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ON A CUNSTRUCTIDN.CDNNECTING L IE ALGEBRAS WITH GENERAL ALGEBRAS

P.Michor, W.Ruppert, K.Wegenkittl

Abstract: In this paper we introduce a general construction which
associates an algebra A(R,b) with every pair (€,b), where 8 is a Lie
algebra and b is an invariant symmetric bilinear form on £. By
virtue of this construction several well-known (associative and
non-assiciative) algebras can be dealt with under a unified view. We
give characterizations of those pairs (£,b) which generate
associative slgebras A(¥,b) and of those algebras which can be
represented in the form A(L,b).

1. Passing from Lie algebras to algebras

1.1. Definition Let & be a Lie ajgehra over a (commutative) field k

and let b: € » £ » Fk be an invariant (i,e. b([X,Y],2) = b(X,LY,21)
for all X,Y,? = £) symmetric bilinesr form on £. Then we define an
algebra A(Y,b) associated with the pair (8,b) as follows: as a
vector <space. A(ﬁ,b} is just the direct osum £ e k. The

multiplication ot A(&,b) is defined by the formula:
(X s)(Y,t) := ([X,Y] + sY + tX, st + b(X,Y)).
Obviously, A(&.b) is an algebra and (0,1) is its identity.

1.2. Proposition

(i) If char k # 2, then the algebra A(R,b) is commutative if and
only if &£ is abelian. If char k = 2, then A(L,b) is always
commutative.

(ii) Suppose that char k # 2. Then (£,b) is isomorphic to (g',b")
(i.e. there is a Lie algebra isomorphism ¢: &£ » &' with b(X,Y) =
b((X),(Y)) ) if and only if A(LY,b) is isomorphic to A(R',b'). For
char k = 2 there are non-isomorphic pairs (£,b) and (£',b")
generating isomorphic algebras A(L,b) and A(R',b').

(iii) A(Y,b) is always flexible, i.e. we have x{yx) = (xy)x for

allx,y € A(R,b). In particular, A(f,b) is always power-associative,

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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i.e. xxa = xex for all x € A(Y,b).

(iv) A(R,b) is always Lie admissible, i.e. the algebra A(ﬁ,b)_
defined on the same vector space, but with multiplication [x,y]l = xy
- yx, is a Lie algebra.

(v) A(R,b) is always Jordan admissible, i.e. the algebra A(ﬁ,b)+
defined on the same vector space, but with multiplication xeoy = xy +
yXx, is a Jordan algebra.

(vi) We write Ass(x,y,z) for the associatof x(yz) — (xy)z of three

elements x,y,z. In A(Y,b) we have

Ass((X,8),(Y,t),(2Z,u)) = (ab(X,Y,Z),O),

where
ab(X,Y,Z) = -b(X,Y)Z + b(Y,2)X + [[Z,X],Y].

In particular, A(f,b) is associative if and only if ab(x,Y,Z) = (o]
for all X,Y,2 € 8.
(vii) The map ab satisfies the identity

ab(X,Y,Z) + ath,Z,X) + ab(Z,X,Y) = 0.
(viii) If char kK # 2,3 and A(R,b) is alternative (i.e. x(xy) = xey
and (xyly = xya), then it is associative.
Proof Assertion (i) follows from the identity (X,8)(Y,t) -
(Y,t)(X,s) = (2[X,Y1,0).
(ii) Obviously, any isomorphism ¢: (L,b) » (2',b") induces an

isomorphism A(L,b) -+ A(L',b'), (X,s) » (¢(X),s). Suppose now that
char k # 2 and that yw: A(f,b) + A(L',b') is an isomorphism. Let X e
2\(0> and write w(X,s) = (X',s'). Since y preserves units, X' # 0.
From w((X,O)E) = (w(X,O))a we conclude that 2s'X' = 0 and b(X,X) =
sa + b'(X',X'). Thus we get the isomorphism we need by defining w*:
£+ 8, ¥(X) = X' if X # 0 and ¥ (0) = O.

