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1 

CONFORMAL INVARIANT WAVE EQUATIONS FOR SPIN ZERO AND SPIN 2 FIELDS 

ON DE SITTER SPACE 

P. Moylan 

ABSTRACT 
1 

Using elementary notions of the Dirac Theory for a spin 2 particle 

we prove conformal invariance of a certain wave equation associated 

with a massless spin 2" field on de Sitter space. With the help of 

an integral transform which transfers fields on de Sitter space to 

fields on an associated Minkowski space, we show that this equation 

describes a spin 2 particle of mass R2 on this Minkowski space. 

These results are compared with analogous results for a massless 

spin zero field on de Sitter space, which corresponds to a field of 

mass 4̂ 2 on the Minkowski space. 

The Conformal Invariant Wave Equations 
4 

We denote the de Sitter space by V and we refer the reader to 
4 [2] for the standard definitions of V . We recall the embedding of 

V4 into £5 as the hypersurface £a£a = -R
2 fea£a = ^2-^>l2-^2-^2-^2) . 

Now, up to a set of measure zero, each element of S0o(2,4) may be 
4 

expressed uniquely as the cartesian product of a point of V and an 
4 

element of the isotropy subgroup of the point eo=(0,0,0,0,l)eV [2]. 
4 

This decomposition determines an action of S0o(2,4) on V as con­
formal transformations [ 2] . We denote by p(g,£) the Jacobian of the 

2 
transformation g at the point £.. Let P2 be the stabilizer subgroup 

4 2 

of the point e 0 = (0,0,0,0,l)e V . Let Xx denote the character of P2 

which is defined asXX(p) = |u(Pfe0)| (n=4). We define certain 

multiplier representations UX = Indp2
 2 (X;x ) of G = S0o( 2, 4) by the 

formula, 
(UX(g)f) U ) = f(Rg"^)|u(g,c) | ( n" X ) / 2 (1) 
_1 c K 4 

where C ^Rq R l s t h e conformal action of geS0o(2,4) on £eV . 
1 

Next consider the following Dirac equation for a spin -j field on 
V4 

Y a š a * ( S ) = ± i R * U ) 7 Í Y a , Y b } = 2 g a b ; g a b = d i a g a , - 1 , - 1 , - 1 , - 1 , - D ( 2 ) 
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Here we are using all 5 gamma matrices, ij; has just 4 components. We 

have 10 spin matrices, 

S a b = f [Yd,Yb] (3) 

and theras(ra="2 ya) and Sa s generate an so (2,4). The following 

identity may be verified [4] 

ira = f ^ a - "^ ^ b'S
b a} (u = iR) (4) 

It is valid acting on any solution of the Dirac equation. Now we 

define representations with spin acting on solutions of (2). The 

representation of SU(2,2) is given by 

(U(g)ij,) U ) = |u(g,U|"^----- + SD(g)^(Rg"1|), (5) 

where D(g) is the spinnor representation of g having infinitesmal 

generators S and r . The represenation space consists of C°° func-
4 

tions on V which satisfy in addition certain asymptotic conditions 

that are necessary in order to ensure the smoothness of (U(g)ij; ) ( £) 

for all geS0o(2,4). The invariance of the representation space 

under U(g) can then be established with the help of (4). (An ele­

mentary proof that U(g) satisfies the Dirac equation is presented in 

the Appendix.) 

The conformal invariant wave equation is 

D S ( C ) = <^R2LabLab - 2R2}*(C) = 0 (6) 

where L a b = Mab + Sab, and M a b = i(Ca
9b"^b9a) <9a = aF5" )• Using 

eqn. (2) we show S Mab^(C) = 0, so that 

D\{£) = (P + 2R2 - 2R2H (£) = {3 + ~R2 }i|> ( £) = 0 (7) 

Here we have used the fact that SabS
a = 5 [ 3 V The last term in 

braces before the zero is recognized as the conformal covariant wave 
X 4 

operator for a spin zero field of conformal weight 2 = 1 o n v • 
h Thus D^U(g) ip = 0 for X = 2(l-s). This establishes the invariance of 

h h. 
D \p = 0 under the above representation (5) of weight 2 = (1-s). 

The Generalized Fourier Transform 

Now, on the space of solutions of (6), there is defined a 

linear representation of S0 o(l,4), which is obtained from the above 

representation of the conformal group by restriction to the subgroup. 

We may also construct a multiplier representation of S0o(l,4) for 

spin h fields on T , the unit mass hyperboloid[3]. The equivalence 
3 

of this representation of S0o(l;4) on T and the one on the space of 

solutions of (6) is established with the help of the following inte­

gral transform: [3] 

i M O .= (**)(?) = cx(at) f 3dT
3<j> (£)|y (gUWp))|"v"2 " S {s=h) 

1 L m 
(H= (v ,S)^X=R, v = R) (8) 

Here <t>: T3 • C 4, -^-eT3, c(p) = (.4r", 1 ) . cX(*) is a constant 
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4 
which is related to the Plancherel measure on V in the s = o case. 

(For s = o this integral transform intertwines the representation of 
4 

S0o(l,4) on solutions of the zero mass wave equation on V with a 

certain multiplier representation on T3.) We have established the 

following key result [3]: 

<DSnVc5) U) 2 9 

= [n^{B u B y - - ^ - L y v L y v } ^ ] ( U = [ n v { B 2 + 4 A 2 - X 2 s ( s + l ) } * ] (£ ) ( 9 ) 

w h e r e 

B u = p u + 2 " m " { P P ' L p y } r L p v = Mu v + S y v , P 2 = P U P U . 
.. 4 1 a o 
D
0-Laplace-Beltrami opeiator on V .

 G % = 2R2 --abL • Using eqn. 
4 

(9) it follows that a massless spin zero field on V corresponds, 
under the equivalence, to a spin zero field of mass - 4R2, and a 

4 
massless spin h field on V corresponds to a spin h field of mass 

- R in the associated momentum space. Furthermore we may transfer 

these fields on the momentum space to fields on Minkowski space with 

the help of the usual Fourier transform for spin zero and spin % 

fields. 

The conformal mass is specified by the requirement of impar­

lance of the particular wave equation under S0o(2,4). We have also 

introduced another mass, which is defined by the following equations: 

M2 = P ^ ] 

PM - fS<fc B*, IP", ] (10) 

where Bp and Lpvare the generators of the S0o(l,4) subgroup. The 

f*s are inverse relations to 
1 1 v P 

X ^ B U = 27^{P , Lvy} - A ^ P U (11) 

They should be specifically obtainable as a special case of a more 

general relation, which expresses the generators of translations of 

motion groups in terms of generators of the associated semisimple 

groups [1]. 

APPENDIX: 

With the help of (4) we can rewrite (5) as [5]: 

(U(g)*) .(£.) = e-iC*-— Lab " w * U Ba),j. ( 5 ) (12) 

wher< e 

вa 
= Ba° -

1 
2 U 

u b , S b a } 

a n d 

B°a = 
1 
2u u b , м к } 

. ' b a 
+ i 

The invariance of the representation space is now a direct conse­

quence of (12) since both L
a
b and B

a
 commute with the Dirac equa­

tion (2). 
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