implicit formula for (x) ((CEJ ) show that the expression 

q.(Fci +4> , cd + y , 2 > k sk) 

where F, G,^,^, HR £ tyt(c/x.^ . . . , X^ ) depends only on S F(0), 

o1 T M O ) , — where (/,R are such multi-induces that (oi | 7- 1, \&/>l. 

On the other hand, it is easy to see that OJ^_ is (•#£ <5>^£)-inva-
ev 

riant. Thus we obtain 

Lemma 3.3.4. The cocycle CJ is an element of C n(D , ̂ /e^/;D ) 
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whose cohomology class generates H n (D , -ill ®t?7£'t D ). This class 

is determined by the equality: 

£J (E11X1' E "a ..... E;L1xn, E±1\ , E 1 1 # = 1 . (3) 
A 1 n •---» 

§4. Relative local Riemann-Roch theorem 

4.1. Construction of the character. The aim of the present sub­

section is to recall the basic construction of 2.1 and to make it 

somewhat more implicit using 3.1. 

Let A be an associative algebra such that HH*(A) = HH2 (A) — 

'----> C; let *tt be a Lie algebra and p : <1—=> -tf7£(A) a homomorphi 

such that p(^7) is reductive in ^fl(A). Consider the homomorphisms 

C ^ H 2 n ( ^ ( A ) , P ( ^ ) ; s q ' ^ ( A > * ) —> 

-> H2(n+q)(W*(<//(A), jo(^)) - ^ S n + q ( ^ * ) ^ (1) 

for q y 0. The first homomorphism sends 1 to JU rx> where /.cUJ is 

the generator of H 2 n ( ^1{A) , P(^7); Sq^7MA)*) (cf. 3.1); the se­

cond one is defined in 2.1; the first" one is the characteristic map 

from 1.1. Denote the composition by \0 (p) or simply by ^ . 

Thus, *P + is determined up to a nonzero scalar. 

Now define vp. , j > 0, as follows. Let tj77 be a 1-dimensional 

Lie algebra with generator CK . Consider the homomorphism 0 : <1Q(7Z s 

—? <gt(A) ; 0(g,o<£\ ) = p(g) + oC-1, g<= -^ , o<e C. Applying the 

above construction to 0 one obtains the maps C —"> 

-» Sn+q((t^ &CL)*) *®°^, q > 0. For any j £ n+q there is a ho-

momorphism S3 (tf ) — > S n + q ( ^ <£££) , g . ..g. / > 

^i -i---ĝ '6̂  • Define tp. (p) to be the composition 
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Y n + < 3 ( e ) n + o *'j*a ( ^ n + q ' " j ) * * *<} 
<E > Sn+<3 ( ( * / « # ) * ) < ^ 5 S - < < 7 * ) ^ . (2) 

Lemma 4 . 1 . 1 . Th i s map does n o t depend on q. 

Proof . Cons ide r t h e c h a i n morphisms 

Hi W * ( ^ / ( A ) , P ( * p ) - > w * + 2 / ( ^ M A ) . Q(^<£>01) ) ; 

J£ j? * / / * ^ y 
i s H* ( ^ ( A ) , P W ) ; S - ^ A A ) ) - > H* (^r(A) , 0(tf <StfZ); S --^f (A)) . 

I t i s eas i ly seen frcm the definit ions tha t t h e f o l l o w i n g d iagram i s commu-
* 

t a t i v e and t h a t t h e v e r t i c a l map on t h e r i g h t sends u &J t o 

JU OC, whence t h e Lemma. 

CJ®€ 
Sn4q+P(('^C)*) ^-E2{n+^U^(^(A),e(^)))^-- H2n(/(A),e(^);S^%/(A)*) 

K j fur |^r 
sn^ (y* )^^_<H2(n^) (w* (^ (A) ^ K2n(<jf(A),o(cj)., S*y{(A)*) 

Now, let A = Diffn and p : ̂ Vn ®tHL c—^£(Diffn) be as in 1.3. 

