
WSGP 8

Peter W. Michor; Wolfgang A. F. Ruppert; K. Wegenkittl
On a construction connecting Lie algebras with general algebras

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School ”Geometry and
Physics”. Circolo Matematico di Palermo, Palermo, 1989. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 21. pp. [265]–274.

Persistent URL: http://dml.cz/dmlcz/701446

Terms of use:
© Circolo Matematico di Palermo, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/701446
http://dml.cz


ÜN A CUNSIRUCTION CONNECTING L ÏE ALGEBRAS WITH GENERAL ALGEBRAS 

P.Michor, W.Ruppert, K.Wegenkittl 

Abstract; In this paper we introduce a general construction which 

associates an algebra A(&,b) with every pair (&,b), where $1 is a Lie 

algebra and b is an invariant symmetric bilinear form on £. By 

virtue of this construction several well-known (associative and 

non-assic iat i ve) algebras can be dealt; with under a unified view. We 

give characterizations of those pairs (&,b) which generate 

associative algebras A(&,b) and of those algebras which can be 

represented in the form A(£,b). 

1 . Pass i nq fjrgm Lie aXg_eJjras to aLqeb_ras. 

1.1. Defini t i on Let £ be a Lie ajgebra over a (commutative) field k 

and let b: Z x & -• V be an invariant (i.e. b(CX,Yl,2) = b(X,CY,2D) 

for all X , Y, Z e $L) symmetric bilinear form on S£- Then we define an 

algebra A(£,b) associated with the pair (&,b) as follows: as a 

vector space, A(Sl,b) is just the direct sum .** e k. The 

multiplication of A(£i,b) is defined by the formula: 

(X,s)(Y,t) := (CX,Y1 + sY + tX, st + b(X,Y)). 

Obviously, A(.$i,b) is an algebra and (0,1) is its identity. 

1.2. Proposi t ion 

(i) If char k ^ 2, then the algebra A(£,b) is commutative if and 

only if £ is.abelian. If char k »- 2, then A(£,b) is always 

commutative. 

(ii) Suppose that char k * 2. Then (.i\,b) is isomorphic to (£',b') 

(i.e. there is a Lie algebra isomorphism <£: *f. -» £' with b(X,Y) = 

b(<£(X ) ,<£( Y) ) ) if and only if A(£,b) is isomorphic to A(&' , b ' ) . For 

char k = 2 there arG non-isomorph i c pairs (£,b) and (*i' , b ' ) 

generating isomorphic algebras A(£.,b) and A(£',b'). 

(iii) A(£,b) is always flexible, i.e. we have x(yx) = (xy)x for 

allx,y e A(£,b). In particular, A(£,b) is always power-associative, 

This paper is in final form and no version of it will be 

submitted for publication elsewhere. 
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2 2 i.e. xx = x x for all x e A(£,b). 

<%iv) A<£,b) is always Lie admissible, i.e. the algebra A<£,b> 

defined on the same vector space, but with multiplication Cx,y] = xy 

- yx, is a Lie algebra. 

<v) A<&,b) is always Jordan admissible, i.e. the algebra A<*l,b) 

defined on the same vector space, but with multiplication xoy = xy + 

yx, is a Jordan algebra. 

<vi) We write Ass<x,y,z) for the associator x<yz) - (xy)z of three 

elements x,y,z. In A(£,b) we have 

Ass((X,s),(Y,t),(Z,u)) = <a <X,Y,Z),0), 

where 

ab(X,Y,Z) = -b(X,Y)Z + b(Y,Z)X + CCZ,X1,YЗ. 

In particular, A(£,b) is associative if and only if a (X,Y,Z) = 0 

for all X,Y,Z e £. 

(vii) The map a satisfies the identity 

a <X,Y,Z) + ab<Y,Z,X) + ab<Z,X,Y) = O. 

<viii) If char k ^ 2,3 and A(£,b) is alternative (i.e. x(xy) = x y 

a 

and (xy)y = xy ), then it is associative. 

Proof Assertion (i) follows from the identity (X,s)(Y,t) -

(Y,t)(X,s) = (2CX,Y1,0). 

