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THE ENVELOPING GROUP OF A LIE ALGEBRA 

Wojciech Wojtynski 

0. Introduction 

The local structure of a finite dimensional Lie group is 

determined by the structure of the corresponding Lie algebra 

through the exponential map (which is a local bisection at 0) and 

the C-H-D formula. For infinite dimensional Lie groups this connect 

ion in general fails, since the exponential map is usually not a 

local bisection at 0 (this situation occurs e.g. for the group of 

all C diffeomorphisms of a compact manifold cf. [3l )• Also 

the analytic description of the group multiplication via C-H-D 

formula is not possible in general cf. [2l . 

Nevertheless it seems to us that there exists in quite a 

general situation the possibility'of transmitting the structure of 

a Lie algebra to the corresponding "Lie group" in analytic way. 

This possibility is based on the concepts of "Polynomial group of 

a topological group" and "Polynomial group of a Lie algebra". The 

main result of this note - Theorem 15 - establishes the isomorphism 

of this two objects and potentialy gives such analytic description 

of a group in the terms of its Lie algebra. 

1. Polynomial groups 

Let G be a topological group (all the topological group we 

deal with in this note are assumed to be Hausdorff). 

By C(iR,G) we" denote the topological group of all continuous 

G-valued functions on the real line E with the pointwise multipli

cation and the compact-open topology. For the elements of C(lR,G) 

multiplication by real numbers is also defined, according to the 

formula (s,f) —> sf where sf(t) = f(st) for s€ R and 

f c C(R,G). Clearly this multiplication is a jointly continuous 

operation from R x C(R,G) into C(R,G). 

Let A ( G ) denote the family of all one-parameter subgroups 

of G, i.e. the family of all continuous homomorphisms of the 
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additive group of reals intoG. A(G) is a closed subset of 
C(R,G). 

Let P(G) be the subgroup of C(R,G) generated by 71(G). 
We shall call the elements of P(G) polynomials, and P(G) itself-
the polynomial group of G . 

There are three aspects of the structure of P(G): it is a 
group, it admits multiplication by real numbers (restricted from 
C(R,G) and it is generated by its subset A(G) composed of 
elements for which na = a11 for any positive integer n . 

We start with examining this situation in an abstract setting. 

2. Free R-groups 

Definition 1. A set W with a base point e is called an E-set if 
a map (R x W —> W : (s,w) —> sw is defined, in such a way that 
for s^Sp 6 E and w e W 

(i) s^s^) = (s1s2)w 

(1) (ii) Ow = e 

(iii) 1w = w . 

A group H is said to be an E-group if H is an E-set with the 

unit e as the base point, and moreover for each s e E and 

h>,,h2 € H 

(2) s(h1h2) = (sh1)(sh2) 

In the obvious way one introduces the notions of E-map E-homo-
morphism, (R-subgroup etc. 

Let A be an E set and G be a group. We shall call a map 

3 : A —> G exponential if for each a 6 A the function 
f_ : R —> G where fQ(s) = j(sa) is a one parameter subgroup a a 
of G. 

Proposition 2. Let A be an R-set with the base point e. There 
exists unique R-group F(A) such that 

(a) There exist an exponential R-map i : A —>F(A). 
(b) For each exponential R-map oC : A —> H where H is an 

R-group there exists unique R-homomorphism & : F(A) —> H such 
that c< = A o i . 
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The group F(A) will be called the free R-group over A. 

Proof. The proof is standard, and we shall only briefly sketch it. 
Let G be the free group over A \ {e} . Extending the canonical 
embedding k : A \ { e } —>»• G to k" : A —> G by letting k(e) be 
the unit element of G we obtain an R-group structure on G, with 
s(a^...a ) = (sa^)...(sa ) for s 6 R and* â  ... a e A. Let I 
be the normal subgroup of G generated by the subset 
{ >a« yua. L( A +/i )a]~1 : A,/t € R , a 6 k(a)} . Since - I is R-sub-
group of G the quotient group F(A) = G/I is an R-group and the 
quotient homomorphism 7T : G —-> F(A) is an R-map. We define 
i = -3T ° k . 