We fix a generator in H 2 n (tn£(A) , o(-01)',^C(A)) to be £J_ satisfy­

ing (3) of 3.3. Thus, we have defined r-(p), j •> 0, implicitly. 

Put 

V í-1)"1 ^ҷ(p) í1) 
ch(p) = І̂J 3_J

 ( 3
) 

f j=o J: 

Define two formal series on^0€ <33̂ 2v: 

lJ)(X, Y) = áetjxa - e X) ; (ch<f)(X, Y) 

Theorem 4.1.2. ch(p) = ch C • td J . 

4.2. Proof of Theorem 4.1.2. 

Consider the composition 

Sn+q
(yn ®$&^n ffit/p

H2(n+q) <w*<v K ®tf» 
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H
2n<

 D
n ' - / n ® /

; s t З D
n> 

It may be describe in such a way. Let v ^ S (*?£_ G>*JC) < ^ n
Ф
^ > y > ^ 

and v
1
 be its image in W~ -., , . under the inclusion 

jO 0,2(n+q) 

®^L
 C

—
5 > D

r .
# l f d i s t n e

 differential in W* then according to 
n </-- n 

3.1.1 there exists a chain w € W* such that all the components of 

v' + dw in W. * are zero for i < 2n. Thus, the component of 

v' + dw in W 2 n * is a cycle in C^(Dn, tf£ &<n} S D ) . The cor­

responding homology class is the image of the above composition on v. 

Consider the bigraded vector space 

X = W*/72l J n; V *2' •••]] 

of formal power series with coefficients in W*. Let d = 

= (d ® 1) ^ Hi X 4 _ 4 - 17 • We obtain the bicomplex of 

\ W#l > n ; V t2'---JJ 
C u l l / , ' w ? n ; tl / t2'" i/ " modules- Put 

v ( N ) ( ^ , t) = exp(- 2 ^ i x i \ . ) diag(e 1
f... ,e , 0, 0,...) (4) 

There exists such w{ j . , t)£ W* that all components of v (3-/ t) + 

+ dw(2L, t) in W. * are zero for i < 2n. Consider the cocycle 

2lju.u)x and prolong it to W2 * by ^l[^1f • • • / J n;
 t i ' " \)J "1±~ 

nearity. It suffices to show that the value of this cocycle on 

v 2 n ( 3 " t} is ec-ual to '' ̂ i / ( 1 " e~ } '2 e" k w h e re v2n)(^"' t} 

is the component of v (^, t) + dw( J , t) in W. *. 

Note that we need only the case N = 1, t, = 0. Indeed, 

v ( N ) ( (L, t) = v ( N ) {j, 0)-diag(e" ± , e" X, . . . , e" ") ; (4) 

as it will be shown below, w ( ^ , 0) may be chosen from the subcomp-

Dj 

subalgebra commute with ifju , one may choose 

lex W* for the subalgebra Diff •!. Since all the elements of this 
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w ( ^ . , t ) = w ( < , 0 ) - d i a g ( e 1 e " z e " V ì 
, e , . . . , e ; , 

and t h u s 

v 2 n ) ( 3 " t J = V i n > ( ^ ' 0 ) . d i a g ( e - " * - e " ^ ) ; 

. V ( ^ ( « , O) = X f, 4 ( 5 l ' " - ' 3 r , ) ( X i l / l . . .A X H 1 ) ® X i - ( 5 ) 

2n ^ £-1 i 1 - - - i 2 n + l ( ? 1 <?n x l -2n -2n+l 
** 

where X. ,..., X. £ Diff , X. £ S D ; it is easy to see 
11 X2n n 12n+l n 

that such a cycle is homologous in C* (D , 4)1 &<Jl) S D ) to 

cycle 

V2n(S' fc) = ^ 2 " e " *fi i i (X E A...AX E ) ® X E ; Zn d k V'-^n^n+l *•! 1L ^n 1X ^n+l 1X 

thus 

^ 2 > * < U c / v
( ^ ( y t)^>= <7 f*tJ r ; v

(;)(^, o ) J j e " ^ (6) 

