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Geometric Constructions of Representations 

JOSEPH A. W O L F 

SECTION 0. BACKGROUND. 

I'll describe certain geometric constructions of representations for a class of groups that 
is important in differential geometry, harmonic analysis, and certain aspects of relativity 
and particle physics: the semisimple Lie groups. In order to do that, I'll first sketch some of 
the basic facts in representation theory, then in turn discuss discrete series representations, 
tempered series representations and standard admissible representations. 

The constructions I'm going to describe are constructions connected with the idea of 
geometric quantization. I won't describe the Beilinson-Bernstein method [3] based on V-
modules and localization; but see [23] and [56] for the connection with the constructions 
I will describe. I won't describe ring-theoretic methods based on the enveloping algebra. 
I won't describe Howe's method of dual reductive pairs. And I won't describe a variety of 
methods adapted to particular circumstances in physics and in special function theory. 

Let G be a locally compact hausdorff topological group with a countable basis for open 
sets. A unitary representation of G is a homomorphism 7r : G —> U(Hn) where HK 

is a separable Hilbert space and x i-+ (u,ir(x)v) is a continuous function on G for every 
u,v E H„. Two unitary representations 7r,7r' and equivalent if there is a unitary map 
OL : Hn —> Hnt such that a • 7r(x) = TT'(X) for all g £ G. A unitary representation 7r of G is 
called irreducible if Hn has no proper closed subspace invariant under all the 7r(x), X G G. 
The set G of all equivalence classes of irreducible unitary representations of G is called the 
unitary dual of G. 

Fix a unitary representation 7r of G as above. If Hn is finite dimensional, say with basis 
{^1,.. . , u n } , then the functions x H-> (7r(x)u,V) are the ordinary matrix coefficients of 7r. 
In general we will refer to the functions fUfV(x) = (U,TT(X)V) as coefficients of 7r. They 
are really coefficients of the dual, 7T*, but this is compensated by the convenient property 
fu,v(9i x92) = fn(gi)u,7r(g2)v(x)- In other words, the left and right regular representations 
of G on Z,2(G), 

M*)fKv) = / ( s - ' v ) and [R(x)f](y) = f(yx), 

act on /U)V, L acting by 7r on u and R acting by 7r* on v. So we can view the space 
of coefficients of 7r as the irreducible G x G-module Hn ® H*. This is the fundamental 
connection between representation theory and harmonic analysis. 

Partially supported by National Science Foundation Grant DMS 87 40902. 
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EXAMPLE 1: Let G be compact. Then every irreducible unitary representation of G is 
finite dimensional. The Peter-Weyl Theorem expresses L2(G) = Y^Kec

H* ® H*> o r t h°g" 
onal direct sum of the spaces of coefficients of (the equivalence classes of) the irreducible 
unitary representations of G. In the case where G is the circle group {z G C : \\z\\ = 1}, 
G consists of the characters Xn(z) — zn, n € Z. X n ' s a 1-dimensional representation. 
Here the Peter-Weyl Theorem simply interprets the classical Fourier expansion of periodic 
functions as an orthogonal direct sum decomposition L2(G) = X n̂GZ ^Xn-

EXAMPLE 2: Let G be commutative. Then G has a natural structure of locally compact 
abelian group, and the Fourier transform carries a function / E L1(G) to a continuous 
function / vanishing at infinity on G defined by f(x) = fG f(x)x(x)dx- There is a unique 
choice of invariant measure on G such that / i—• / maps L1(G)C\ L2(G) isometrically (for 
L2 norm) into L2(G). This extends by continuity to an isometry of L2(G) onto L2(G). 

The inverse Fourier transform f(x) = J g f(x)x(x)dx expresses L2(G) as a continuous 
direct sum Jp Cx dx* In the case G = Rn this comes down to the classical Fourier 
transform formula f(x) = (j^)n^2J^n f(x)e~%^'xdx and the classical Fourier inversion 
formula / ( * ) = (^)n/2JuJ(i)e^zdi. They express I 2 (R») as / „ „ CX( d£, X((

x) = ***• 

Representation theory and harmonic analysis on a semisimple Lie group G combine aspects 
of both examples. 

The set Car(G) of conjugacy classes of Cartan subgroups H C G is finite. Given a 
Cartan subgroup H C G there is a distinguished decomposition H = T x A where T is 
compact and A is isomorphic to an Rn. So H consists of the x ® a with \ £ T and a E A. 
Furthermore, there is a series GH C G of unitary representations TT = 7rX)t7 of G more or 
less parameterized by H. Roughly speaking 7rXjt7 acts like Example 1 in the x variable, 
like Example 2 in the a variable. This series depends (up to equivalence) only on the class 
of H in Car(G). These series are the t empered series of representations of G. The 7rx>f7 

are the s tandard t empered series representations of G. 

