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RATIONAL HOMOTOPY TYPE OF NILPOTENT AND COMPLETE SPACESX

Marek Golasiriski

Introduction. } .

Sullivan [4,10] and Bousfield-Gugenheim [2] proved the equivalence
of the rational homotopy category of nilpotent spaces with rational
homology of finite type and the homotopy category of differential
graded rational algebras with minimal models of finite type, Earlier,
Quillen [9] proved the equivalence of the rational homotopy category
of simply connected spaces with two categories (among others): the
homotopy category of simply connected differential graded rational
coalgebras and the homotopy. category of connected differential graded
Lie algebras. Neisendorfer-[7] combined the approaches from [9,4,19]
to nilpotent'spaces with rational homotopy of finite type. Unsﬁlq[j1,
12] used topological graded algebfas to prove results similar to tho-
se given in [9,4,10] , without the finite type restriction, but for
the simply connected case only. .

The object of this paper is to give a generalisation of the works
of Neisendorfer [7] and Unsold [11,12] on rational complete spaces
in the sense of [3]. In §3 the main result is established. Namely
the rational homotopy category of.complete spaces is equivalent to
the. homotopy category of: topological differential graded rational
algebras, differential graded rational coalgebras and nilpotent com-
pletion graded rational Lie algebras. '

In §1 we recall some basic defihitions associated with linearly
topological vector spaces. In §2 we generalise the Bousfield-Gugen-
heim result [2] and prove that the category of connected complete
differential rational algebras is a closed model category in the sen-
se of Quillen [8]. Moreover, in §3 we prove that Q-complete spaces
are closed with respect to iteration, By this result we partially an-
swer the following question of Baues [1]: Are R-Postnikov spaces of
order 2 closed with resnect to iteration?

The vroofs of our results and applications to the rational homoto-
py theory will be developed in forthcoming papers. It would be inte-

"
#)This paper is in final form and no version of it will be submitted
for publication elsewhere",
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resting to know if similar results also occur in the tame homotopy
theory given in [5].

1.Topological vector spaces

Let k be a discrete field of characteristic zero. A topological k-
vector space V is called linearly topological [6] if it is Hausdorff
and there is a fimdamental system of neighbourhoods |Y consisting of
nuclear (i.e. open-closed) vector subspaces of V. This system (Y is
called a linear topology on V., A morphism of linearly topological
spaces V—W 1is a continuous homomorphism of vector spaces V and W,
We denote by‘Vectk the resulting category of linearly topological

spaces. .

Let V' be a vector subspace of a linearly topological space V and
let V/V’ denote the quotient topological vector space. If v'is a clo-
sed subspace of V  then V/V’ is also a linearly topological space, In
particular, if v’ is nuclear then V/V’ is discrete, If v’ and v are
two nuclear subspaces of V. such that V;V» then we obtain the cano-
nical morphism V/V’ V/V». For a linear topology U on V we put
V = 1im V/V « Then V is_a linearly topological space with respect to
the topology determined by spaces V/V’, for all V) This space V is
called the completion of V. The system of canonical morphisms V-ﬁ>V/V
for all V determines an injective morphism VF—rV. If this morphism
is an isomorphism then V is called a complete linearly topological
space, A linearly topological space V is called linearly compact if
any filterbasis ¥ of V consisting of affine subspaces has a cluster-
point, i.e. \F = p.

Fe¥

According to Kothe [6] we have the following results.
Proposition 1.1 (i) A closed subspace of a linearly compact space is
linearly compact.

(ii)The image of a linearly compact space is linearly compact.

(111) Products and inverse limits of linearly compact spaces are
linearly compact.

(iv) Each linearly compact space is complete.

(v) & linearly compact space is discrete if and only if it is fini-
tely dimensional.

Let now V and W be linearly topological spaces. Let C be a linearly
compact subspace of V and W' be a nuclear subspace of W, We denote by
N(c,W) the subspace of all morphisms f:V—s W such that f(C)gW: The
system {N(C,Wﬂ determines a linear topology on Vectk(V,W) for all
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linearly compact subspaces C of V and all nuclear subspaces W) of W.
This topology is called the linear compact-open topology. Therefore,
we have defined an internal hom functor V’“CTk(- ~) on the category
Vectk. In.rarticular, we obtain a linear topology on the topological
dual vector space V¥= Vecjﬁ((v,k). The functor VECTk(V,-) has a left
adjoint, a tensor product - @ V.If W is a linear topological space,
then V® W 1is topologised by all subspaces '[V‘,W’]= VOW+ V' w, for
nuclear subspaces V of V and W of W. We denote by V @W the comple-
tion (v @ W)\

Proposition 1.2 ([6] ) (i) A linearly topological space V is linear-
ly compact if and only if V™ is discrete.