Remark 3. The mapping i :. A —> F(A) is infective. In fact 
splitting A \ {0} into disjoint "lines" i.e. subsets of the form 
[a] = -Tsa : s e P } and picking one representant a from each 
"line" [a] and letting X be the linear space with a base formed 
by so chosen representants we may define an infective exponential 
P-map o< : A —* X putting oC(a) = so((ax) where a = sax and 
o((aM) denotes aK . as an element of X . Clearly inactivity of 
c< implies inactivity of i . 

3. Algebraic properties of F(A) 

To abbreviate the notation we shall not distinguish between A 
and i(A) (which is allowed by Remark 3) and we shall write a 
instead of i(a). We shall also abbreviate aba" b" to {a,b} 
and inductively we shall write -{a,-,... ..â.} instead of {^{ap,..., 
ak}}• As usually H^n' will denote the smallest subgroup of a group 
H containing all the terms {h,h} with h £ H and h £ H(n"1) 

(1) ' 
where Hk u = H . 

We shall omit simple proofs of the following two lemmas 

Lemma 4. The group F(A)^n>^ is generated by the elements 
i a^,... »akJ , with a.j_ £ A i = 1,... ,k and k ̂  n . 

Lemma 5» 

(a) Let afc F ( A ) ( n ) or b £ F(A)n then {a ,b} = { b " 1 , a } 
mod F ( A ) ( n + 2 ) 

(b) Let a 6 F ( A ) ( n ) or b and c belong to F ( A ) ( n ) then 
{a,be} = {a ,b}{a,c} mod F ( A ) ( n + 2 ) 

(c ) Let a ,b F ( A ) ( n ) , then a n b n = ( a b ) n mod F ( A ) ( n + 1 ) . 
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The fact that £. is a continuous homomorphism is valid for 
any topological group G. To prove that & is open let us 
observe that for G a Banach Lie group the restriction of £, 
to A(G) coincides with the exponential map E*p-A(G) —.> G 
thus 8 is locally open at e 6 P(G). Since £ is a homomorphism 
it is an open map. 

5. The polynomial group of a Lie algebra 

Another important example of a Lie R-groups is provided by 
the following construction. 

Let ^ be a Lie algebra. Denote by T the tensor algebra 
of the linear space o\ , and let T be the Magnus algebra of 

to, , i.e. the infinite product P] TR , where T n n=0,1,2,3 
denotes the homogeneous componentn= of order n of T. (The 
elements of T may be viewed as formal series f = > f with 

n=0 n 

fn ̂ ' Tn * Tiie a l S e b r a T may De obtained as the compUtion of T 
with respect to the metric ? where 

? (f ,g) = 2 Z \ 0 "
> S p , for f = 21 t , g = Z Sn and 

) fe!J2n1+ fn(fn,Sn) 

^n is for n = 1,2,... a discrete metric on T n . Let L be 
the closed Lie subalgebra of T generated by ft = T^ , and let 
M be the closed two-sided ideal of T generated by 01 = T,. . 
For any a £ M the series > ^j is convergent and it defines 

the exponential map exp : M —-> 1 + M . It is known c.f. [1 ] , [4 ] 
that this map is a bisection with the inverse map log: 1+M —> M 

defined by the series log b = 5~(-i)n+1 ^b"1^ , and the set 
n= 

G = exp(L) is a subgroup of the group of all invertible 
elements of T . 

Let ds.(fl}) be the set of all G-valued functions on R 
which are finite pointwise products of exponential functions 

of ( fli ) = |f(t) = exptx^ ... exptxn: x.̂  6 01 for 1.£i£n, n=1,2,... 

ol ( <H ) with the pointwise multiplication and multiplication by 

real numbers, defined by the formula (sf)(t) = f(st) for s 6 R 

and f fc c(,( op, is an R-group. 
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Proposition 6. Let a £ F(A)^n' and k be a positive integer. 

Then 

(3) ka = a** mod F(A) ( n + 1 ) 

Proof. Assume first, that a = {x1f ••. fx } with x^e A i=1,...,n. 

