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COHRESPOIГОEЖIE BETWEEN MAZIMAL IDEALS 
IN ASSOCIATIVE ALGEBRAS A.ND LIE ALGEB.RAS 

Jiří Vanžura 

I.Correspondence between maximal ideals 

The investigation of the Lie algebra 3E(V) of C -vector fie­
lds on a C°°-manifold Vfconsidered as the Lie algebra of derivati­
ons on the associative algebra C°°(V) of C°°-functions, leads natu­
rally to the following definition (see [l]). 

1.Definition : Let A be a commutative associative algebra 
with a unit element over a field K of characteristic zero,and let 
Der(A) denote the Lie algebra of derivations of Afwhich has a na­
tural A-module structure.Let L<-Der(A) be a subalgebra and an A-
submodule.The couple (A,L) will be called Lie bimodule.A Lie bi-
module (AfL) will be called admissible if the following condition 
is satisfied : 

LA - A . 
(Let us remark that in flj there are three more conditions.Two oT 
them are in our setting automatically satisfied,the third one we 
do not need.) 

Let J be an ideal in the associative algebra A,and X an 
ideal in the Lie algebra L.We introduce the following natations : 

(1) J L - { f U ; Y k ( Y k _ 1 ( . . . ( Y 1 f ) . . . ) ) € J for any 
Y . , • . . f Y k € L and any k - 1 , 2 , . , . } , 

(2) Lj » {XCL | ZA<- j } , 
(3) ! ~ - } z € L ; ZA<: j L h 
(4) P U ) =» {ze X ; AZC X}, 
(5) Р-Л.С) • И А | гасрсО} , х * ь , 

(б) к/) - 1 ф 1 | -
,

1 и ) • 
It can be shown (see [1]) that J

 f
P

T
(«C) for any Z€L,and 1(X) 
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are ideals in A,PU ) is an A-submodule of L,Lj is a subalgebra 
in L,and L? is an ideal in L. 

In [1] the following theorem is proved : 

2.Theorem : Let (A,L) be a Lie bimodule,and let / c L be an 
ideal.Then the ideal I(£ ) c A has the following two properties : 

(i) I U )L C £ 
(ii) For any prime ideal J o l U ) there is £ c LT. 
Prom now on we shall assume that (A,L) is an admissible Lie 

bimodule.We shall start with 

3.Lemma : Let JCA be an ideal.Then I(Lj) » JL. 

Proof : Let f £ I(L0?).Then for any X€L we have fX€ L̂ f.Thus 
L L 

for any g€A we get (fX)g€ J or equivalently f-Xg€ J .Because 
1£A -» LA we conclude that f £J . 

Conversely let f € J .We must prove that for any X£ L there 
is f€Pz(Lj) or equivalently that fX€ P(L~) » L~.But for any g€A 
we have (fX)g » f*Xg£J because J is an ideal in A. This shows 
that fXSLj.We have thus proved that f^I(Lj). 

4»Definition : An ideal JCA is called invariant ideal if 
LJC J. 

5.Lemma : Let JCA be an ideal.Then J is an invariant ideal. 
Proof is obvious. 

T oA 

6.Lemma : Let JCA be an ideal.Then J « LjA. 
Proof : The inclusion L^c j L is obvious from the definition 

of L~. Taking £ • Ljin Th. 2 and using the equality I(L~) « JL 

of Lemma 3 we obtain 
JLL C L * 
JLLA C LjA 
JLA C L^A 
JL C L ^ , 

which finishes the proof. 
7.Lemma : Let JCA be an ideal.Then LT » LJL • 
Proof : The previous lemma shows that L?CLjL«The converse 

inclusion LJL^ LJ is obvious from the definitions of LJL and if? • 
8. Corollary : If JCA is an invariant ideal, then Lt? & Lj. 
Q.Proposition : Let £ ? L be an ideal.Then there exists an 

invariant ideal J f A such that £ £ LT. c 
Proof : Th. 2(i) shows that I(oC ) £ A (otherwise L «- AL^«C). 

Thus there exists a prime ideal J such that Ĵ >I(«C ),J f A.By 
virtue of Th. 2(ii) there is £c Ly.We set J « JL ̂  A.Then using 
lemma 7 we get £ C L~ * LJL Ш

 Lj. 
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10.Lemma : L e t J - J ^ J Q
 loe ^w o i n v a r i a n t i dea l s , J . , £ J2»Then 

LJ, * L Jx * 
Proof : Let us assume t h a t LT =- LT .Then by Coro l la ry 8 we 

U.f d» 

have L? =- L*? ,and consequently I(L? ) « IfLt9 ).Using Lemma 3 we 
get J- » Jp.But because J1 and J2 are invariant we have J., » J«, 
which is a contradiction. 

11.Definition : An invariant ideal Jc?- A is called maximal 
invariant ideal if 

J ^ A is an invariant ideal, J -3 J -=-> J = J. 
We shall introduce the following notation : 
Specm-A « the set of all maximal invariant ideals in A , 
Specm L « the set of all maximal ideals in L 
12.Theorem : The correspondence J —•* Lj defines a bisection 

: : SpecmpA. — > Specm L. 
Proof : Lemma 10 shows that L is infective.Let 7&G Specm L. 