(ii) If V is linearly compact or discrete then V & V*f

(i11) If V and W are linearly compact then vECT, (V, W)= VECT, (W, V)
and (V@ Wiz Ve w*

(1v) If V is 1inearly compact and W is discrete then V ®Wﬁ
VECT, (v,w).

Thus it follows that the functor % establishes an equivalence of
the categories of linearly compact and discrete spaces.

2. Topological algebras

Let A @A ‘be a differential graded k-algebra, .We assume all
our algebray’oto be augmented and commutative in the graded sense,
We call A complete [12] if:

(i) A" is a complete space for all ny0;

(i1) mgltiplication/u,: A% AT AT g uniformly continuous;

(iii) differential d: A"—s A™7 is continuous.
A is.said to be linearly compact if A" is linearly compact for all
ny0. We denote by ZA, BA and HA the group of cocycles, coboundaries
and cohomologies of A respectively. A morphism of complete algebras
A—>»B is a continuous homomorphism of differential graded k-algebras.
We denote by Dgak or by Dgag the resulting category of complete or
connected complete k-algebras., A morphism A—» B in Dgak is said to be
a weak equivalence if the induced maps HA—> HB are 1somorphisms. A
morphism E—»B in Dga is called a fibration .‘{a-&? maps E*—s B*are sur-
jective., Trivial fibrations are morphisms which are both fibrations
and weak equivalences, Following Quillen [8] we define a cofibration
in Dgak to be a morphism which has the left 1ifting property with
respect to trivial fibrations. Trivial cofibrations are morphisms
which are both cofibrations and weak equivalences, An algebra A in
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‘Dgay is called cofibrant if the unique morphism k—» A is a cofibrat-
ion,

Now we describe a particular kind of cofibrations in Dgak.
Let V=@ V® be a connected graded linearly topological space and
let AV nﬁgnote the free graded algebra on V.

Proposition 2.1 ([12]) There is a linear topology on AV such that
the usual universal map property holds with respect to continuous

maps.

We denote by FV the ccompletion (AV)A Then FV is a complete graded
algebra in the sense of our definition. If V is linearly compact in
each degree then FV is 1inearlv compact and (FV)* is isomorphic to
A(V). If V is discrete then AV is also discrete, and so AV = FV,

Let A be an algebra in Dgay, and let d denote its differential.
For a linearly compact space V (not graded) we denote by (V,n) the
graded space given by V in degree n and O otherwise. Let also t e
v—s 2" 1A be a morphism of linearly topological spaces, Then by [12]
there is a differential 4, on A @ F(V,n) such that 4 IA = d end

dg[V = t. The algebra A F(V,n) with the differential d, is called
an elementary extension of A of degree n. Let A-—A ® F(V,n) be the
canonical inclusion,

We call a cofibration 3j : A—D nilpotent when there is 2 tower

A= DO—'—P D1——>o I Dk-’]_’Dk—> cee —»D

of elementary extensions I)](""I—>D'k (k»1) with an isomorphism
h colimka—rD under A.

We call j a nilvotent completion when there is a tower

A=D—D—>cee—>D —>D—>.--—>D
‘with each Dk is a colimit of elementary extensions of degree k start-
ing from D¢~ (k;‘l) and an isomorphism b colimka——»D under A,

It may be noted that each nilpotent cofibration is a nilpotent
completion. Nilnotent or nilpotent completion cofibrations are called
minimal nilpotent or minimal nilnotent completion k-algebras respec=-
tively.

Following El’l] we say that an algebra A =@ A" in Dgay satisf-
ies the conditien (M) if: 70

(M1) the following sequences split torologically

00— ZA—; £—s B*+1A—r 0
and 00— — A — A—s 0

(12) FA  are lirearly comnacf spaces.

We denote by Dea (M) the full subcategory og Dga consisting of alge-
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bras satisfying this condition (M).

The following statements generalise the Bousfield-Gugenheim resul-
ts from [2]. _
Proposition 2.2 Let A be a 1inearly compact k-algebra and f ¢ A-—+B
be a morphism in Dgak( M) such that HOf is an isomorphism and H'f is
injective. Then there is a unique nilpotent completion M3 A—D
and a weak equivalence h : D—B under A, In particular, each algeb-

ra A in Dgak(M) is weakly equivalent to a unique minimal nilpotent
completion M, .

