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CORRESPONDENCE BETWEEN MAXIMAL IDEAIS
IN ASSOCIATIVE ALGEBRAS AND LIE ALGEBRAS

Ji*i VanZura

I.Correspondence between maximal ideals

The investigation of the Lie algebra X(V) of ¢ %~vector fie-
1ds on a C™-manifold V,considered as the Lie algebra of derivati-
ons on the associative algebra C™(V) of C“qunctions,leads natu-~
rally to the following definition (see [1]).

1.Definition : Let A be a commutative associative algebra
with a unit element over a field K of characteristic zero,and let
Der(A) denote the Lie algebra of derivations of A,which has a na-
tural A-module structure.let L ¢Der(A) be a subalgebra and an A-
submodule.The couple (A,L) will be called Iie bimodule.A Lie bi-
module (A,L) will be called admissible if the following condition
is satisfied : '

1A = A,
(Let us remark that in [1] there are three more conditions.Two ol
them are in our setting automatically satisfied,the third one we
do not need.) .

Let J be an ideal in the associative algebra A,and L an
ideal in the Lie algebra L.We introduce the followingAnatations :

(1) % = {£€35 5 T (¥, (eeu(¥y£)eel)) €7 for any

Yipeee, Y, €L and any k = 1,2,0.. }

(2) L; = {X€L 3 XACJ},

(3) 17 = {x€1 ; xac I},

(4) (L) = {X€L ; AX< L},

(5) Pg(L) = {r€4 ; £XE€ER(L)} , X€ T,

(6) T(L) = V. 2p(L) .

It can be shown (see [1]) that JI‘,PX(oC) for any X€L,and I(J)
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are ideals in A,P(£ ) is an A-submodule of L,L; is a subalgebra
in L,end LT is en ideal in L.

In [1] the following theorem is proved :

2.Theorem : Let (A,L) be a Lie bimodule,and let £ < L be an
ideal.Then the ideal I(«L )< A has the following two preperties :

(1) (L)L e & ,

(ii) For any prime ideal IS I(L ) there is L€ L}'.

From now on we shall assume that (A,L) is an admissible Lie
bimodule.We shall start with

3.Lemma : Let Jc A be an ideal.Then I(L:;) - JI'.

Proof : Let f¢ I(L°°) Then for any X€L we have fXé LJ.Thus
for any g€ A we get (fX)géJ or equivalently f- XgGJ +«Because
1€ A = LA we conclude that féJL.

Conversely let fe& JI‘.We must prove that for any X€ L there
is f€ Py (L ) or equlva.lently that fX€ P(L ) = LJ.But for any g€ A
we have (fX)g = f- XgéJ because JI‘ is an 1deal in A.This shows
that fX¢€ L .We have thus proved that fGI(L )e

4. Deflnltlon '+ An ideal JCA is called 1nva:cia.nt ideal if
LjcJg.

Selemma : Let JC A be an ideal,Then J

Proof is obvious.

6.Lemma : Let JCA be an 1deal Then J¥ = L?A.

Proof : The inclusion LJ.ACJ is obvious from the definltlon

L is an invariant ideal.

of LJ . Taking o = LJ in Th. 2 and using the equality I(L“) = J
of Lemma 3 we obtain
‘ gn e 1y
JI'LA c 13 %
J A c LJA

J = LJA ’
which finishes the proof.
7.Lemma : Let JCA be an ideal.Then 1.‘3‘: LjL «

Proof : The previous lemma shows that L?C LJL.The converse
inclusion LJ,,C L; is obvious from the definitions of I.Jl.- and 1.3" o
8.Corollary : If JCA is an invariant ideal, then L?a LJ
_ 9.Proposition : Iet £ § L be an ideal.Then there exists an

invariant ideal J ? A such that £ ¢C Lye
Proof : Th, 2(i) shows that I(L ) C;.E A (otherwise L = ALC L ).
Thus there exists a prime ideal J such that 32 I(«£),¥ ¥ A.By
virtue of Th. 2(ii) there is £ < L?.We set J = JE % A.Then using
lemma 7 we get
£ € 17 = Lu= L.
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10.Lemma : Let J
L # LJ .

Proof ¢ Let us assume that LJ J «Then by Corollary 8 we
have LJ‘ = %ch,a.nd consequently I(LJ ) = I(L ).Using Lemma 3 we
get J - J2.But because J1 and J2 are invariant we have J1 = Jz,
wh:.ch is a contradiction.

11.Definition : An invariant ideal chf A is called maximal
invariant ideal if

J°% A is an invariant ideal, 372 J = J° = J.

We shall introduce the following notation :

SpechA = the set of all maximal invariant ideals in A ,

Specm L = the set of all maximal ideals in L

12.Theorem : The correspondence J —¥ LJ defines a bijection
P SpechA —> Specnm L.

Proof : Lemma 10 shows that ¢ is injective.let 7€ Specm L.
By virtue of Prop. 9 there ex:Lsts an invariant 1dea1 J ;4 A such
that m c LJ.Obviously LJ = LJ is an ideal,and L ;E L (otherwise
A= IA = LJ.ACJ).Thus M = Lyend J is a max:.mal invariant ideal
by Lemma 10.