<ii) Obviously, any isomorphism <pi <£-b) -> <.^',b') induces an 

isomorphism A<£,b) -> A<£',b'), <X,s) -> <0<X),s). Suppose now that 

char k ^ 2 and that y: A<£,b) -> A<£.',b') is an isomorphism. Let X e 

£\<0} and write y<X,s) = <X',s'). Since y preserves units, X' * 0. 
rrc 
2 

From yi(X,0)B) = <y/<X,0>)2 we conclude that 2s'X' = 0 and b(X,X) 

+ b'(X',X'). Thus we get the isomorphism we need by defining y/ : 

£ - > £ * , y/*<X)=X' if X ^ 0 and y/* < 0) = 0. 

To.construct a counterexample in case char k = 2, let k = Z/22 and 
2 2 

choose a basis for k , say < X,Y }. Then we take SI to be k with 
2 

trivial Lie structure and b = 0; for £' we.take k with the Lie 

structure defined by CX,YD = X + Y; b' is defined by stipulating 

b'<X,X) = b'<Y,Y) = b'(X,Y) = 1. Then £ is not isomorphic to £' , but 

A(£,b) £A(£',b ,> via the morphism y: A(&,b) -> A(£',b') given by 

y/(X,0) = <X,1), y/<Y,0) = <Y,1), y/( X, 1 ) = (X,0) and y(Y,l) = (Y,0). 

The proof of assertions (iii) - (vii) rests on simple calculations 

and is therefore left to the reader. 

(viii) By Bourbaki C21, p.612, an algebra is alternative if and only 

if its associator is skew-symmetric. Thus if A(£,b) is alternative, 

then a is skew-symmetric and hence (vii) takes the form 3a. (X,Y,Z) 

= 0, so (vi) implies the assertion. • 

Remark Note that in the proof of (vii) and (viii) we did not use the 
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assumption that b is symmetric. 

If we require b only to be bilinear and char k i* __, then invariance 

and symmetry of b are equivalent to the flexibility of A(£,b). 

1.3. Notat ion We write « for the Car tan-Ki 11 ing- form, «(X,Y) = 
J. 

trace(adX*ady) . The set C X <s £: b(X,£> = 0 > is denoted by £ , and 
J_ 

< X e £: b(X,Y) = 0 > by Y . 

Throughout the rest of this sect ion we always assume,that char k. = 0 

and that £ j_s f ini te dimensional . 

1 .-+. Lemma Assume that A(£,b> is associative. Then 

(i) «(X,Y> = (n-l)b(X,Y), where n = dim £. 

(ii) every commutative subalgebra (ST of £ with dim (ST > 1 lies in the 

ideal £ . 

( iii ) C£ ,C£,£__ = 0. 

(iv) (adU)2V = b(U,U)V for all U e £, V e £ . 

Proof We infer from 1.2.(vi) that 

(*) CX,CY,Z__ = b(X,Y)Z - b(Z,X)Y for all X,Y,Z e £. 

Thus x(X,Y> = Trace(adX-adY) = Trace(b(X,Y)id - b(X,.)Y) = nb(X,Y) -

b(X,Y) = (n-l)b(X,Y), which establishes (i). If in (*> we put X = Y 

= U, Z = V, then we get (iv). 

(ii) Let A,B be two linearly independent elements of <£. Then by (*) 

we have for any X e £ 

0 = CX,CA,B_. = b(X,A)B - b(B,X)A 
J_ J_ 

and hence b(X,A) = b(X,B) = 0; that is, A,B e £ . Thus < £ _ = £ . 
_L 

(iii) The right hand side of (*) vanishes whenever X e £ , thus 
C£ ,C£,£_i_ = 0. a 

1.5. Lemmma Suppose that A(£,b) is associative. Then the following 

assertions hold: 

(i) £ is either solvable or simple of rank 1. 
J_ J_ L 

(ii) If 0 ^ 8 * £, then £ = C£,£3 = C£,C£,£__ and £ is 
_L 

commutative. Moreover, X € 8 if and only if b(X-X) = 0. 
J_ 

(iii) If £ is solvable, then dim £/£ < 1. 

Proof The assertions are obvious for dim £ < 1, so let us assume 
1 _L 

that n = dim £ > 1. Then we have b = --- «, by l.-+.(i), and hence £ 

= 0 if and only if £ is semisimple. 

