José M. R. Sanjurjo

On mutational deformation retracts

Persistent URL: http://dml.cz/dmlcz/701449

Terms of use:

© Circolo Matematico di Palermo, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON MUTATIONAL DEFORMATION RETRACTS

José M. R. Sanjurjo

Let X be a closed subset of a metrizable space X' considered as a closed subset of an ANR(\mathcal{K})-space P. The family $\mathcal{U}(X',P)$ of all open neighborhoods of X' in P is called the complete neighborhood system of X' in P. By a mutational deformation retraction of X' to X we mean a mutational retraction (see [5]) $r: \mathcal{U}(X',P) \rightarrow \mathcal{U}(X,P)$ such that for every $U' \in \mathcal{U}(X',P)$ and for every $r \in \mathcal{R}$ with range U' there exists $V' \in \mathcal{U}(X',P)$ contained in U' and in the domain of r such that $r|_{V'} = i$ (the identity) in U'. If the homotopy can be chosen stationary on X we say that r is a stationary mutational deformation retraction. A mutational retraction $r: \mathcal{U}(X',P) \rightarrow \mathcal{U}(X,P)$ is said to be regular if for every $U' \in \mathcal{U}(X',P)$ and for every $r, r' \in \mathcal{R}$ with range U' there exists $V' \in \mathcal{U}(X',P)$ such that $r|_{V'} = r'|_{V'}$ (rel X) in U'. The notion of regular mutational retraction is a generalization of Dydak's notion of regular fundamental retraction [2] in which a more restrictive condition is imposed on homotopies.

The problem whether every W-shape deformation retract is stationary has been raised by K. Borsuk in his book [1] (p. 190, Problem 4.15) and, up to the author's knowledge, is open even in the compact case. In the present note we give a partial answer to the analogous problem in Fox shape theory [4]. The reader is referred to [1], [3] and [6] for information about theory of shape.

Theorem 1. Let $r: \mathcal{U}(X',P) \rightarrow \mathcal{U}(X,P)$ be a deformation mutational retraction. Then r is stationary if and only if r is regular.

Proof. The part "only if" is trivial, we are going to prove the converse. Let $U' \in \mathcal{U}(X',P)$ and consider $r \in \mathcal{R}$ with range U' and domain $U'_0 \in \mathcal{U}(X',P)$. Since r is a mutational deformation retraction there exists an open neighborhood $V' \in \mathcal{U}(X',P)$ of X' in P such that

(1) $r|_{V'} = i$ in U'.

Since $U' \in \mathcal{U}$ ANR it is easy to see, by using the homotopy extension theorem, that there exist a map $s: V' \rightarrow U'$ and an open neighborhood

This paper is in final form and no version of it will be submitted elsewhere.
U ⊂ V' of X in P such that
(2) s(x)=x for every x∈U
(3) r|V'=s|V', (rel X) in U'.

Since r is regular, there exists r'|W' such that r':W' → U where
W' ⊂ V' is an open neighborhood of X' in P and such that
(4) r'=r|W', (rel X) in U'.

Let us now define a map ϕ:K=W×{0}∪W×{1} → V' by
ϕ(x,0)=x, ϕ(x,1)=r'(x) for every x∈W'
and ϕ(x,t)=x for (x,t)∈X×I.

Since ϕ(x,1)∈U it follows from (2) that
sϕ(x,0)=s(x), sϕ(x,1)=r'(x) for every x∈W'
and sϕ(x,t)=x for (x,t)∈X×I.

It follows from (1) and (3) that ϕ=sϕ in U'. Moreover sϕ is homo-
topic in U' to the map ψ:K → U' defined by
ψ(x,0)=ψ(x,1)=r'(x) for every x∈W'
and ψ(x,t)=x for (x,t)∈X×I.

To see it consider a homotopy χ:W×I → U' such that χ(x,0)=s(x),
χ(x,1)=r'(x) for x∈W' and χ(x,t)=x for (x,t)∈X×I. We define a map
F:K×I → U' by
F((x,o),t')=χ(x,t'), F((x,1),t')=r'(x) for x∈W', t'∈I
and F((x,t),t')=x for x∈X and t,t'∈I.

Obviously, F((x,t),0)=sϕ(x,t) and F((x,t),1)=ψ(x,t) for (x,t)∈K.
hence ϕ=sϕ=ϕ. Since U'∈ANR and ψ can be extended to W'×I (by the
map ψ(x,t)=r'(x)) then, in virtue of the homotopy extension theorem,
ϕ can also be extended to a map ϕ:W'×I → U' which realizes a homoto-
py between i and r' stationary on X. Since r|W'=r' (rel X) in U' we
conclude that r|W'=i (rel X) in U' and, consequently, r is statio-
nary.

Corollary. Let X be an MANR [5] with compact components. If X is
a mutational deformation retract of a metrizable space X' lying in
P∈ANR(M), then X is a stationary mutational deformation retract of
X'.

Proof. By Corollary 3.11 of [5] X=⨁{X_i,i∈I}, where {X_i,i∈I}
is the family of all components of X. Since X_i∈ANR for every i∈I
it follows from Dydak's Corollary 1, [2], that each X_i is a regular
mutational retract of one of its neighborhoods in P. Hence, there
exists a neighborhood W of X in P which can be represented as a to-
topological sum W=⨁{W_i,i∈I}, where W_i is a neighborhood of X_i in P
and X_i is a regular mutational retract of W_i for i∈I. Consequently,
there exists a regular mutational retraction r:U(W,P) → U(X,P).
Since X is a mutational retract of X' there exists a map s:X' → W
such that \(s(x) = x \) for every \(x \in X \). Let \(s: U(X',,P) \to U(W,P) \) be a mutation generated by \(s \). Then \(r' = \tilde{r} \circ s \) is a regular mutational retraction and, since \(X \) is a mutational deformation retract of \(X' \), we can easily get from Theorem 1 that \(r' \) is a stationary mutational deformation retraction.

REFERENCES

Departamento de Geometría y Topología
Facultad de Matemáticas
Universidad Complutense
28040 Madrid. Spain.