By virtue of Prop. 9 there exists an invariant ideal J / A such 
that ffll <-" Lj.Obviously L- » L̂ f is an ideal,and Lj f L (otherwise 
A m LA « LjA£j).Thus Hi « Lj,and J is a maximal invariant ideal 
by Lemma 10. 

II.Maximal invariant ideals in C°°(V). 

Let us consider now a connected paracompact C°°-manifold V, 
dim V « m.Our goal is to describe all maximal invariant ideals in 
the real algebra C°*(V) of all C^func^ions on V.First we recall 
the following definition. 

13.Definition : A nonempty family r of closed sets of V is 
called a z-filter on V if 

a) &# r , 
(ii) Z,z'£ r => znz'6 r , 
(iii) Z€V ,ZCz',Z*is a closed subset of V =^ z V & . 

By a z-ultrafilter we shall mean a maximal z-filter,i.e. one not 
contained in any other z-filter. 

Por f£C°°(V) and a z-filter P on V we shall denote 
Za(-0 - Jp^V j jjj(f) - 0 } f 0 - S n - $ ° ° , 
Z^f?J -- {g*C~(v5 ; Z 0 ( g ) « H , 
2+1*1 = Jg€C~(V) j Zn(gK ? f o r o i n < ^ / , 

where d^(f) denotes n - t h j e t of the funct ion f a t the po in t p . I t 
i s obvious t h a t both Z*"(*l and Z+C*] a re i d e a l s i n C"Tv). 

14. Theorem : Let MCC**(V) be a maximal i d e a l . Then the re 
e x i s t s a unique z - u l t r a f i l t e r Jk on V such t h a t M = Z*"Z"* Ĵ. 
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Proof is easy (see [3]). 

15. Lemma : Let Jc C°°(V) be an invariant ideal.Let fCJ and 
0 « n< oo .Then there exists gCJ such that ZQ(g) • Zn(f). 

Proof : dim V » m and therefore (see [2]) we can find m + 1 
families 71 f 7l*%...f 71 . of open subsets in V 

#i a 1^4 * « ^ i } » 0 ^ i ^ 
with the following properties 

m . 
(i) ,U U XL, » v 

i s s 0 <*€Zd
 ±oi 

( i i ) For any 0 « i » m , and any <*ffi ^ Z^ ft*£/i there is 
1/3 Tiec) (io<) 

( i i i ) Each Uirf is a domain of a chart (xj f » > x
m )• 

Purthemore we can find open subsets Vi ,0 « i = m f <* € Z ^ 
such that (iv) V c u* 

(V) i=o - t 4
 Vi« = V* 

There exist vector fields Zi . € 2(V) , 0 - i - m , 1 -i j ̂  m 

such that for any <* ̂  -^ and p € V w there is 

X..(P) - (?/2x<io())(p). 

W e s e t m n T 2. 

.« - ilo Jo 1^1f.r.,j/m ^i3l---
2ijk

f) • 

Obviously g£J and ZQ(g) • Zn(f). 

16.Lemma : Let /k be a z-ultrafilter on V.Then % [*&] is 
a maximal invariant ideal. 

Proof : %*L&] is obviously an invariant ideal and 2*[Jt] 
5-* C°°(V).Thus it suffices to prove that it is a maximal invariant 
ideal.Let f 6 C°°(V) , f £ 2+[A] ,and let us consider the inva­
riant ideal J generated by f and 2*L&] .Because f 4 %*L&] 
there exists 0 « n<°° such that Zn(f) £ */* .By virtue of Lemma 15 
there exists g € J such that ZQ(g) » Zn(f).Because & is a z-
ultrafilter there exists a closed subset Z€ & such that* Z n 

ZQ(g) -''©'.Furthermore there exists g£C~(V) such that Z^ (g) =» Zf 
and g(p) / 0 for any p €V - Z.Obviously g £-?*"f«>*J #We have thus 
g + g £ J , g + g > 0 on V.Consequently J « C°°(V).This proves 
that Z L&l is a maximal invariant ideal. 

17.Theorem : Let MCC°°(V) be a maximal invariant ideal.Then 
there exists a unique z-ultrafilter c/b on V such that M « £*7"«7*J# 

Proof : A maximal invariant ideal M is contained in a maxi-
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mal ideal of C°°(V),and thus by virtue #f Th. 14 there exists a z-
ultrafilter & such that MCZ*T^J .Let f €M,and let 0 = n < <*> 
be arbitrary.By virtue of Lemma 15 there exists g £ M such that 
Zn(f) - ZQ(g).Thus Zn(f)€ A for every 0 -3 n < ~ ,i.e. f£**/>J. 
This shows that M C **[A] .But M is maximal invariant.Using 
Lemma 16 we obtain M «-?*"f«/tj . 

Now let M = £*[<#] » 2* [£] ,where »/fc , </? are z-ultra-
filters,and let us assume that t/t ^ Ji .Then there exist Z € Jk 9 

Z€ £ such that Znz « -9* Let f,f f C*°(V) be such that Zeo(f) » Z, 
ZooC?) - Z,f(p) i* 0 for p £ Z,f(p) / 0 for p £ Z.Then f,f £M,and 
consequently f2 + f2€M.0n the other hand f2 + f2 -> 0 on V,which 
is a contradiction.This shows that «^» i . 

18.Remark : Combining Ths. 12 and 17 we can reprove the theo­
rem (see [3] fTh. .9) characterizing maximal ideals in the Lie 
algebra £(V). 
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