(i) If £ is semisimple, then by 1 .-t. ( i i ) every Cartan-subalgebra of 

£ has dimension 1, so £ is actually simple of rank* 1. Assume now 
_L 

that £ is not semisimple. Then by our assumption above, £ ?- 0. 
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Suppose that © is a semisimple subalgebra of ft. Since © = C@,@] <_ 
J- X 

Cft,ft], 1.4.(iii) yields that C ft ,<S] = 0. Now any non-zero Y <s ft 

together with any linearly independent S <E <S generates a 

two-dimensional commutative Lie subalgebra <£ of ft, which by 1.4.(ii) 
_L X 

is contained in ft , so CS,<S] __ C SL , <S] = O, a contradiction. This 
estab1ishes (i). 

X 
(ii) Assume that O ?-* Z <= ft . Then formula (*) of the proof of 1 .-+. 

implies that CX,CY,ZJ] = b(X,Y)Z for all X,Y <= ft. By 1 .-+. ( i i i ) CY,Z] 

= O, and hence b(X,Y) = 0, whenever Y <s Cft,ft], X e ft. Thus Cft,ft] ._= 

ft . Conversely, let X,Y <E ft with b(X,Y) ?-* O. Then Z 

b ( X , Y ) _ 1 C X , C Y , Z ] ] e C f t , C f t , f t ] ] . Thus Cft,ft] <_ ft __ Cf t ,C f t , f t ] ] < -C f t , f t ] ; 
X 

the commutat ivi ty of ft follows from 1.4.(iii). 
To show the second part of (ii), suppose that b(X,Y) ^ 0, but b(X,X) 

X 
= 0. Then CX,CX,Y1] = -b(Y, X)X, hence X e Cft,ft] = ft , a 
contradiction. 

(iii) Suppose that ft is solvable and that there are elements X,Y e ft 
X 

such that X + ft and Y + ft are linearly independent in ft/ft . Then we 

g e t 
X 

b ( X , X ) Y - b ( Y , X ) X = C X , C X , Y J ] <E C f t , f t ] = ft 
X 

Thus b(X,X) = 0 and therefore, by (ii), X <= ft , a contradiction. • 

1.6. Theorem Suppose that char k - 0 and ft is finite-dimensional. 

Then A(ft,b) is associative if and only if one of the following 

assertions hold: 

(i) ft is a simple Lie algebra of rank 1 and b = — - *, where n = dim 
* n-1 ' 

ft. 

(ii) ft is nilpotent of step 2 (i.e. Lft,Cft,ft]J = 0) and b = 0. 

(iii) dim ft < 1 and b is arbitrary. 
X 

(iv) ft = Cft,ft] and there is an element X <= ft such that ft is the 
X X 

split extension ft O kX of ft with the one-dimensional subspace kX. 
X P 

Moreover, ft is commutative and (adX)cY = b(X,X)Y for all Y e Cft,ft]; 
1 b = --7 *. n-1 

Proof: Suppose first that A(ft,b) is associative and that dim ft > 1-
X X 

If ft = O, then assertion (i) holds, by 1 .-•. ( i ) and 1.5.(i). If ft ^ 
0 then, by 1 .-+. ( i i i ) , ( i v ) and 1 . 5 . ( i i ) , ( i i i ) either ft = ft (which 

X 
implies (ii)) of dim ft/ft = 1 and hence (iv) holds. 

Conversely, it is immediate that each of the assertions (ii) - (iv) 

implies that the condition in 1.2.(vi), a = 0, is satisfied, so 

that A(ft,b) is associative (Note that in case (iv) every product 

CA,CB,C]] vanishes unless A and B, or A and C, are contained i n 

kX\{0}. In the case of (i), we first remark that we may assume k = 
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C, since the condition of 1.2.(vi) naturally extends to the 

subalgebra of the algebra A(£&C,b^), taken as an algebra over k (cf. 
1 

Bourbaki 131, p.21). Thus we are left to show that A(sX(2,C),- K ) is 

associative; this will be done in example 2.5. of the next section.a 

2. Examples 

2.1. The trivial cases: 

If dim £ = 0, then b = 0 and A(0,0) ^ k. 

If dim £ = 1 , then £ ^ k. Let b(X,Y) := aXY for same a e k. Then 
k C X 1 2 

A(£,b) =t / <X - a> (the isomorphism is given by i 1 ,0) -> X ) . 

If k = R, we get for 

(i) a < O the algebra of complex numbers. 

(ii) a = 0 the commutative associative algebra generated by 1 and 6 
2 

with 6 = 0 , sometimes called the algebra of dual numbers. 

(iii) a > 0 the commutative associative algebra generated by 1 and c 
•4-U 2 

with c = 1 . 
These are all quadratic algebras over K in the sense of Bourbaki. 