To construct a counterexample in case char k = 2, let k = 2/22 and
choose a basis for ke, say { X,Y }. Then we take & to be ka with
trivial Lie structure and b = 0; for £' we take ka with the Lie
structure defined by [X,Y]l = X + Y; b' is defined by stipulating
b'(X,X) = b'(Y,Y) = b'(X,Y) = 1. Then £ is not isomorphic to £', but
A(L,b) = A(L',b') via the morphism yw: A(L,b) » A(L',b') given by
wiX,0) = (X,1), w(Y,0) = (Y,1), w(X,1) = (X,0) and w(Y,1) = (Y,0).
The proof of assertions (iii) - (vii) rests on simple calculations
and is therefore left to the reader.

(viii) By Bourbaki (21, p.b612, an algebra is alternative if and only
if its associator is skew-symmetric. Thus if A(fR,b) is alternative,

then o is skew-symmetric and hence (vii) takes the form Qab(X,Y,Z)

b
= 0, so (vi) implies the assertion. o

Remark Note that in the proof of (vii) and (viii) we did not use the
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assumption-that b is symmetric.
If we require b only to be bilinear and char k # 2, then invariance

and symmetry of b are equivalent to the flexibility of A(f,b).

1.3. Notation We write = for the Cartan-Killing- form, 2(X,Y) =
L
trace(adX+ady). The set { X € £: b(X,8) = 0 ) is denoted by £ , and
1
{ X € 8: b(X,Y) =0 ) by Y .

Throughout the rest of this section we always assume . that char k = O

and that 8 is finite dimensional.

1.4. Lemma Assume that A(K,b) is associative. Then .

(i) 2(X,Y) = (n-1)b(X,Y), where n = dim 2.

(ii) every commutative subalgebra ® of & with dim € > 1 lies in the
ideal QL.

(iii) EEL,[Q,QJ] = 0.

(iv) (adU)aV = b(U,U)V for all U € &, V QL.

Proof We infer from 1.2.(vi) that

(%) [X,L[Y,21] = b(X,Y)Z ~ b(Z,X)Y for all X,Y,2 € 2.
Thus 2(X,Y) = Trace(adX-+adY) = Trace(b(X,Y)id - b(x,.)Y) = nb(X,Y) -
b(X,Y)

(n-1)b(X,Y), which establishes (i). If in (%) we put X = Y
=U, 2 =V, then we get (iv).

(ii) Let A,B be two linearly independent elements of . Then by (%)
we have for any X € €

0 = [X,[A,B]] = b(X,A)B - b(B,X)A

and hence b(X,A) = b(X,B) = 0; that is, A,B e ﬁll Thus & < ﬁl.

(iii) The right hand side of (#) vanishes whenever X € ﬁl; thus
_[ﬁl}tﬂ,ﬁll = 0. o

1;54 Lemmma Suppose that A(L,b) is associative. Then the following
assertions hold:

(i) 8 is either solvable or simple of rank 1.

(ii) If O = aL = £, then ﬁi' = [L,8] = ([(2,0(2,8)] and %L is
commutative. Moreover, X € £ if and only if b(X,X) = 0.

(iii) If & is solvable, then dim Q/QL <1,

Proof The assertions are obvious for dim £ <1, so let us assume
that n = dim £ > 1. Then we have b = =11 2, by 1.4.(i), and hence 2t
= 0 if and only if &£ is semisimple.

(i) If 8 is semisimple, then by 1.4.(ii) every Cartan-subélgebra of
£ has dimension 1, so £ is actually simple of rank 1. Assume now

L
that 8 is not semisimple. Then by our assumption above, &£ = O.