The cofibration Mf or the algebra MA is called the minimal nilpotent
completion model of f or of A respectively. We denote by Mink the ca-
tegory consisting of minimal nilpotent completion k-algebras and by
Mink(1) its full subcategory generated by minimal nilpotent k-algeb-
ras., It may be noted that each object of_Mink is linearly compact.

Moreover we have )
Theorem 2.3 The category Dgao together with the distinguished clas-
ses of weak equivalences, fibratlonq and cofibrations defined above
satisfies the Quillen closed model axioms cf.EB]

We denote by Hngag the resulting homotopy categgry-and by Hngag(M)
its full subcategory generated by objects of Dgak. Let now Dgck and
Dgla, denote the category of connected differential graded k-coalgeb-
ras and Lie k-algebras respectively, Let ncDglak be the full subca-
‘tegory of Dglak generated by Lie k-algebras L such that HL is a nil-
potent completion (according to [7]). But by [7] (Proposition 7.2)
their homotopy categories in the sense of Quillen [8] are equivalent,
Thus we obtain the following generalisation of this approach.

Proposition 2.4 The following three homotopy categories Hngag( M),
HODch and Ho,ncDglak are enuivalent,

3.Sullivan-de Rham theorem

We regard 0, the field of rationals, as a discrete space. Let SO
be the category of O-reduced simplicial sets and let Ho?O be its ho-
motopy category according to [8]. Following [1], p.110 we distinguish
in S” a class of fibrations.

Let  be a Q-module and let K(w,n) (ny1) be the Eilenberg-MacLane
simplicial set. We call a principal fibration E—>B a Q=Postnikov
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simplicial set over B (of order O)..We call a fibration E—>B a
Q-Postnikov simplicial set over B (of order n, nz1) when there is a
tower

E—...—>E%s 551, . .0
of Q-Postnikov simplicial sets Ek——-r-Ek-1 (of order n-1, k»1) and
an “isomorphism E —1i Ek over B,

We denote by_Sg(n) (n?0) the category of rational simplicial sets
X such that there is a Q-Postnikov simplicial set E—»*over the fi-
nal object ¥ in SO (of order n) and a simplicial map X—» E that in-
duces isomorphism H(E,w)—>H(X,®) for all Q-modules T ., Objects of
Sg(n) we call Q-Postnikov simplicial sets (of order n). In particu-
lar, for n = 1 and n = 2 we obtain Q-nllpotent or Q-complete simpli-
cial sets defined in [3].

In [1], p.111 Baues asks the following question: Are R-Postnikov
spaces (of order 2) closed with respect to iteration? For R = Q, we
partially answer this question., Namely we conclude from a generalisa-
tion of the Sullivan-de Rham theorem [2] that Q-complete simplicial
sets are closed with respect to iteration. Let X be a simplicial set
and let KYX be the algebra of Q-polynomial forms on X (cf. [2])
Following DZ] we topologise A(X) as follows: for any siplicial map
® : A"—>X the subspace Ker(A™(%): A (X )—> A™(a™)) is nuclear in
An(X) for all m,ny0, where A"  denote the standard m~-simplex. Then
XTX) is a complete Q-algebra satisfying the condition (M), Let MX
denote its minimal nilpotent completion model. Then the rule Xr—»MX
determines a functor M : HoSO———a'HoMing. For an algebra A in Dga
let GA be the simplicial set given by (GA)n= DvaO(A fa? )) for all
nyO. It is easy to show that A and G are adjoint functors

A+ ST Dega : G

Using Theorem 2.3 itvcan be shown that the following generalisa-
tion of the Sullivan- de Rham theorem [2] holds.

Theorem 3,1 The functors M and G induce a pair of adjoint functors

7 Hos§(1)'—’<__ HoMinQ(1)
and for n»2 Mo HOSQ(n)<;___3 HoMing Ee

which are inverse the one to the another.

In particular, we obtain
Corollary 3.2 Q-complete simplicial sets are closed with respect to

iteration (i.e. HoSO(n) 2 HosQ(2) for my2).



RATIONAL HOMOTOPY TYPE OF NILPOTENT AND ... 215

The next proposition generalises the Neisendorfer result from [7]
(Proposition 7.3).
Proposition 3.3 The following four homotopy categories are equiva-
lent Hosg(n) (nz2), Hngag(M), Hngog and HoncDgla.

The question arises which does not appear to have been answered
yet. Do similar results also occur in the tame‘homotopy theory intro-

duced in [5]?
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