2.2. Let £ = 90(3,K) and let b = w, its Cartan-Ki11ing form. Let E 

be the oriented Euclidean 3-space with inner product <.,.> and 
3 

normed determinant function det. Define a cross product "x" in E by 

stipulating <XxY,Z> = det(X,Y,Z). Then SO(3,K) is isomorphic to 

(E3,x) in such way that CX,Y3 = XxY and K ( X , Y ) = -2<X,Y>. To see 

this, put 

x i -
0 0 1 
o 0 0 

-1 o o 
x
г -

0 1 o 
-1 o o 
o o o 

/ o o o 
-I o o 1 
\o-i o 

and notice that EX. ,X. .] = X.,_, where we compute the indices 
i' i+l 1+2'

 K 

modulo 3. The product formula in A(SO(3.K) ,-x) is then 

(X,s)(Y,t) = (XxY + sY + tX, st <X,Y>), 

which yields exactly the algebra HH of quaternions: choose a 
3 

positively oriented orthonormal basis i,j,k in E and check that the 

multiplication table is: 

(i,0) (j,0) (k,0) 

(i,0) (0,-1) (k,0) <-j,0) 

(j,0) <-k,0) (0,-1) (i,0) 

(k,0) (j,0) <--i,0) (0,-1) 

Then obviously in the algebra A(SO( 3, \R) ,ax) , a <s K, 

multiplication table: 

get the 
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( i ,0) 

( j,0) 

(k,0) 

( i ,0) ( j,0) (k,0) 

(0,-2a) (k,0) (-j,0) 

(-k,0) (0,-2a) (i,0) 

(j,0) (-i,0) (0,-2a) 

be again its (complex) 

This is associative if and only if a = -. 

2.3. Let ft = SO(3,C) and let b = x 

Cartan-Ki 11 ing form. Then ft = C , CX,Y_ = Xx^Y (the "complexified 

vector product" with the same coordinate formula as the real one), 

and x^CX-Y) = -2 _Z. . X Y . As we just take the product formula of 
C 1 = 1 

2.2. with complex scalars, we get A(SO(3,C>,- *_> __ OH «u C (cf. 

2.5. ) . Likewise the algebra A(SO(3,C) ,ax_) for a e C is given by the 

second multiplication table of 2.2., but now over C. A( SO( 3, <C) ,ax^) 

is associative if and only if a = -. 

2.-+. Let ft = S((2,IR) and let b = «, the Car tan-Ki 11 ing form. Then ft 

is the Lie algebra of traceless 2x2 - matrices. Choose the following 

basis of ft: 

*0 2 ^ - 1 0 / *1 2 VI OJ 

V 

2 2 
a n d 

2 VO -1 / 
T h e n - X 0 , X 1 1 = X g , C X ^ X g J = - X Q , C X , X Q 1 

- * ( E x X . , Z y Y. ) = - x y + x y" + x y . Now l e t DL b e t h e L o r e n t z i a n 

Define 3-space with inner product <.,.> , with signature +--,-
3 

Lorentzian vector product x on 0_ by <Xx Y,Z> = -det(X,Y,Z), 
3 

the standard basis e ,e.,e
p
 on Q_ we get 

-e 0 . . . _ .. ... 3

e 2*L e o = e r 
Thus (sl(2,K) , C . , . 1,-«) is isomorphic to (Q_ ,x ,-<.,.> ) 

3 
multiplication formula of 1.1. becomes on Q_ xK: 

and 

the 

Foг 

the 

(X,s)(Y,t) = (Xx^Y + sY -ь tX, st <x,ү>
L
> 

This gives an associative algebra, sometimes called the algebra of 

pseudoquaternions (see Yaglorn,C11D): check the multiplication table 

( e Q , 0 ) < Є l , 0 ) ( e 2 , 0 ) 

( e 0 , 0 ) ( 0 , - 1 ) ( e г , 0 ) ( - Є j - 0 ) 

( Є l , o ) < - e 2 , 0 > < 0 , 1 ) < - e 0 , 0 > 

( e 2 , 0 ) < e 1 ? 0 ) ( e 0 , 0 ) ( 0 , 1 ) 

But in fact this algebra is isomorphic to the full algebra of 2x2 -

matrices: 

< 0
<

n
 H o ? )

 = °° < e
o ' ° ' " (-i i)

 = io
-

< e
l'

0
' -(? o) = "l < e

2'
0
' - (o -V) = °3 

gives the same multiplication table for the matrix multiplication. 