So, we must consider the case N = 1, t, = 0. At first, suppose 

that n = 1. Denote for simplicity E-^-X by X. Put L. = X D + 1 c), 

j £ -1. Put v(fc ) = v ( 1 ) (̂  , 0), v2(2 ) = v^1] (* , 0) . We have 

v(4 ) = e * 5. Represent e * ° as an image under the differential 

™1,* ~~* ™o,*' 0 n e h a s 

e"^- 1 = 27 [ V L
m
1*m(Lo)] (7) 

m=l -1 

where 

4> ( L , _ (-Dm+1 (*\m 

m+1 ° (m+l) (m+2) ! U L Q ) 

=Vl^ 

e - 1 
L 
o,. 

thus, e = d,w where 

(recall that d = d, + d0, d, : W. —* W 1 "2' "1 
7. —* W. , *, d0 : W. -> W.^, 0 ) . iy* i-l,* 2 im ' i+l,m-2 

Applying d0 to w one obtains 
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<~~~7 , -xm+1 -\ - J ^ o 
V-t t , ) = Z , ^ ( L ^ ^ L . J <S> ( - ^ " ) m G " -- L ^ + 

2 <T m=0 (m+2) ! m + 1 X ^ L Q
 L o X 

+ (^ A x) (g) 1 (8) 

For any differential operator X = /• h. o put Xp = h p. Lemma 

3.3.1 implies that 

|ij(Ot ,
 ( L

m + l
A L-l } ̂ Y = -ml ju. (Y)w(0) D m 

So we have 

- - - • / ^ ..* « . \ - T (-Dm ..,,Ĵ  ,».->-*-», 
-1 m 

^ 2 j-J^ , v2(,)> = Z - ^ ^ f « ^ 
d^ \ j-*0 J J X ^ ^ / m=0 (m+1) (m+2) J ^ L Q 

where ju = <s_j AI . . 
j > 0 j 3 

We shall use the following Lemma. 

Lemma 4.2.1. Let ^ be a function and Cl/* satisfy the relation 

Y(n) = f • Then 

frv 1 - ! ' - ' 0 ' = Z<-1)m_k (^T ( k )-
k=0 v k I 

Proof may be obtained by straightforward verification. 

It follows from the Lemma that 

^ \ j * 0' J * * 0 / m = 0 (m+1) (m+2) 

denote the bright hand side by U( ). We have 

d| < d - e " V °<£>> = ̂ "^; 

on the other hand, 

comparing the values in zero we obtain 

(1 - e"V U<£> = (1 - e-*>2 A " " ^ ) '• 
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once more comparing the values in zero we have 

C f ^ v v2{y} - */<--•'*>• (9) 

This ends the proof for the case n = 1. 

T e 

Now we pass the the general case. If X = /_. h/& £. Diffn we 

put X ( l ) = Z h ^ ( x ± ) ^ x 6 Di f f

n?
 i f w ± = (X.AY.) ® Z ± £ W2^(D-_, y(<$yč ) then 

w,® . . . < 2 w = X ( 1 ) A Y.(1)

A . . . A X
( n ¥ z ( n l Z(1)... z(n)£ 

J- n J. JL n i n J- n 

^ W 2 n , * ( D n ' ^ ® / ) " (10) 

We obtain a map W2 * (D.^ f l± (3$l)® n —> W 2 R * (Dn, ̂ ^ (9<$t) . Ana­

logously, changing 3 by ^ . at the i-th place, we define a map 

W2,-(Dl'f̂ l ®/)(Sn ̂ W ' V fi®D^-
It is easy to see that we may choose 

v2n<3" 0) = V J ' 0)®n (11) 

furthermore, as we have discussed in 3.3, the cocycle r^C = C 

is a basis element of HH (Diff ). It follows from the implicit 

formula for exterior multiplication in HH (cf. |_CEj) that 

X̂"' ^ *T' <U)> 41]- ̂  = ̂ 1' V V - ^ V V V 
Xn(X][

:y, Y^,..., X ^ , Yn
(\), Z) =0, (̂ ...y * (1 ... n) 

these formulas together with the formula for cJ.--- from 3.1 imply that 

< ^ x - v^)(S'o) - 2>X' v-(^n) -
= ri /fjv-v v^) = n T ^ c - d2) 

i=l X J / 1=1 -- e 

This ends the proof of Theorem 4.2.1. 
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§5. Absolute local Riemann-Roch theorem 