268 P.MICHOR, W.RUPPERT, K.WEGENKITTL

Suppose that & is a semisimple subalgebra of 8. Since & = [&,8) <
(8,81, 1.4.(iii) yields that [ﬁL,GJ = 0. Now any non-zero Y € gl
together with any linearly independent § e & generates a
two-dimensional commutative Lie subalgebra ® of 2, which by 1.4.(ii)
is contained in 8 , so [5,8] < [S,L,@J = 0, a contradiction. This
establishes (i).

(ii) Assume that 0 # 2 e ﬁll Then formula (%) of the proof of 1.4.
implies that [X,[Y,21] = b(X,Y)2 far all X,Y € 8. By 1.4.(iii) [v,2]
= 0, and hence b(X,Y) = 0, whenever Y € [8,8], X e g. Thus [2,8] <

1
£ . Conversely, let X,Y € £ with b(X,Y) # O. Then 2 =
- 1 .
b(x,v) lex,Iv,211 e [2,08,811. Thus [R,82] € & < (%,[8,8]] <[2,8];

the commutativity of € follows from 1.4.(iii). .
To show the second part of (ii), suppose that b(X,Y) # O, but b(X,X)
. N . -L

= 0. Then [X,[X,Y]1] = -b(Y,X)X, hence X e [£,8] = £

contradiction.

’ a

(iii) Suppose that & is solvable and that theére are elements X,Y € £
such that X + € and Y + & are linearly independent in 8/811 Then we
get

b(X,X)Y — b(Y,X)X = [X,[X,Y]] € [8,8] = EL
Thus b(X,X) = O and therefore, by (ii), X € ﬁL, a contradiction. o

1.6. Theorem Suppose that char k = 0 and £ 1is finite-dimensional.
" Then A(R,b) is associative if and only if one of the following
assertions hold: ’

(i) 8 is a simple Lie algebra of rank 1 and b = ;%T 2, where n = dim
2. .

(ii) & is nilpotent of step 2 (i.e. [£,[8,82]1] = 0) and b = O.

(iii) dim 8 £ 1 and b is arbitrary.

(iv) 81'= [f,8] and there is an element X € £ such that £ is the
split extension 21'0 kX of ﬂlkith the one-dimensional subspace kX.
Moreover, gl'is commutative and (adX)EY = b(X,X)Y for all ¥ € [8,8];
b = ;%I 2. . .

Proof: Suppose first that A(L,b) is associative and that dim & > 1.

4 L
If & = 0, then assertion (i) holds, by 1.4.(i) and 1.5.(i). If &
L

O then, by 1.4.(iii),(iv) and 1.5.(ii),(iii) either & = & (which
implies (ii)) of dim ﬁ/ﬁl'= 1 and hence (iv) holds.

Conversely, it is immediate that each of the assertions (ii) - (iv)
implies that the condition in l1.2.(vi), oo = O, is satisfied, SO

b
that A(Y,b) is associative (Note that in case (iv) every product

[A,[B,C1] vanishes unless A and B, or A and C, are contained in

kX\{0}. In the case of (i), we first remark that we may assume k =
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C, since the condition of 1.2.(vi) naturally extends to the
complexification (ﬁec,bc), and A(f,b) can be considered as a
subalgebra of the algebra A(QQC,DC), taken as an algebra over k (cf.
Bourbaki [3]1, p.21). Thus we are left to show that A(sI(E,C),é %) is

associative; this will be done in éxample 2.5. of the next section.o

2. Examples

2.1. The trivial cases:

If dim & = O, then b = 0 and A(0,0) = k.

If dim & = 1, then & = k. Let b(X,Y) := aXY for some a € k. Then
ag,b) = KX, (3 45 (the isomorphism is given by £1,0) = X).

If k = R, we get for

(i) a < O the algebra of complex numbers.

(ii) @« = O the commutative associative algebra generated by 1 and &
with 62 = 0, sometimes called the algebra of dual numbers.

(iii) a > O the commutative associative algebra generated by 1 and ¢
with sa = 1.