Here the a. are the Pauli matrices, very dear to physicists. Thus 

i 2 2 
A(sI(2,R> ,p*) __ L([R ,K ), the algebra of all 2x2 - matrices. 
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A(8t(E, R) , ax) gives the same multiplication table, but with (0,-Sa), 

(0,Ea), (0,2a) in the main diagonal, which is associative if and 
1 - . t r 1 

only if a = -. 

5.5. Let S = 8T(E,C), «_. its Cartan-Ki 1 1 ing form. Then we can apply 

the discussion of E.-+. with complex scalars and conclude that 

A(8l(E,C>,- *_> _? A( el (E,[R) ,p «) <&_> C equals the algebra of complex 

SxE matrices. This is well known to physicists via the formula a.a. 

= 6. . +'V-1 £. ..a. for the Pauli matrices. 
l j ljk k 

5.6. Let £ be the real E-dimensional Lie algebra with generators X,Y 

satisfying CX,YD = X (This is the Lie algebra of. the "ax+b" -

group). Then the Cartan-Ki11ing form « is given by x(X,£) = 0 and 

x(Y,Y) = 1. This gives an associative algebra A(£,x) which is 

isomorphic to the real algebra of all upper triangular ExS matrices: 

«M>-(i?) <*><»* (oo) ".".("J?) 
gives the correct multiplication table. 

E.7. The algebra of Cayley numbers is not of the form A(£,b) since 

it is alternative, but not associative (cf. l.E.(viii)). But it can 

be represented in a similar form: we use the isomorphism SO(3,C) _= 
3 

(C >x_,) of E.3. and consider the.usual hermitian inner product (.,.) 
3 3 on C . Then C x C, with multiplication 

(X,s)(Y,t) := (X X-.Y + sY + tX, st - <X,Y>> 

is the algebra of Cayley numbers (see Greub, C^tl). 

If char k = S, the Cayley numbers are associative. 

S.8 Let £ be a nilpotent Lie algebra of step E. Then £ = V © W as a 

vector space, and C^.,W3 = 0, CX,Y1 =: OJ(X,Y> e W for X,Y <= V, where 

co: V x V -> W is an arbitary skew symmetric bilinear map. If we want 

an associative algebra, then b = 0 and A(£,0) = V x W x k a s a 

vector space with product 

(v,w,0)(v',w',0) = (0,o>(v,v'),0)% 

and (0,0,1) as unit. 

3. Passing from algebras to Lie algebras 

3.1. Proposi t ion Let A be an algebra with unit over a commutative 

field k. Then A is Lie admissible (cf. l.E.(iv)) if and only if the 

associator Ass(x,y,z) = x(yz) - (xy)z satisfies 

(*) Z ~ sgn(c7)Ass(x /4.x .,_. x , _. > = 0 
cre@_ ^ c(l)o'<S)c<3> 
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for all triplets x.,x_,x of elements in A, where ®- denotes the 

group of peгmutations of í 1,2,3 }. If char k * 2,3 and A is 

alternative, then (*) implies that A is associative. 

Proof The proof of the first assertion is an easy computation and 

therefore left to thє reader. For the second we only have to note 

that by Bourbaki C23, p.612, A is associative if and only if Ass is 

skew symmetric; if Ass is skew symmetric then the left side of (*) 

is just 6 Ass(x x x ). 

3.2. Remarks (i) Often conditions stronger than (*) have been dealt 

with in the literature; such as (cf. Nijenhuis and Richardson C7D) 

Ass(x,y,z) = Ass(y,x,z) 

Ass(x,y,z) = Ass(x,z,y) 

Ass(x,y,z) = Ass(z,y,x) 

None of these conditions is satisfied for all of the algebras A(ß,b) 

of section 1. 

(ii) Proposition 3.1. has an obvious generalization to graded 

algebras and graded Lie algebras. 

3.3 Def ini t ion Let G9 be a subgroup of <S_,. Then an algebгa A is 

called © - assoctiative if 

E
^

5 g n (
°'

) A 5 5 ( X

C
r(l)

> <
cr(E)

X
cr(3)

) =
 ° 

З.*t. Remarks (i) By 1.2.(v) every algebra A(£,b) is *Ц 

associative, wheгe *U_ denotes the alternating group in three 

elements. More generally, for chaг k *• Є every flexible (cf 

1.2.(iii)) Lie admissible algebra is ^ÌX - associative, since 

flexibility can be linearized to Ass(x,y,z) + Ass(z,y,x) = 0: this 

shows that flexibility is not a kind of © - associativity. 

