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ON THE HORIZONTAL COHOMOLOGY 

WITH GENERAL COEFFICIENTS 

Michal Marvan 

This paper is a continuation of the author's paper C5], 

where the Vinogradov category C9],C12] of nonlinear partial 

differential equations was shown to be comonadic. This means 

that it belongs to a class of categories well known to the 

category theorists and exhaustively studied during the last 30 

years in connection with categorical algebra and categorical 

homology theory (cf. C3]»C41, our general references for all 

categorical concepts). 

In this paper we profit from the results achieved. 

Namely, we show, that the Van Osdol C8] bicohomology theory, 

originally developed for a better understanding of certain 

facts occurring in sheaf theory, fits our situation as well. 

This gives rise to a new cohomology theory for differential 

equations, naturally generalizing the horizontal cohomology 

theory of CIO],[11]. 

Throughout the paper it will be 

co .... V 

M . . . . a finite-dimensional paracompact smooth manifold, 

m . . . . its dimension, 

This paper is in final form and no version of it will be 

submitted for publication elsewhere. 
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7W.. . . . any category of smooth <co-dimensional fibered mani-
n 

folds over M with smooth maps over M as morphisms, 

with Whitney sums as finite products, which admits: 

j ... the r-jet prolongation functor 7??M • 7??M, .r<co, i.e. 

an assignment to a manifold y e 7??M of the manifold 

j y of all r-jets j y of local sections y of y, 

X<EM. 

The reader should check his favorite category of 

co-dimensional manifolds for these properties. 

K 

Ì . . . . j : Ћң • Ћң. 

JJ . . .. t h e c o m o n a d ( ? , r c , 0 i n 77?,., w i t h t h e c o u n i 
гt 

t 7T 

d e f i n e d b y nУ: j°°У - a n d t h e d e f i n e d b y nУ: j°°У -
• -»-a» J <jг i > c \ x * * 

a n d t h e 

c o m u l t i p l i c a t i o n L d e f i n e d b y ŁУ: j°°У 
.00 . 0 0 . , 

-* J j У. 
.00 .00 . 00 , .00 .00 

J c »••-•• J J У> w n o r v- J <- . -Л. 1 W J <j . 

Z)S . . . the Vinogradov [ 93 , [ 11 3 , C 183 category of infinitely 

prolonged systems of nonlinear partial differential 

equations (henceforth simply equations) and solution 

preserving differential operators between them. 

iDS
M
 . . the subcategory of £8 of equations with the base 

manifold of independent variables r/, and independent 

variables preserving differential operators between 

them. 

the Eilenberg-Moore category of JT -coalgebras, in 

[53 identified with fflS^. 
n 

In what follows, J-coalgebras and equations are 

synonyma. 

? . . . . 77? • 7IL\ - t h e c o f r e e c o a l g e b r a = " e m p t y e q u a t i o n " 

f u n c t o r 7?? • 772̂ , y i—• ( j ^ y , L / ) = t h e r i g h t a d j o i n t 

t o t h e f o r g e t f u l f u n c t o r 77T. • 7??w, ( X , f ) i—• X. 
n M 

We also make an agreement that [ . ]w denotes hom-sets 

in 77T, to distinguish them from hom-sets ( • ) w i n 77?,.. 
n n n 

As the functor j preserves Whitney sums in 77?.., so 

does the functor ?: 77?M • 77T:, so that all requirements of 

Van Osdol C83 to construct the bicohomology theory relative 

to functors ? and Id: 77T. • TIL. are fulfilled. 
AT n. 