These are all quadratic algebras over R in the sense of Bourbaki.
2.2. Let & = 80(3,R) and let b = », its Cartan-Killing form. Let E3
be the oriented Euclidean 3-space with inner product <.,.> and
normed determinant function det. Define a cross product "x" in ES by

stipulating <XxY,2> = det(X,Y,2). Then 80(3,R) 1is isomorphic to

(Es,x) in such way that [X,Y] = XxY and 2(X,Y) = -2<X,Y¥>. To see
this, put
o0 1> .( o1 o) /000
X, = 00O X5 ={-1 0 O X, ={ 001
' 100 2 \ooo 3 \o-10
and. notice that [Xi,Xi+1] Xi+E’ where te compute the indices
modulo 3. The product formula in A(SO(B,R),én) is then
(X,5)(Y,t) = (XxY + sY + tX, st — <X,Y>),

which yields exactly the algebra H of quaternions: choose a
positively oriented orthonormal basis i,i,k in E3 and check that the
multiplication table is:

| ¢i,0 (§,0)  (k,0)
(i,0) (0,-1) (k,0) (:3:6;
(j,0) | (-k,0) (0,-1) (i,0)
(k,0) (j,0) (-~i,0) (0,-1)

Then obviously in the algebra A(80(3,R),ax), a € R, we get the

multiplication table:
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| ¢i,0 (3,00 (k,0)
(i,0) | (0,-2a) (k,0) (=j,0)
(i,0) | (-k,0) (0,-20)  (i,0)
(k,0) | (j,00  (=i,0) (0,-2a)

This is associative if and only if « = é.

et b = 2
3 C
= C7, [X,Y]l = XxCY (the "complexified

vector product" with the same coordinate formula as the real one),
and xc(X,Y) = -2 £?=]X1Y1. As we Jjust take the product formula of

2.2. with complex scalars, we get A(so(B,C),é nc) =~ H QP C (cf.

2.3. Let & = 80(3,L) and 1 be again its (complex)

Cartan-Killing form. Then £

2.5.). Likewise the algebra A(so(B,C),axC) for ¢ € C.is given by the

second multiplication table of 2.2., but now over C. A(80(3,C),axc)
1

is associative if and only if a = 5

2.4. Let £ = sl(2,[R) and let b = #, the Cartan-Killing form. Then £

is the Lie algebra of traceless 2x2 - matrices. Choose the following
basis of R:

_ 1 01 _1/701 . _1/1 o©

o =2 (-1 o) X1 T2 (1 o) 2 =2 o —1)

Ihen EXO,Xlg = Xa, [;léxel T IXO’ éx ,XOJ = Xl, ;nd
én(ix Xi,Zy Yi) = -xy + xy + xvy . Now let L" be the Lorentzian
3-space with inner product <.,.>L, with signature +,-,-. Define the
Lorentzian vector product X on la by <XxLY,Z> = -—-det(X,Y,2). For
the standard basis €01€,185 ON la we get

€% % T e;x e, = ~e, esx 8 = e,

Thus (SI(E,R),[.,.],éx) is isomorphic to (% ,xL,—<.,.>L) and the

multiplication formula of 1.1, becomes on L™ xR:
(X,S)(Y,8) = (Xx Y + sY + £X, st = <X,¥> )

This gives an associative algebra, sometimes called the algebra of

pseudoquaternions (see Yaglom,[11]): check the multiplication table

(ey,0) e, ,0) (e,,0)
(ey,0) (0,-1) (e5,0) (-e ,0)
(e ,0) | (-e,,0) (0,1)  (-ey,0)
(e,,0) (e, ,0) (ey50) (0,1)

But in fact this algebra is isomorphic to the full algebra of 2x2 -

matrices:

1 0) _ o1\ _ .
(0,1) -+ o 1) = o, (eO,O) + -1 l) = ioy,

o1\ _ 1 0\ _
(EI’O) - (1 O) = 01 (EE’O) -+ (O _1) = 03

gives the same multiplication table for the matrix multiplication.
Here the o. are the Pauli matrices, very dear to Pphysicists. Thus

