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SOME THEOREMS FOR HOLOMORPHIC FUNCTIONS WITH 

PROXIMATE ORDER 1 + log(logr)/logr. 

Kunio Yoshino 
Sophia University 

1. Introduction. 

In this paper we treat holomorphic functions, which are defined in the right 

half plane and satisfies the following estimate: 

for any positive number e and e', there exists Ct^ such that 

(*) |-F(*)| < Ct>t, exp(xlog* + k\y\ + e\z\) 

for x = Rez > e'. 

The characterization of entire function with this kind of estimate (entire func­
tions with proximate order 1 + log(logr)/ logr is given by Palamodov in [8] by using 
the Fourier transforms of rapidly decreasing generalized function. We will give some 
theorems (for example, Carlson's theorem, Liouville type theorem) for holomorphic 
functions which satisfies the above estimate (*). In section 2, we consider the Mellin 
transform of holomorphic functions with proximate order 1 + log(logr)/logr. We 
will deduce strong asymptotic expansion of the Mellin transform MF(w). In sec­
tion 3 we will give the integral representation of F(z) by means of Mellin transform 
of F(z). Finally in section 4, we will give some theorems for holomorphic func­
tions defined in the direct product of the right half plane with proximate order 
1 + log(logr)/logr. For the details of proximate order, we refer the reader to [3] 
and [4]. 

2. Mellin transform of holomorphic functions with proximate order 

l + log(logr)/logr. 

In this section we will investigate the Mellin transform MF(w) of holomorphic 

functions F(z) with proximate order 1 + log(logr)/logr. Especially we deduce 

the strong asymptotic expansion of MF(w). The strong asymptotic expansion of 

MF(w) is given by Kubyshin in [2] and by the author in [11]. Now we define the 
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Mellin transform of holomorphic function defined in the right plane with proximate 

order 1 + log(logr)/logr. 

Definition* 

Let F(z) be holomorphic in the right half plane {z G C\ Rez > 0} and satisfy 

the estimate (*). The Mellin transform MF(w) of the function F(z) is defined as 

follows: 
c+too 

MF(w) = —(2t')_1 / F(z)(-w)'(smirz)-1dz, 
c—too 

where c is an arbitrary number between 0 and 1. 

MF(w) has the following properties: 

Proposition 1. (Kubyshin [2] and Yoshino [3]) 

(i) MF(w) is holomorphic in 5* = {w € C\ k < |argw| < n}. 

(ii) MF(w) has the following asymptotic expansion in any subsector Si+e of 

Sk 
oo 

MF(w)~ ][V(n)u/n. 

More precisely, the following estimate is valid: for any e > 0 and e' > 0 and 

natural number JV, there exist constants Cr,*', A > 0 and 6 (0 < 6 < 1) such that 

N 

\MF(w) - £ F(n)wn\ < Cet,,A
NN\\w\N+6. 

For details of the strong asymptotic expansion, we refer the reader to Nevan-

linna [6], [7] and Reed and Simon [9] and Sokal [10]. 

The following proposition shows the importance of strong asymptotic expan­

sion. 

PyppositJQn 2- ([6].[7],[9] and [10]). 

Let f(w) be holomorphic in the sector 5* and have strong asymptotic expansion 

there. If the coefficients in expansion are all zero and k is less than *-, then f(w) 

vanishes identically there, 

3. Integral representation of F(z) by MF(w). 

In this section we give integral representation of F(z) by MF(w). Namely the 

following integral formula is valid. 
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Proposition 3. 

Let F(z) be a holomorphic function defined on the right half plane with proxi­

mate order 1 + log(logr)/logr. Then the following integral representation is valid. 

F(z) = (27ra)-1 f MF(w)w-z'1dwi 

where T is a contour shown in Figure 1. 

Rew 

Figure 1. 

Proof. 

We calculate the right hand side of the formula by making use of residue theo­

rem. First we insert the definition of MF(w) and exchange the order of integrations. 