ON THE HORIZONTAL COHOMOLOGY WITH GENERAL COEFFICIENTS 163 

Namely, for any abelian group object A = ( A , a , + , - , 0 ) in 

WM> we have abelian groups JM, $2A = ?SM, ? 3A = ??SM, etc. , 

and abelian group homomorphisms 

, ; A y n d y * - ? " - * - 1 . * , ? n + i ^ . = 0 n - 1 

This allows us to construct a complex of abelian groups 

°1 2 a2 q *q 
(1) 0 — [«.?•*] ̂  — ^ + [*.?*]„ —=-> [*.?*]„ — ± + . . . 

for any coalgebra X = (X,£), where 

[«.?"•*]„ ^ 9 i—2^ V (-D* jja.p € [ 3 e . ? n + 1 ^ ] w 

x=0 

The condition 6 tA <>a = 0 then follows immediately from 
n+1 n ^ 

the definitions. The group 

Ker a . 
WliX.A) := n + 1 

Im д 
n 

is called the n-th S-cohomology group of the equation X 

with coefficients in the group A. 

Because of the adjointness isomorphism tt: 

( X P A ) ^ ^ [3£»SM],,> the complex <1 ) is isomorphic to 
rt rt 

( r ) o - • {X.A)M — - U {X,VA)M —=-> (X.Sfi-O^ • . . . 

where 3 ' : f »—.• ? f«?-ao f , <^: f i—-> ? f of-tAof+?cxof e t c . From 

t h e f i r s t a s s i g n m e n t i t i m m e d i a t e l y f o l l o w s , t h a t Q^f = 0 i f 

and o n l y i f f i s a JT-homomorphism X • A. Hence 

<2> H J ( 3 E . ^ ) -= [3C^] W -= a.«w(3e,jft) 

The expression for d* then serves as the basis for the 
1 

identification of the elements of H^(XfA) with isomorphism 

classes of principal bundles over X with the structure group 

A in [8], Th. 7. We skip the identification here, but remark 

that according to Theorem 1 below this reveals the categorical 

background of Khorkova [1] work on H X and might result in a 

generalization of [1] to a wider class of coverings dt » X 

in the sense of [2],[9], 
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Lemma 1 . Far a n y equation 3£ e TflT. and a n y uector bundle 

B <s 711H the groups Hj,(Xf$B) are zero for any n = 1,2,3,. . . 

Proof (cf. C4J, exercise 3.1.22(b)): According to (2) it 

is to be verified the exactness of the sequence 

ker a a a 
0 -> [*,?,*]„ i-* [*.?*.*]„ —-U U , ? ^ — 1 + . . -

w h e r e n o w £ ^ > = E ? = 0 ( - 1 ) lj(!?3M0?> = £ ? = o ( - 1 ) z%*} J(o<p. T h e m a p 

s n + 1 = ( - ! ) . £ n ^ : ? JA > ? j * 

induces a contracting homotopy 

l*'Sn+l
jW: ^ ^ " ^ w * [3e.?n+1^JM. 

Indeed, s o^, & + ̂ ..iUs = 0 for i = 0 ,1 , . . . ,n-1, 

whence s A °d + a „ ©s = (-1 ) s . ov = id for n> 0. 
n+1 n n-1 n x ' n+1 An 

In what follows we restrict our choice of abelian group 

objects in 7?T̂  to linear e q u a t i o n s . For a linear equation, 

say Jk = ( A » a , + » - , 0 ) e 7IL.> A is a <oo~dimensional vector 
n 

bundle over M. We define a homomorphism of linear equa­

tions as a l-homomorphism, which is simultaneously a linear 

map of the underlying vector b u n d l e s . We call a sequence 

$ _£_> 3 .___» g 0f homomorphisms of linear equations exact, if 

Ker g and Im f exist as vector bundles and are equal. 

Lemma 2. Let A c > B » C be a short exact se­

quence of uector bundles ouer M. Then the induced sequences 

%A c——• %B w %C and (X,A)M c • (*>£>w » (X,C) , are 

exac t for any X&7U as we 11. 

Proof: Since M is paracompact, any short exact sequence 

of vector bundles over M splits, whence any product pre­

serving functor is exact, particularly $ and (X»-)M. 