A(e!(E,R),éu) ] L(RE,RE), the algebra of all 2x2 - matrices.
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A(sl(2,R),ax) gives the same multiplication table, but with (0,-2a),
(0,2a), (0,2a) in the main diagonal, which is associative if and
only if a = é.
2.5. Let & = sl(2,0), *e its Cartaﬁ—Killing form. Then we can apply
the discussion of 2.4. with complex scalars and conclude that
A(eI(E,C),é xc) x A(sI(E,R),é 2) op C equals the algebra of complex
2x2 matrices. This is well known to physicists via the formula oiaj
- PRy . -
6i5 v-1 245Kk for the Pauli matrices.
2.6. Let ® be the real 2-dimensional Lie algebra with generators X,Y

satisfying [X,Y]l] = X (This is the Lie algebra of. the "ax+b" -

group). Then the Cartan-Killing form 2 is given by 2(X,®8) = O and
2(Y,Y) = 1. This gives an associative algebra A(R,2) which is
isomorphic to the real algebra of all upper triangular 2x2 matrices:
10 o1 -1 0)
(0,1) - (o 1) x,00 » (g o) v,00 » (75 9

gives the correct multiplication table.

2.7. The algebra of Cayley numbers is not of the form A(f,b) since
it is alternative, but not associative (cf. 1.2.(viii)). But it can
be represented in a similar form: we use the isomorphism s8o0(3,C) x
(Ca,x ) of 2.3. and consider the .usual hermitian inner product (.,.)

3t 3
on €. Then € x €, with multiplication

(X,8) (Y, 8) 1= (X %V + sY + X, st - (X,¥))
is the algebra of Cayley numbers (see Greub, [41).

If char kK = 2, the Cayley numbers are associative.

2.8 Let € be a nilpotent Lie algebra of step 2. Then £ =V @& W as a
vector space, and [2,W]l = O, [X,Yj =: w(X,Y) € W for X,Y € V, where
w: V xV » W is an arbitary skew symmetric bilinear map. If we want
an associative algebra, then b = 0 and A(L,0) =V x W x k as a
vector space with product

(vyw,0)(v',w',0) = (0,wlv,v"'),0)

and (0,0,1) as unit.

3. Passing from algebras to Lie algebras

3.1. Proposition Let A be an algebra with unit over a commutative
field k. Then A is Lie admissible (cf. 1.2.(iv)) if and only if the

associator Ass(x,y,2) = x(yz) - (xy)z satisfies .
() zoeg sgn(o)Ass(x =0

A o(1) o2 o)’
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for all triplets X19%Xor%g of elements in A, where GE denotes the
group of permutations of ¢ 1,2,3 ». If char k =# 2,3 and A |is
alternative, then (%) implies that A is associative.

Proof The proof of the first assertion is an easy computat}on and
therefore left to the reader. For the second we only have to note
that by Bourbaki [2], p.bl2, A is associative if and only if Ass is
skew symmetric; if Ass is skew symmetric then the left side of (%)
is just 6 Ass(xlxexg).

3.2. Remarks (i) Often conditions stronger than (%) have been dealt

with in the literature; such as (cf. Nijenhuis and Richardson [(71])
Ass(X,Y,2) = Ass(y,x,2)
ASS(X,Ysy2) = Ass(x,z,y) .
Ass(xX,¥Ys2) = Ass(z,y,x)
None of these conditions is satisfied for all of the algebras A(f,b)
of section 1.
(ii) Proposition 3.1. has an obvious generalization to graded

algebras and graded Lie algebras.