1,J be two invariant ideals, J # J,+Then

II.Maximal invariant idesls in C°XV).

Let us consider now a connected paracompact C®-manifold V,
dim V = m.Our goal is to describe all maximal invariant ideals in
the real algebra C*(V) of all Cc°%func*ions on V.First we recall
the followirig definition,
13.Definition : A nonempty family ¥ of closed sets of V is
called a z-filter on V if
(i1)eoeg 7,
(ii) z,2°€ ¥ => znz’€¥F ,
(ii1) z€ % ,z<c2”,27is a closed subset of V = z°€F ,
By a z-ultrafilter we shall mean a maximal z=filter,i,e., one not
contained in any other z-filter. .
For £€C®(V) and a z-filter # on V we shall denote
Z,(f) = {p€V ; j0(r) =0}, 0&nf = |
Z*[¥] = {gec“(vg 3 Z,(8)€ Fr o,
Z4[F] = {g€c=(V) ; 2 (g)€ F for 0 $n<o},
where Jg(f) denotes n-th aet of the function £ at the point p.It
is obvious that both z2¢[F] end Z¢[¥] are ideals in c®(v).
14.Theorem : Let McC*(V) be a maximal ideal.Then there
exists a unique z-ultrafilter & on V such that M = z%/J£],
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Proof is easy (see [3]).
15.Lemma : Let J< C®(V) be an invariant ideal.let f€ J and
0 = n< oo ,Then there exists g €J such that 'Zo(g) = Zn(f).
Proof : dim V = m and therefore (see [2]) we can find m'+ 1
femilies %, 741,..., ?( of open subsets in Vv
L Uy = U s u€2‘i}, 012
with the following properties
m
1) & ?(92‘, Uia =V
(ii) For any 0 £ 1 $ m , and any d,/’e Z'i , &# /8 there is
U /\ Uiﬁ = Q. '
(iii) Each U;w 18 @ domain of a chart (x yeeesXp
Furthemore we can find open subsets V;  ,0 2 i fm, 0(62'1
such that :
(iv) V%‘ c Ui

(i) (1«) )e

There exist vector fields X4 € X(V) ,05ism, 1% j%nm
such that for any &€ Z and p €V, there is

% 4(0) = (37 9x<i“’><p>

We set

g = g % Z <. (X X f)2
, iSo k=o 1§j1,...,jksm 134°° 715y .

Obviously g€J and 2 (g) = Z,(f).

16.Lemma : Let ﬁ be a z—ultrafilter on V.Then <% [A] is
a maximal invariant ideal.

Proof : ¥[A] is obviously an invariant ideal and ZY[A]
% ¢°(V).Thus it suffices to prove that it is a maximal invariant
ideal.Tet £E€C(V) , £ & 2%[#A] ,and let us consider the inve-
riant ideal J generated by £ and Z¥[A] .Because £ & X[ A£]
there exists 0 = n<e guch that 2y (f) & vt .By virtue of Lemma 15
there exists g €J such that Z_(g) = Z,(f).Because W ig a z-
ultrafilter there exists a closed subset 7Z€ A such that® ZzN
Z (g) = &, Furthermore there exists §€C*(V) such that Z, (&) = 2,
a.nd (p) # 0 for any p €V - Z.0bviously g € ¥ [#] ,We have thus
g2 + gzéJ ’ g + g 52> 0 on V.Consequently J = C°(V).This proves
that £€[#] is a maximel invariant ideal.

17.Theorem : Let MEC®°(V) be a maximal invariant ideal.Then
there exists a unique z-ultrafilter # on V such that M = 2."'[17&].

Proof : A maximal invariant ideal M is contained in a maxi-
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mal ideal of C™(V),and thus by virtue ef Th. 14 there existis a z-
ultrafilter # such that Mc z%I[#] .Let £ € M,and let 0 £ n< =°
be arbitrary.By virtue of Lemma 15 there exists g€ M such that
2,(f) = 2 (g). Thus z, (£)€ .ﬂ' for every 0 S n<eo ,i.e. £€X*[A],
Thls shows that M C 3’[35] +But M is maximal invariant.Using
Lemma 16 we obtain M = &€ [#]

Now let M = Z*[£] = 2Z*[£] ,where &, £ are z-ultra-
filters,and let us assume that o& # £ .Then there exist Z€ £ ,
Z€ # such that Z2nZ = ©.Tet £,f €C°V) be such that Z.,(f) = Z,
Zoo (F) = Z,£(p) # 0 for p & 2,f(p) # 0 for p € Z.Then £,f €Y,and
consequently £2 4 F2€ M,On the other hand £° + F2 > 0 on V,which
is a contradiction.This shows that & = /& ,

18.Remark : Oombining Ths. 12 and 17 we can reprove the theo-
rem (see [3] ,Th. 9) characterizing meximal ideals in the Lie
algebra X(V).
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