Then we obtain 

(27ri)-1(2i)-1 / dtF^sin^t))-1 f w~x-l(-wydw. 
Jc—too Jr 

The integral 

(2I)"1 f w-*-l(-wydw 

is equal to (t — z)~x sin(7r^ — (k + e)(t — z))ei-£. By the residue theorem we have 

-(27rt)-1 / F(t)(t - z)-1 sin(nz - (k + e)(t - z)) sin(*r*)-V-*d* + F(z). 

As t varies on the vertical line Rez = c, Re(t - z) is positive. If e tends to 

zero then the integral above goes to zero. Hence we obtain the desired result. 

4. Applications. 

In this section we show some applications concerning the holomorphic functions 

with proximate order 1 + log(log r)/log r. We begin with the Carlson type theorem. 
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Theoreiyi %, 

Let F(z) be holomorphic in the right half plane {Rez > 0} and satisfy the 

estimate (*) with A: < .r/2 . If F(n) vanishes for all natural numbers n, then F(z) 

vanishes identically. 

Proof. 

We consider the Mellin transform of F(z). Prom Proposition 1 and the assump­

tion, MF(w) has the strong asymptotic expansion with 0 coefficient. So MF(w) 

vanishes identically. By virtue of the integral representation, F(z) vanishes identi­

cally. 

Remark. 

The assumption k < ir/2 is crucial in Theorem 1. Let F(z) be 1/T(z) (T 

denotes Euler Gamma function). Then F(z) satisfies the estimate (*) with k = TT/2 

and all assumptions in Theorem 1, but F(z) does not vanish identically. 

Next we will prove the following Liouville type theorem. 

Theorem 2-

Let F(z) be a holomorphic function defined in the right half plane {z £ C; Rez > 

0} satisfy the estimate (*) with A; < v/2. If limsup|F(n)|1!n = A} then F(z) is a 
n—*oo 

holomorphic function of exponential type. 

Proof. 

Prom Proposition 1, MF(w) has the following strong asymptotic expansion in 

the sector Sg 

oo 

MF(« / )~^F(n )w" . 
n=ro 

By the assumption on F(n)} the formal series in the above converges in the 

circle with radius If A and center 0. So the series define a holomorphic function in 

this circle. Hence we obtain the following equality: 

oo 

MF(w) = ] £ F(n)wn (\w\< 1/A). 
n=0 

Hence MF(w) is holomorphic in the shaded region shown in Figure 2. By 

virtue of the integral representation of F(z) , F(z) is a holomorphic function of 

exponential type defined in the right half plane. 
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Corollary 1. (Carlson type theorem) 

Let F(z) be holomorphic function with the estimate (*) defined on the right 
half plane. If F(n) = 0 is valid for all natural number n , then F(z) vanishes 
identically. 

Proof. 

By virtue of Theorem 2. F(z) is holomorphic function of exponential type. So 

Carlson's theorem yields our desired result (see [1] and [5]). 

Corollary 2. (Cartright type theorem) 

Let F(z) be holomorphic in the right half plane and satisfy the estimate (*) . 

If |F(n)| < M is valid for all natural number n , then F(z) is bounded on the real 

axis. 

Proof 

From the assumption and Theorem 1, F(z) is exponential type function in the 

right half plane. So we obtain our desired result from the usual Cartright theorem 

( see [1] ). 

Thpprem 3t (Phragmen-Lindelof type theorem) 

Let F(z) be an entire function with estimate (*) and satisfy lim sup \F(n)\xln = 
»—»oo 

A and lim sup |F(-n)|1!r> = B , then F(z) is an entire function of exponential type. 

PrppfT 

This is a consequence of Theorem 2. 
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Theorem 4. (Liouville type theorem, see Yoshino [12]) 

Let F(z) be entire function with estimate (*) with k = 0 and furthermore 

F(n) = O(|n|p) for all integer n . Then F(z) is a polynomial with degree at most p. 

Proof, 

Prom same argument in proof of Theorem 1, we conclude that MF(w) is holo-

morphic except the origin. The origin is pole (degree at most p ) of MF(w) . The 

integral representation of F(z) and residue theorem yield our desired result. 

Note. 

All results in this paper can be generalized to n-dimensional case without any 

difficulties. 
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