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RATIONAL HOMOTOPY TYPE OF NILPOTENT AND COMPLETE SPACES *" 

Marek Golasiňski 

Introduction. 

Sullivan [4,1O] and Bousfield-Gugenheim [2] proved the equivalence 

of the rational homotopy category of nilpotent spaces with rational 

homology of finite type and the homotopy category of differential 

graded rational algebras with minimal models of finite type. Earlier, 

Quillen [9] proved the equivalence of the rational homotopy category 

of simply connected spaces with two categories (among others): the 

homotopy category of simply connected differential graded rational 

coalgebras and the homotopy. category of connected differential graded 

Lie algebras. Neisendorfer [7] combined the approaches from [9,4,1o] 

to nilpotent spaces with rational homotopy of finite type. Unsold[11, 

12J used topological graded algebras to prove results similar, to tho­

se given in [9,4,1o] , without the finite type restriction, but for 

the simply connected case only. 

The object of this paper is to give a generalisation of the works 

of Neisendorfer [7] and Unsold [11,12} on rational complete spaces 

in the sense of [3]. In §3 the main result is established. Namely 

the rational homotopy category of complete spaces is equivalent to • 

the.homotopy category of:;topological differential graded rational 

algebras, differential graded rational coalgebras and nilpotent com­

pletion graded rational Lie algebras. 

In §1 we recall some basic definitions associated with linearly 

topological vector spaces. In §2 we generalise the Bousfield-Gugen­

heim result [2] and prove that the category of connected complete 

differential rational algebras is a closed model category in the sen­

se of Quillen [8]. Moreover, in §3 we prove that Q-complete spaces 

are closed with respect to iteration. By this result we partially an­

swer the following question of Baues [1]: Are R-Postnikov spaces of 

order 2 closed with respect to iteration? 

The proofs of our results and applications to the rational homoto­

py theory will be developed in forthcoming papers. It would be inte-

*jThis paper is in final form and no version of it will be submitted 

for publication elsewhere"• 
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resting to know if similar results also occur in the tame homotopy 

theory given in [5]• 

1.Topological vector spaces 

Let k be a discrete field of characteristic zero. A topological k-

vector space V is called linearly topological [6} if it is Hausdorff 

and there is a fundamental system of neighbourhoods tf consisting of 

nuclear (i.e. open-closed) vector subspaces of V. This system tf is 

called a linear topology on V. A moronism of linearly topological 

spaces V—->W is a continuous homomorphism of vector spaces V and W. 

We denote by Vect, the resulting category of linearly topological 

spaces. 

Let V* be a vector subspace of a linearly topological space V and 

let V/V} denote the quotient topological vector space. If V is a clo­

sed subspace of V then V/V* is also a linearly topological space. In 

particular, if V* is nuclear then V/V* is discrete. If V and V)} are 

two nuclear subspaces of V such that VsV then we obtain the cano­

nical morphlsm V/N>—>V/V . For a linear topology lX on V we put 
A I A 

V «= limJVyV • Then V is,a linearly topological space with respect to 

the topology determined by spaces V/V*, for all vi This space V is 

called the completion of V. The system of canonical morphisms V—>V/V 

for all V determines an infective morphism V—->V. If this morphism 

is an isomorphism then V is called a complete linearly.topological 

space. A linearly topological space V is called linearly compact if 

any filterbasis $ of V consisting of affine subspaces has a cluster-

point, i.e. A F a 0. 

' F££ 

According to Kothe [6] we have the following results. 

Proposition 1. 1 (i) A closed subspace of a linearly compact space is 

linearly compact. 

(ii)The image of a linearly compact space is linearly compact. 

(iii) Products and inverse limits of linearly compact spaces are 

linearly compact. 

(iv) Each linearly compact space is complete. 

(v) A linearly compact space is discrete if and only if it is fini­

tely dimensional. 

Let now V and W be linearly topological spaces. Let C be a linearly 

compact subspace of V and W} be- a nuclear subspace of W. We denote by 

N(C,W') the subspace of all morphisms f:V—*W such that f(c)cV.l The 

system /N(C,WJ| determines a linear topology on Vect (V,W) for all 
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linearly compact subspaces C of V and all nuclear subspaces W* of W. 

Thjs topology is called the linear compact-open topology. Therefore, 

we have defined an internal horn functor VECT, (-,-) on the category 

Vect . In particular, we obtain a linear topology on the topological 

dual vector space V*= Vect, (V,k). The functor VECT,(V,-) has a left 

adjoint, a tensor product - ® V . I f W is a linear topological space, 

then V<g)W is topologised by all subspaces Tv^W*]-* V © W> + V*® W, for 

nuclear subspaces V* of V and W* of W. We denote by V © W the comple­

tion (v ® w f . 