If n = 1 the equality (3) results from .the condition (a) of Pro

position 2. Reasoning by induction, suppose that (3) holds for all 

the elements of the form |x1,•..»xn_1} . Applying Lemma 5(b) we 

get k{x1,...,xn} = {kx1,k{x2,...,xn}} = (x,-, {x2,... ,xn} } = 

= {xk
f {x2,...,xnJ } = |x1f...,xn| (all the equalities 

mod F(A)n+1). (n) 

Passing to the general case, let a £ F(A)V . Then by 

Lemma 4 a = a1 ... ag with ai = {xi 1,...,xi m(i) } and with 

no loss of generality we may assume that m(i) = n i=1,...,s . 

Now, by the first part of our proof and Proposition 5(c) we get 

kn kn xkn kn 

•Ka — Kfl/i ... ---3. — âi ... a = (a,* • • • a ) = a • 

Corollary 7* Let a £ F(A) and k be a positive integer. Let 
_>n-1 

a,, = a and define inductively -â  = ka„ ,,-â  A for n = 2,3,.. 
i / \ n n— I n— I ' ' 

Then an £ F(Ar
n; . 

Proposition 8. Let H be an IR-subgroup of F(A) such that 
F(A ) U ; C H . Let X be a linear space and f : H —> X be 
a group homomorphism such that f(sh) = snf(h) for h & H and 
each positive s 6 |R . 

Then the restriction of f to F(A)^n' uniquely determines 
f . 

Proof. Let h e H. Define h. j = 1,2,...,n as in Corollary 7. 

Then hn e F(A)(n) and f(h^) = f(kh. 1'h~
k° ) = 

= (kn - k^1)f(h;j-1) d = 2,3,... . Hence f(hn) = 7< f(h) where 
n~1 _ .1 

> = I I (kn - kd)'. Let b(h) = y * h . Then b(h) € F(A)(n) 

J=1 n 

and f(h) = f(b(h)). Hence f = f « b where f is the restriction 
of f to F(A)(n). 
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Proposition 9* Let for i = 1,2 and n = 1,2,... K± n be R-sub-

group of F(A) v X, be linear spaces over R and * l, n 
f. : K. —> X, _ be group homomorphisms such that 
i,n i,n i,n o r 

( a ) Ki,n+1 =
 k e r fi,n 

(b) F(A)(n) C K. n 
J. , U 

(O K1>n+1 A F(A)(n) C K2>n+1 A F(A)(n) 

(d) f, (sh) = snf, (h) for positive s e R and h 6K. . 
i,n i)ii -->-x 

Then K, „ C KQ „ n=1,2,.... i,n —̂ <_!,n ' 

Proof. Observe that (b) implies K^ 1 = F(A) = K2 1 . Reasoning 

by induction assume that K,. , C Kp , and let a £ K„- k + 1 i.e. 

a^K1 k and f^ k(a) = 0 . In particular a e ^ k hence also 

a K ' . Let b ' = (tjT?)""1a„ be defined as in Proposition 8. Then 
D e K1 k+1 A F(A)^K; hence by (c) b 6 K ^ k + 1 fl F ( A ) W i . e . 
f2 k ^ = °* B u t f2 k ^ = f2 k ^ b y P r ° P ° s i t i o r i 8* Hence 
a € K2,k+1 * 

4. The polynomial group of a Lie group 

Suppose now that G is a (finite dimensional) Lie group 

A(G) may be then identified with the Lie algebra of G and the 

Lie algebra structure of A(G) may be derived from the topolo

gical group structure of P(G) via the Trotter formulas 

(a) C^1+^2)(t)= lim ( ̂ (|) Y2(|)) 
tчNП 

(4)
 n

 *°° 

(Ь) [тV ?
2
l(t

2
) = lim ( {f

v
 f

2
} (|))