3.3 Definition Let & be a subgroup of 63. Then an algebra A is
called ® - assoctiative if

z gn(o)Ass (x
o

oe” (O X2 o3’

3.4. Remarks (i) By 1.2.(v) every algebra A(f£,b) is MB -

associative, where Mé denotes the alternating group in three

elements. More generally, for char k # 2 every flexible (cf
1.2.(i1i)) Lie admissible algebra is MB - associative, since
flexibility can be linearized to Ass(x,y,z) + Ass(z,y,x) = 0O: this
shows that flexibility is not a kind of ® - associativity.

(ii) By 3.1., Gé - associativity is equivalent to Lie admissibility.
The conditions in 3.2. correspond to ® - associative algebras, where

® is a two element subgroup of 63.

(iii) The (1) - Vassociativé algebras are just the associative
algebras.
(iv) If & € %, then every & - associative algebra is also & -

associative.
(v) Note the formula

Ass(x,Ysz) + Ass(y,z,x) + Ass(z,x,y) = [x,yz]l + [y,zx] + [z,xy]
Thus'an algebra A is ué - associative if and only if

[x,yz] + [y,zx] + [z,xyl = O for all x,y,z € A
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. Throughout the rest of this section let A denote a wunital algebra

3.5. Definition Let L : y » xy and R : y + yx denote left and right

multiplication by x. Then define

Tht A + k, TA(X) =
<Xyt Talxy).

A is said to be a Clifford trace if the complementary projection

T
LAY A+ A, nA(x) 1= X - TA(X)I satisfies the Clifford equation

(x)nA(y) + (y)nA(x) = E(nA(x),nA(y)>A1

7 A

3.6. Lemma (i) If A is a Clifford trace, then <"'>A is symmetric.

(ii) If A = A(],b), then A is a Clifford trace.
Proof (}) trivial
(ii) An easy computation shows that TA(X,S) = 5, nA(X,s) = (X,0),

and that the Clifford equation holds. o

3.7. Theorem Let A be a unital algebra over k such that 2dimA # O in
k. Then the following assertions are equivalent: .
(i) A can be written in the form A = A(K,b) for some Lie algebra 2
and invariant form b.

(ii) A is a flexible Lie admissible algebra and A is a Clifford
trace.

(iii) A is a flexible ”3 - associative algebra and TA is a Clifford
trace.

Proof (i) = (ii) by 1.2.(iii), 1.2.(iv) and 3;6.(ii).

(ii) & (iii) by 3.1.,3.4.(i) and 3.4.(iv).

(ii) = (i) The commutator algebra a = (A,C.,.] introduced in

)
. A
1.2.(iv) is a Lie algebra. If we consider k as one-dimensional

(trivial) Lie algebra, then Al A -+ k is a Lie homomorphism. We

define 8 :o be the Lie algebra ker Tas provided with the Lie bracket '
["']g =53 ["'JA’ and b(X,Y) = <X,Y>A for all X,Y e 8. b is
symmetric and invariant by 3.6.(i) and the remark to proposition
1.2. Let LI A~ -+ ker LN £ be the complementary projection, nA(x)
= x - TA(X)I; A is also a Lie algebra homomorphism. Let X,Y e 2.
Then (XY denoting the product in A)

Xy = é (XY - YX) + é (Xy + YX) = é [X,Y]A + é (nA(X)nA(Y) -+

I "A(Y)nA(X)) =
=5 [X,Y]A + <HA(X),nA(Y)>Al = [X,Y)g + p(x,v)1.
For arbitrary x,y € A we have x = nA(x) + TA(x)lp y = _nA(y) +

T,(y)1l, and we get

A
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Xy = (nA(x) + TA(x)l)(nA(y) + TA(y)l) =
= nA(x)nA(y)'+ TA(X)"A(Y) + TA(y)nA(x) + TA(X)TA(Y)I =

[nA(x),nA(y)Jg + TA(X)RA(Y) + TA(y)nA(x) + TA(X)TA(V)I +

+ ty(nA A(y))l.

Thus the map A -+ A(f,b), x -+ (alx),7(x)) 1is the requi

(x),n

isomorphism. o
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