Lemma 3. Assigned to any short exact sequence of 

linear equations A c — - — • 3 —-£-••* & and any equation %^7!L. 
M 

there is an exact sequence of abelian groups 
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+ [Ҡ,4]м » [X,Z]M > [X,Є]M • HjOЄ.Л) -

нJ(ЭЄ,Л) —» HJ(X.S) - • нj(эe .e) -* н j + 1 (ЗЄ.Л) 

Proof: From the naturality of the homomorphisms d it 

follows the existence of a short sequence of complexes 

0 -• (X,^) M —±-> (X,?/.)^ — -̂» {X,?*A)M —?-* . . . 

Í 
*i a2 2 a3 

a>> o -> ( x . a ) w —-U {x,?B)M —£-* (X^B)M — -̂> . . . 

1 1 1 
*i *2 2 a 3 

O -> {X9C)H —±-> (X,?C)^ —-U (X.JTO^ _2-> . . . 

which is exact due to the preceding lemma and induces the 

exact sequence of the assertion. • 

To compute the JJ-cohomology we use the standard method 

of resolutions. We define a resolution of a linear equation 

A as an exact sequence A • A • A - • .4 —• . . . for 

which it is A = Ker {A • A ). Let us call a resolution 

An —> A. —• A- —• . . . acyclic, if Hn(3C,^l.) = 0 for every 
U * 1 C, all I. 

Xe?7£\ and every n>0, i>0. Let us call the resolution 

^n —• A. —• A„ —• . . . cofree, if all the equations A. are 

cofree, i.e. are of the form A. = ££, Belli' By Lemma 1, all 

cofree resolutions are acyclic. 

Definition: Let 3Ce?fl̂  be an equation, let A^W. be a 

linear equation and let An —• A. —• A~ —• . . . be a resolution 

of the latter. Define a horizontal complex of the equation 3C, 

corresponding to this equation, as the complex 

(4) 0 — • [ X - ^ 0 ] w - * [X.A^H — • IX**2]M " * ' * ' 

Denote by Hn(3C,^) the factor 

Ker ([38.^]^—• t*..*n+lV 

lю ([я.Vi 1 .-/ "* [3£'*nV 
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Theorem 1. Let ^
n
 —• A —• A —> ... be an acyclic 

resolution of an equation A. Then foir euery equation X 

and each natural number n there is a natural isomorphism 

Hn{X,A) ^ H J O C J A ) . 

Proof: Denote by 35. the vector bundle Ker (A. —> A.A) J ^ ^ ^+l 
= Im (A. —> A.)y equipped with the JT-coalgebra structure 

induced from A.. -Then for any of the short exact sequences 

O —> A c > A » $ —• 0 , . . . , 

0 —> S. c—• A. — » 3. . -> 0 
^ ^ ^+l 

t h e c o r r e s p o n d i n g e x a c t s e q u e n c e s (3) decompose i n t o 

0 — > [X,A]M > [X>AQ]M > [ X , S 1 J A / > H j O C d ) - » 0 , . . . 

Hj(X.S 1 ) S HJ + 1 {X,A) —» о . 

0 —» [X.Z^n * [ * » ^ ] M • l*'St+lln * " i ^ ' V —• 0, 

o - • Hj(*.ai+1) »Hj+1ix.at) —>0,. 

Therefore, in the commutative diagram 

Hj(3e.j«i) Hj(3e,s 2) s HjOe.jfl) 

, ] / ř - [ з e . i ł 1 ] w - [ 

] 

[ Э Є . S ^ J ^ [ЭЄ.З ] ^ 

0 — ÍX,*0]M — [ Э Є . Л J ^ - , [ Э Є . Л 2 ] W — l*,A3]м 

[x,A]м

 íx' г]м 

•* <r 
[эє. V * 

\ , 

Hj(3£,a i) 2. H^oe.^i) 

all the /" and \ sequences are exact, whence 

H°{X,A) = Ker {[X,AQ] —• [X,A±]) 3. 