П 
2 

П ->oo 

Let us note that the formulas (4) may be extrapolated to the 

sequence of formulas 

(5) d
k
f(t

k
) = lim (f(|))

n
' 

so that we obtain 4(a) for k = 1 and f(t) = f^t)- f
2
(t) and 

4(b) for k = 2 and f(t) = {^, *f
 2
} (t) . Next observe that 

k! d
k
f may be interpreted geometrically as the k-th derivative of 
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f 6 P(G) at 0, provided the preceeding derivatives of f at 0 

vanish. More exactly d, f is the unique one-parameter subgroup 
k/*—. 

of G tangent at 0 to the curve t —> f(y t ). Such a group 
exists for each analytic curve with vanishing first k-1 deriva

tives. Thus d,- : P(G) —^ -A (G) "is a well def ined-homomorphism, 

and inductively d, is defined on ker d, _,. and it is a homo-

morphism. The closer examination of P(G)• for G a Lie group 

suggests the following 

Definition 10. An R-group K is said to be an P-Lie group 
provided there exist a Lie algebra h , an R-map Exp : 4i —» K 
and a sequence of homomorphisms dQ = 0 d^ : ker d*^ —-*• >k. 
k = 1,2,... such that 

(a) Exp is an exponential R-map 

(b) Exp( M,) generates K 

(c) d1o Exp = id 

(d) dk(sk) = s <-k(k) for each positive s &R and k€ker.dk_,. 

(e) K̂  C ker dk and dfc( {x^ ... xfc} ) = [x̂  ,..., xfc] 
i or x,*,. • •, X-î  6 T^ K = I ,£_,.« . • 

(f) (\ ker d '= {e} . 
k=1 * 

Our observations may be now summarized in the following form 

Proposition 11. Let G be a finite dimensional (or more general 

Banach-Lie) group. The polynomial group P(G) is a Lie R-group. 

Moreover the evaluation map 

(6) £ : P(G) ̂  f — > f(1) £ G 

is an open continuous homomorphism . 

Proof, (a) and (b) follow from the definition of P(G) for any 

topological group G. Defining dfc by the formula (5) we obtain 

(c) and (d). The fact that dk is defined on ker cl̂ -l and that 

d, : ker d, . —-> .-A.(G) is a homomorphism. as well as (e) and (d) 

may be observed using C-H-D description of the gro\ip multiplicat

ion in G . 
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Applying pointwise the log map to fe of(n) we get the 

exponential form of f : 

(7) F(t) = log f(t) = 2 Z Pn(f)-t
n 

where Pn(
f) £ Tn O L is a Lie polynomial for n = 1,2,... . 

We shall need the following properties of the coefficients pn : 

Proposition 12. Let fff1ff2 fc X((fl). Then 

(a) Pn(sf) = s
npn(f) for s H 

(b) p 1(f 1.f 2) = p 1(f 1) + p1'(f2) • 

(c) If Pk(f1) = 0 for k £ n or Pk(f2) = °
 f o r k ̂  n 

then Pk+1(fVf2) = Pk+1(^) + Pk+1(f2) • 

(d) Pk(
f
1
#f2) dePends only o n P-j(fi) f o r i ^ k i=/1>2» 

and is expressed in the terms of p.(f. ) using only sum, 
multiplication by scalars and Lie bracket operations. 
In particular 

(8) pk( {e ,...,e J ) = (.x1,...,xkJ 

(e) P = - I ker pk is a normal subgroup of <k(2\) for 
k ^ n n = 1,2,... . 

Proof, (a) (b) (c) and (d) are direct consequences of the formula 
(7) defining coefficients p and the Campbell-Hausdorff formula. 
To prove (e) observe that (b) and (c) imply that P is a sub
group of <£(<$)• Let f(t) = exp(F(t)) S Pn . Thus 
F(t) = tnh(t) where h(t) £ L . Let us note that 
exptx.f(t)»exp(-tx) = expg(t) where 

adkv(F(t)) _ adk
v(h(t)\ 

c=0 
e(t) = T~ = t ( y~ m ) 

Hence pk(expg(t)) = 0 for k ̂  n and thus expg(t) £ PQ . 