Proposition 1.2 ([_6j ) (i) A linearly topological space V is linear­

ly compact if and only if V*" is discrete. 

(ii) If V is linearly compact or discrete then V '-* V*f 

(iii) If V and W are linearly compact then VECTk(v,W)-* VECT k(W^ 

and (V © W J ^ V * © W*. 

(iv) If V is linearly compact and W is discrete then V ® W ̂ -

VECTk(vfW). 

Thus it follows that the functor i* establishes an equivalence of 

the categories of linearly compact and discrete spaces. 

2.Topological algebras 

Let A = © A be a differential graded k-algebra. We assume all 

our algebraS^ to be augmented and commutative in the graded sense. 

We call A complete , (l 2j if: 

(i) A is a complete space for all n.>0; 

(ii) multiplication It : Anx Am—*> A n + m is uniformly continuous; 

(iii) differential d: A n — > A n + 1 is continuous. 

A is.said to be linearly compact if A is linearly compact for all 

n^O. We denote by ZAf BA and HA the group of cocycles, coboundaries 

and cohomologies of A respectively. A morphism of complete algebras 

A—>B is a continuous homomorphism of differential graded k-algebras. 

We denote by Dga, or by Dga, the resulting category of complete or 

connected complete k-algebras. A morphism A—*- B in Dgak is said to be 

a weak equivalence if the induced maps HA > HB are isomorphisms. A 

morphism E—^B in Dga, is called a fibration ^. maps E*-—> B*are sur-

-jective. Trivial fibrations are morphisms which are both' fibrations 

and weak equivalences. Following Quillen [sj we define a cofibration 

in Dga, to be a morphism which has the left lifting property with 

respect to trivial fibrations. Trivial cofibrations are morphisms 

which are both cofibrations and weak equivalences. An algebra A in 
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Dga, is called cofibrant if the unique morphism k—>A is a cofibrat-

ion. 

Now we describe a particular kind of cofibrations in Dgak. 

Let V = © V n be a connected graded linearly topological space and • 

let AV ncLenote the free graded algebra on V. 

Proposition 2.1 ( [12]) There is a linear topology on AV such that 

the usual universal map property holds with respect to continuous 

maps. 

We denote by FV the completion (AV)*. Then FV is a complete graded 

algebra in the sense of our definition. If V is linearly compact in 

each degree then FV is linearly compact and (FVJis isomorphic to 

/\(V*). If V is discrete then AV is also discrete, and so AV -= FV. 

Let A be an algebra in Dgak and let d denote its differential. 

For a linearly compact space V (not graded) we denote by (V,n) the 

graded space given by V in degree n and 0 otherwise. Let also t : 

V—-> Zn+1A be a morphism of linearly topological spaces. Then by[l2] 

there is a differential d± on A (̂  F(V,n) such that dtJA = d and 

d.|V • t. The algebra A $ F(v,n) with the differential dt is called 

an elementary extension of A of degree n. Let A—->A © F(v,n) be the 

canonical inclusion. 

We call a cofibration j : A—*-D nilpotent when there is a tower 

A = D° * D 1 — ^ . . - > D k ~ 1 — ^ D k - > . . . ^ D 

of elementary extensions D >D" (k*l) with an isomorphism 

h : colim, D — * D under A. 

We call i a nilpotent completion when there is a tower 

A = D ^ D 1 — ^ ... --> Dk^---> Dk—>- >D 

with each D is a colimit of elementary extensions of degree k start­
le --1 k 

ing from D (k>1) and an isomorphism h : colim^D —*.D under A. 

It may be noted that each nilpotent cofibration is a nilpotent 

completion. Nilpotent or nilpotent completion cofibrations are called 

minimal nilpotent or minimal nilpotent completion k-a]gebras respec­

tively. 

Following |ll] we say that an algebra A » © A in Dgâ . satisf­

ies the condition (M) if: n^° 

(M1) the following sequences split topologically 

and 0—*-!&—>• A — ^ rft—> 0 

(M2.) HA are linearly compact spaces. 

We denote by Dgak(M) the full subcategory og Dga consisting of alge-
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bras satisfying this condition ( M ) . 

The following statements generalise the Bousfield-Gugenheim resul­

ts from [2] . 

Proposition 2.2 Let A be a linearly compact k-algebra and f : A—*B 

be a morphism in Dga,(M) such that H f is an isomorphism and H f is 

infective. Then there is a unique nilpotent'completion M«: A—*D 

and a weak equivalence h : D—H3 under A. In particular, each algeb­

ra A in Dga, (M) is weakly equivalent to a unique minimal nilpotent 

completion M». 