2= Ker ([3C.̂ Q] -• [3E..BJ) =S 

a [x.^]w. 
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and 

Ker {[%,A] * [X,A ] ) 
H (£,&) S £ 

Im HX.An_1]M —» [X,An]M) 

^Ker ([*^ n] ? f—>[«.a^ 13 w) ^ 

Im ([3£«Vl]M —' [3E'^nV 

[*•*»->/ 
s " " ^ 

Im {[X.A . ]H —* [X,3 ] ) n—1 n 

SHJOE.8^) % 

ss HJ * oe,^) ̂  

^ HJ(3,4). 

Thus the groups H (3£,.rt) do not depend on the choice of 

the resolution & —• A —• A — . » . . . , if only it is acyclic. 

Let us call the group H (3£,,rt) the n-th horizontal co­

homology group of the equation 3C with coefficients in the 

linear* equation A. 

There is a wide class of linear equations possessing a 

cofree resolution of a finite length. See 171f Theorem 5.5 

for the following statement: 

For any inuoZutiue linear equation &^RL.> dim hi = m 
there exists a cofree resolution of the form 

$ $ $ 
(5) ?BQ — L » }B± — i U . . . — ? U ?Bm -* 0 -• 0 -» . . . 

In what follows it is called the Janet resolution and the 

corresponding complex of differential operators 

*1 ?2 9m 
(6) 0 > BQ —-i-- B1 — - W . . . — ^ Bm > 0 —•.... 
$. = <p. f is called the Janet sequence. 
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For a coalgebra 3G = (X,£) € W. the corresponding 

complex (4) , 

o — [ 3 £ . ? B 0 ] W L___> [ x . y s j ^ f-_-U [ X . ? B 2 ] W 

is isomorphic to the complex 

¥ ^ , a i } A f i 

which we shall call the borizontaZ Janet complex. 

(7) 0 — {X,B0)M ±-L_ (ЭE.B^ ------ (*.-_>W 

Corollary: Hj-(3C,̂ l) = 0 for n>m, for any equation 

X e m and any inuolutiue ZineaT equation A e 7?£\. 

Moreover, for non-overdetermined equations we have 

£ _ = _ - ? = . . . = _ ? = 0 (see [73, Theorem 6.8), so that 
_. O 17? 

both Janet sequence and Janet complex have exactly two terms. 

Corollary: H~(X,A) = 0 foT n>2, foT any equation 

X e m and any non-oveTdeteTmined linear equation -4 € 7IT\. 

Example: The common de Rham complex 

VM ____, AM -±- A2M -fU . . . ____ ATOW _. o 

and the corresponding Spencer sequence 

2&M -iU ?AH J-U ?A2rf J-U . . . --5U ?A3rf —> 0 

serve us as the Janet complex and Janet sequence of the "equa­

tion of constants" dy/dx = 0 , i =l,...,m, correspondingly. 

The horizontal Janet complex then coincides with the 

hoTizontal de Rham complex 

yX -!• AX --U A
2X -1* . . . -___> AmX — 0 

studied in Vinogradov ClO3,_ll] by means of the so called 

&-spectTal sequence, associated with the restriction on 3C of 

the famous "variational bicomplex" Ap . 

By similar methods we are able to prove the following: 
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Theorem 3. Associated with an equation 3C e * ^ M anc* a n 

inuolutiue linear equation A e 3M&M possessing a Janet 

resolution (1), there is a bicomplex BP X such that 

I. Its first spectral sequence Ê ,<7(3C) locally reduces 

to the Janet cohomology of the equation A9 

II. Its second spectral sequence III"'"(3C) satisfies 

UlJ><7(3C) = Hj(3C,d) 
and both conuerge. 

Finally, Vinogradov [10],[11] methods allow us to compute 

the terms III * necessary to find H _ (3C, A). Essentially the 

same picture is observed: Generalized Spencer complexes occur 

and the two-line theorem is valid. The details should appear 

in [61. This enlarges the class [1] of coverings 3C >• 3£ 

computable by means of a spectral sequence. 
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