(ii) By 3.1., © - associativity is equivalent to Lie admissibi1ity. 

The conditions in 3.2. correspond to (S> - associative algebras, where 

65 is a two element subgгoup of €?_. 

(iii) The C1} - associative algebras are just the associative 

algebras. 

(iv) If ® £ 5, then every © - associative algebra is also *o "* 

associat ive. 

(v) Note the formula 

Ass(x,У,z) + Ass(y,z,x) + Ass(z,x,y) = Cx,yzl + Cy,zx] + Cz,xyl 

Thus an algebra A is *U_ - associative if and only if 

Cx,yzЗ + Cy,zx] + Cz,xyl = 0 for all x,y,z <= A 
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Throuqhout the rest of this section let A denote a unital algebra 

over k. such that 2dimA ?- 0 jm k___ 

3.5. Definition Let L : y -v xy and R : y + yx denote left and right 

multiplication by x. Then define 

т
A
: A . k, т

A
(x> := gg-;-;- trace<L.. + R.) 

1__ 
LmA 

<x,y>
A
 : = T

A
<xy) 

T is said to be a Clifford trace if the complementary projection 

rr
A
: A -> A, "

A
<x) := x - T <x)l satisfies the CI if ford equat ion 

T T A < X ) T T A < y ) + T T A < y ) T T A < X ) = 2 <TT f t < X ) , TT^ < y ) > ft 1 

3.6. Lemma <i) If T is a Clifford trace, then <.,.> is symmetric. 

<ii) If A = A<ft,b>, then T is a Clifford trace. 

Proof <i> trivial 

<ii) An easy computation shows that T <X,s) = s, rr
A
<X,s) = <X,0), 

and that the Clifford equation holds. • 

3.7. Theorem Let A be a unital algebra over k such that 2dimA i* 0 in 

k. Then the following assertions are equivalent: 

<i) A can be written in the form A = A<ft,b> for some Lie algebra ft 

and invariant form b. 

<ii) A is a flexible Lie admissible algebra and T is a Clifford 

trace. 

<iii) A is a flexible It-. - associative algebra and T is a Clifford 

trace. 

Proof <i) •=> <ii> by l.S.(iii), 1.2.(iv) and 3.6.<ii). 

<ii) <=> <iii) by 3. 1 . , 3 .-+. < i ) and 3.-+.<iv). 

<ii) «• <i) The commutator algebra A = <A,C.,.D
ft
) introduced in 

1.2.(iv) is a Lie algebra. If we consider k as one—dimensional 

(trivial) Lie algebra, then T : A -» k is a Lie homomorph ism. We 

define SI to be the Lie algebra ker T , provided with the Lie bracket 
1 

C.,.1^ = | C.,._
A
, and b<X,Y) = <X,Y>

A
 for all X,Y <s ft. b is 

symmetric and invariant by 3.6.(i) and the remark to proposition 

1.2. Let TT. : A -* ker T = ft be the complementary projection, **,.< x) 

= x - T _ < X ) 1 ; rr is also a Lie algebra homomorph ism - Let X,Y e ft. 

Then <XY denoting the product in A) 

X Y = | < X Y - Y X > + | < X Y + Y X ) = | C X ' Y : , A + | < T T A < X > T T A < Y ) + 

+ T r A < Y ) r r A < X ) > = 

-» | -X,Y3
A
 + <n

A
<X) ,TT

A
<Y)>

A
1 = CXjYD^ + b<X,Y)l. 

For arbitrary x,y e A we have x =
 n/\^x) + T

A

(
x)l,. y = rr < y) + 

T.<y)l, and we get 
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xy -= (rrA(x) + Tft < x ) 1 > (rĉ  < y ) + Tft(y)l) = 

= fTA<x)7TA(y)- + TA<x)JTA(y) + TA<y)»rA(x) + TA(x)rA(y)l =-

-= CrrA<x),rrA<y)35i + TA<x)7rA<y) + r^y)n^(x) + TA<x)TA<y)l + 

+ b(7TA(x) ,rrA(y) ) 1. 

Thus the map A -• A(£,b), x -• (rr(x)-T(x)) is the required 

isomorphism, n 
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