Since the functions t —> exptx with xeoj generate ĉ (tfj-), 

the group Pn is normal in °^(^) f o r n = 1,2,... . 
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It is known (cf. [4] ) that the Lie subalgebra L of T 

generated by fll is isomorphic with the free Lie algebra over ot , 

i.e. each linear map from G\ into a Lie algebra M extends 

uniquely to a Lie algebra homomorphism from L to Xi . Let 

-j . jj —.=> (H be such homomorphism extending the identity map. 

For n = 1,2,... let q = j «• p be the composition map. Let 

Q = t \ ker q . Clearly Q is a normal subgroup of o C ( ^ ) . 
n=1 • 6 

Definition 1g. Let P( irj ) = e-T(frJ)/Q . We shall call P( trt ) the 

polynomial group of a Lie algebra 01 

Let 3T : cC(01) — > P(G) be the quotient homomorphism. 

Let d^ : P( erf ) —> <H be the homomorphism induced by q^ i.e. 

such that dxj «» ̂ T = q^ . 

Assuming that homomorphisms d^ ... d, are defined in such a way y 

that fl"~ (ker d.) = ker q. j = 1,2,...,k 5 d. is defined on 

ker d, ,. and d. o OT. = q. where OT, : ker q. ,. — ^ ker q i - . 1 / Q 

is the quotient homomorphism let us observe that 

0T~1(ker d k) = (dk<> ^ T k ) ~
1 {e} = ker q k and define 

^k+1 : k"er ̂ k — ^ ^1 ^° ̂ e induced ^y ^v+i » i«e» to satisfy 

the equality d, >, o tfTk+/i = Qv.*i • define also the map 

Exp : at —5> P(<rr ) as the composition Exp = 7T«3 i where 

i(x) = e t x for x (z <fy . 

Proposition 14. P(tf} ) together with the map Exp and homomorphisms 

"d"k" k = 1,2,... satisfies the conditions (a) - (f) of the 

Definition 10, i.e. P(ffj) is an (R-Lie group. 

(t^j+tp)x t̂ ,x tpX 
Proof, (a) results from the identity e = e • e 

(b) and (f) are consequences of the definition of P( #J ). 

(c) - (e) follow from Proposition 12. 

6. Uniqueness theorem and functorial properties of polynomial group. 

Theorem 15- Let R. i = 1,2 be R-Lie groups with the correspond

ing Lie algebra Jj ^ , let Exp : \j^ —-> H^ and homomorphisms 

•U-? „\ T̂ i i = 1»2 be as in Definition 10. I i,nj n=1 ' 

For each Lie algebra homomorphism >f : X> * —> h p 

exists a unique IR-group homomorphism O extending f i.e. such 

that 
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(9) 

( i ) cţ>«Exp = Expof 

( i i ) ф(keг ćЦ ) C ker d 2 ł П 

(iii) «ř.đ
Пł1 = d n > 2

» ф 

n=1,2,.., 

n = 1,2,. 

Proof. Let $(M*) denotes the free R-group over the R-set h
 1
, 

Consider the commutative diagram 

(10) 

where T
i
 : F(>h

1
) -—> H

i
 is for i = 1,2 the jR-group homo-

morphism induced by the (R-map Exp : 4)
 1
 —$* H

1
 and 

Exp o "f : ^ —?> H
2
 correspondingly. 

Since the condition 9 (i) determines CD on Exp(>ty
1
), and 

this subset generates E^ , d> has to be unique if it exists, 

and has to be defined by the formula 

(11) Cp> (Expx
1
 • Expx

2
 ... Expx

n
) = 

= Exp( H>(x
1
))-Exp( f (x

2
) ... Exp( f (x

n
)) 

for x
1
,...,x

n
e h y\ , n=1,2,... . 