The cofibration M or the algebra M is called the minimal nilpotent 

completion model of f or of A respectively. We denote by Min. the ca­

tegory consisting of minimal nilpotent completion k-algebras and by 

Min,(l) its full subcategory generated by minimal nilpotent k-algeb­

ras. It may be noted that each object of MirL is linearly compact. 

Moreover we have 

Theorem 2.3 The category Dga, together with the distinguished clas­

ses of weak equivalences, fibrations and cofibrations defined above 

satisfies the Quillen closed model axioms (cf. [8]). 

We denote by HoDga, the resulting homotopy category and by HoDga, (M) 
K 0 0 

its full subcategory generated by objects of Dgak. Let now Dgc^ and 

Dglak denote the category of connected differential graded k-coalgeb-

ras and Lie k-algebras respectively. Let ncDgla, be the full subca­

tegory of Dgla, generated by Lie k-algebras L such that HL is a nil-

potent completion (according to [7])• But by [7] (Proposition 7.2) 

their homotopy categories in the sense of Quillen [8] are equivalent. 

Thus we obtain the following generalisation of this approach. 

Proposition 2.4 The follovdng three homotopy categories HoDga, ( M ) , 
0 

HoDgCi, *nd Ho ncDgla are equivalent. 

3.Sullivan-de Rham theorem 

We regard Q, the field of rationals, as a discrete space. Let S 

be the category of 0-reduced simplicial sets and let HoS be its ho­

motopy category according to [8]. Following [1] , p.110 we distinguish 

in S a class of fibrations. 

LettT be a Q-module and let K(ir,n) (n^l) be the Eilenberg-MacLane 

simplicial set. We call a principal fibration E—*-B a Q-Postnikov 
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simplicial set over B (of order 0). We call a fibration E >B a 
Q-Postnikov simplicial set over B (of order nf n*1) when there is a 

tower 
F — * .» P k .» 17^-1 _ ^ T ? ° - P. 
£J r , # « — ^ JCJ —s*» & > « • •—;> CJ = -D 

of Q-Postnikov simplicial sets E — * E * ~ (of order n-1, k>1) and 
an 'isomorphism E — > lim, E over B. 

We denote by.SQ(n) (n>0) the category of rational simplicial sets 
X such that there is a Q-Postnikov simplicial set E-^^over the fi­
nal object ̂  in S (of order n) and a simplicial map X — * E that in­
duces isomorphism H(E,'H')—*>H(X,fr) for all Q-modules Tf . Objects of 
SQ(n) we call Q-Postnikov simplicial sets (of order n). In particu­
lar, for n -s 1 and n « 2 we obtain Q-nilrjotent or Q-conrpletc simpli­
cial sets defined in [3] • 

I n D]f P » m Baues asks the following question: Are R-Postnikov 
spaces (of order 2) closed with respect to iteration? For R -= Q, we 
partially answer this question. Namely we conclude from a generalisa­
tion of the Sullivan-de Rham theorem [2] that Q-complete simplicial 
sets are closed with respect to iteration. Let X be a simplicial set 
and let A(X) be the algebra of Q-polynomial forms on X (cf. [2]). 
Following [12] we topologise A(x) as follows: for any siplicial map 
3? : A m — > X the subspace Ker(An(5c): A n ( x ) — * A n ( .^ m )) is nuclear in 
An(x) for all m,n^O, where A m denote the standard m-simplex. Then 
i?(x) is a complete Q-algebra satisfying the condition ( M ) . Let M-. 
denote its minimal nilpotent completion model. Then the rule X«—»MY 

0 0 0 

determines a functor M : HoS j>HoMinQ. For an algebra A in DgaQ 
let GA be the simplicial set given by (<&) »» Dga0(A,if( .^n)) for all 
n^O. It is easy to show that A and G are adjoint functors 

A : S ° c Dga° : G. 

Using Theorem 2.3 it can be shown that the following generalisa­

tion of the Sullivan- de Rham theorem [z\ holds. 
Theorem 5*1 The functors M and G induce a pair of adjoint functors 

M : HoSJ?(l)^ZZZ.__? HoMin°(l) : G 
and for n^2 M : HoSg(n) K

 > HoMin^ : G 

which are inverse the one to the another. 

In particular, we obtain 
Corollary 5.2 Q-complete simplicial sets are closed with respect to 
iteration (i.e. HoS^(n) ̂  Hos£(2) forn*2). 
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The next proposition generalises the Neisendorfer result from £7] 

(Proposition 7.3). 

Proposition 5.3 The following four homotopy categories are equiva­

lent HoS°(n) (n*2)f HoDga°(M), HoDgc° and HoncDglaQ. 

The question arises which does not appear to have been answered 

yet. Do similar results also occur in the tame homotopy theory intro­

duced in [5]? 
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