5.1. First, we recall the well known construction of characte­

ristic classes (cf., for example, £ Fj). 

Let L be a Lie algebra and -#7 be a subalgebra reductive in L. 

Let e : L —> -07 be a projection operator which is 'fl -equivariant. 

Consider the curvature form 

(9(X, Y) = (JX, Y ] ) - [ ~ (X), (Y)], 

This i s a ^ - e q u i v a r i a n t skew symmetric -iTjL -values 2-form on IA/^TT 

sa t i s fy ing the equation d 0 + 10, ©J = 0. For P £ Sk (-^ ) ^ l e t 

c^ = P( $ , . . . , (9 ) ; c p € C 2 k ( L , ^ ; <C). 
P 

(k times) 

It may be shown that this construction provides a characteristic ho-

momorphism which does not depend on 0: 

S*(*M 9—> H2*(L,^; C) (1) 

Now let L = Dn, -rr = '*]vn
($>'<gu (see above). Let ch <£, td 3~ be 

the elements of S ('̂  ) defined in 4.1. Let ( c h C ' t d J ) be 
C *"l Tn 

the component of c ( c h C . t d < I ) in H .On the other hand, consider 
* 

the module inclusion i : (£ —-> D and the dual map D —> (E; con-
n n 

sider also the basis element CJ C H (D , -*%£ © <TjC; D ) defined in 
3.3. 

Theorem 5.1.1. ("'1) i*CJ- = (ch £ -taCT") 
n! *̂- n 

in H 2 n ( D n , ^ n £>%£, C) . 

Proof. Consider the maps 

sn(^n<$y*)
 n ^H2n(w*(Dn,-?/ &<yt)) ^R2n(nn,gCn&yt; o (2) 

The map on the right is the edge homomorphism to E n' . It is an 

isomorphism because E,-' = 0 for i <" 2n. So, one has an isomor­

phism: 
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S n ( ^ / f * < £ ^ * ) n - - ^ - -» H 2 n ( D n , rj£n<£yi; <C) (3) 

We shall show that this isomorphism coincides with (1). Choose a pro­

jection operator 6 as follows. Put for m^-ffi {£) , X =f ̂  ... o : 
0 xl Xn 

for 2J°^ • = 0 e(Xm) =f(0)-m; 

for 27°^ i = 1 and d e <? f 7- 1/ 6(Xm) = O; 

for 2̂ °v ± = 1 and deg f = 1, 6(Xm) = tr m-X-1; 

for^ *l ± > i, 0(Xm) = 0. 

Let w = X,/V . . . A X2 (50 Y be a chain of C* (D ,<J£ &417 S D ). Put 

c*(w) = 2J s^6' G (X6l' X62 )-"£ ? (X6(2n-l)' V(2n))-Y 

6 * S2n 
6(2k-l)< 6(2k) 

* ~* / ,J> 
The map c dual to c is the restriction of c to C* (D , -*)<- <#§?--; 
S°). To show that c1* = c it suffices to show that 

c* v^) (£ , t) = v(N) (2 , t) (4) 

(in notation of 4.2). But it follows from the formulas (8)-(12) of 

4.2 together with the equalities: 

0 ( \ ,x.) =1; (9(L(i), L<J>)--2LJ->, 
i 

Q^K L^') =0, m^ 1; 

0(X(i), Y«->)= 0, i^j. 

Now Theorem 5.1.1 follows from 4.1.2. If! 
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