From the diagram (10) we conclude that the necessary and sufficient 

condition for cj> to be well defined by (11) is the inclusion 

ker T„ C 

and 

that by' (f) of Definition 10 

T
1
 C ker T

2
 . To prove it, put K± 1 = F( J^) for i=1,2 

K± n + 1
 = T^

1
(ker d

± R
) for n = 1^2,... i = 1,2 . Observe 

(12) ker T. = П K. i = 1,2 
1
 n=1

 1 , n 

Let for n = 1,2,... and i = 1,2 f • к. „ —-> k) . be the 
1 1 ' 1,П 1,П f 1 
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R-group homomorphism defined by the formula f^ n = d^ n ° T i . 
It is easy to check that the groups K. _ and homomorphisms f. 

J. , XI -L , XI 

satisfy assumptions (a) - (d) of Proposition 9. In particular 
the condition (c) results from the fact that 

(13) f2,n ( h ) = f & f 1 , n ( h ) f o r h * F ( f l ^ 

which is derived from the equalities f1 ( {x1f...,xnj ) = 
= [x1f...,xn]

 f2,n(
 xi>-"> x

n ) = {Y(x1),...f ?(xn)] valid 
for n = 1,2,... and each n-tuple x1,...,xn of the elements 
of ^ . 

Applying Proposition 9 we obtain inclusions K* <Z K0 

n = 1,2,... and hence by (12) the inclusion ker T1 £ ker T 2 . 
To prove 9 (ii) observe that for n = 1,2,... 

<j>(ker d 1 > n) = $ t o ^ t U » = T2(K1>n) C T2(K2>n) = ker d 2 > n 

To prove 9 (iii) observe that by (1J) for n = 1,2,3,... 

d2,nOCf> " -1 = d2,n
T2 = f2,n = ?• f1,n = f*d1,n T1 f o r * - F ( ^ ) ( n ) 

Then Proposition 8 implies that 

d2,n*^ ° T1 = t o d i , n
6 T1 o n T"1(ker d ^ ) 

hence d
2 n ° <-[> ~ f ° d 1 n o n k e r d1 n n = 1,2,... 

This concludes the proof. 
Theorem 15 easily implies the following uniqueness 

Corollary 16. For each real Lie algebra 01 the polynomial group 
P(ffj ) of the algebra Ot is the unique R-Lie group associated 
with frj . In particular for a Banach-Lie group G with the 
Lie algebra Oi the R-Lie groups P(G) and P(oj ) are isomorphic. 

Corollary 17* Let L be a Lie algebra. The group P(L) has the 
following universal property: for each Lie algebra homomorphism 
^ : L —> (rt where &1 is the Lie algebra of a connected Lie 
group G , there exists unique group homomorphism Vf : P(L) -*> G 
such that Exp of = ty Exp. 

Proof. Let P(G) be the polynomial group of G and let & be 
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the evaluation map defined in (6). Let <̂> : P(L) — * P(G) be the 

R-group homomorphism from Theorem 15> and define l£" = t ° <-j> 

Concluding remarks 

The universal property of the group P(L) stated in Corolla

ry 17 may be viewed as the analogue of universal property of the 

enveloping algebra U(L) of L. The only difference is that the 

class of Lie groups in not well defined in the general setting -

This justifies the title of this note. 

In general one would like to say that a topological group G 

is Lie, provided its polynomial group P(G) . is an (R-Lie group 

with the attached Lie algebra [R-bijective with -A(G). 

The question whether this structure may be derived from some 

simpler axioms imposed on G is a separate problem which we 

shall treat elsewhere. 

The Theorem 15 suggests that the category of Lie algebras 

over iR is equivalent to the "category of jR-Lie groups". 

Unfortunately we dont know the answer to the basic question how 

to formulate an "inner" definition of |R-Lie group. 

We purposedly left aside a variety of topological questions 

arising with connection of polynomial groups. We end with the 

following proposition 

Proposition 18. Let <n be a topological Lie algebra. The group 

P(oO has the natural topology W of a topological R-group. It 

is the weakest of R-group topologies on P(fJ ) for which all the 

maps d are continuous. 

Proof. The topology W may be obtained via the infective map 

P(^f) 9 a -i-» {dn(a)j € I""! 01 offtcrr) into the topological 

product of the countable number of copies of <H . The fact that 

W is the R-group topology results easily from (a) (b) and (d) of 

Proposition 12. 
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