The various tempered series exhaust enough of G for a decomposition of L2(G) essentially 
3 5 EHGCar(G) E X G T SA H*X>° ® Hlx.*

m(H '' X '' *)**' ^ ^ m^H '' X '' " ^ *S t H e 

Planchere l measure on G. This was worked out by Harish-Chandra ([20], [21], [22]) 
for groups of what is now called "Harish-Chandra class", and somewhat more generally 
by Herb and myself ([61]; [25], [26]; [29], [30]). Harish-Chandra's approach is based on 
an analysis of the structure of the Schwartz space, while Herb and I use explicit character 
formulae (compare [11], [49], [25], [27]). Analysis of the Schwartz space is not yet complete 
in the general case, essentially because of interference between the various series (compare 
[37]), but at the moment it seems pretty sure that a certain extension of [54] will control 
this. 

In any case, our objective in these notes is much more modest: to understand the tem­
pered series representations, and more generally the standard admissible representations, 
for semisimple Lie groups, in a concrete geometric manner. 
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If H is compact the corresponding tempered series is the "discrete series". In general, 
H = T x A defines M x A, the centralizer of A in G, and MT is the discrete series for 
M . A certain construction, starting with M r , gives GH- We also consider non-tempered 
representations, but there the results depend very strongly on the ideas for tempered 
representations. For these reasons we start with the discrete series. 

SECTION 1. DISCRETE SERIES: 

DEFINITION, PARAMETERIZATION AND GEOMETRIC CONSTRUCTION. 

T H E GENERAL NOTION OF DISCRETE SERIES 

The d i sc re te series of a unimodular locally compact group G is the subset Gdisc C G 
consisting of those irreducible unitary representation classes [71-] such that 7r is equivalent 
to a subrepresentation of the left regular representation L of G. One can check that the 
following are equivalent: (i) 7r is a discrete series representation of G, (ii) every coefficient 
fufv(x) = (U,TV(X)V) belongs to L2(G), (iii) for some nonzero u,v £ Hn, the coefficient 
fu,v £ L2(G). Then one has orthogonality relations much as in the case of finite groups: 
there is a real number deg(7r) > 0 such that the L2(G)-inner product of coefficients of 7r is 
given by 

(fu,vjs,t) = de (u,s){v,t) for s,t,u,v £ Hn. 

Furthermore, if 7r' is another discrete series representation of G, and is not equivalent to 
7r, then 

(fuyv,fu'y) = 0 for u,v £ Hn and u',v' £ Hn>. 

In fact these orthogonality relations come out of convolution formulae. With the usual 

/ * h(x) = [L(f)h)(x) = / f(y)h(y^x) dy 
J G 

we have 

and 

fulV*fsyt = de (A
u^)fs}v for s,t,u,ve Hn 

/u,v * fu'y = 0 for u,v Є Hҡ and u1, v1 Є Hҡ> 

whenever 7r and 7r' are inequivalent discrete series representations of G. These results 
were proved by independently—under somewhat different conditions—by Godement [7] 
and Harish-Chandra [14], One can derive them directly as in Dixmier ([6], Sec 14) or by 
applying Rieffel's results [48] to the convolution algebra Ll(G) f) L2(G). 

l£G is compact, then every class in G is discrete series, and if Haar measure is normalized 
as usual to total volume 1 then deg(n) has the usual meaning, the dimension of Hn. So the 
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orthogonality relations for irreducible unitary representations of compact groups are more 
or less equivalent to the Peter-Weyl Theorem. More generally, if G is a unimodular locally 
compact group then L2(G) = °L2(G) ® 'L2(G), orthogonal direct sum, where °L2(G) = 
^MGGdisc H«®HZ , the "discrete" part, and 'L2(G) = °L2(G)±, the "continuous" part. 
If, further, G is a group of type I then fL2(G) is a continuous direct sum (direct integral) 
over G \ Gdisc of the Hilbert spaces Hn ® H*. 

HARISH-CHANDRA CLASS 

As hinted at the end of the previous section, we will be constructing representations of 
semisimple Lie groups from certain representations of certain subgroups. One problem is 
that these subgroups generally will not be semisimple. So we want to work with a class 
of groups that is hereditary in the sense that it includes all the connected semisimple Lie 
groups and also includes the above-mentioned subgroups of groups in the class. This forces 
us to work with a somewhat technical class [61] of reductive Lie groups. (A Lie group 
is called reductive if its Lie algebra is the direct sum of a semisimple Lie algebra and a 
commutative Lie algebra.) For ease of exposition, I'll work here with a smaller hereditary 
class. Instead of all connected semisimple Lie groups it contains the connected semisimple 
Lie groups with finite center. That is the Harish—Chandra class, or class W, from [20], 
[21] and [22], defined as follows. 

Let G be a reductive Lie group, G° its identity component, g0 its Lie algebra, and 
0 = 0o<8>ittC. Suppose that [G°, G°] has finite center, that G/G° is finite, and that if x € G 
then Ad(x) is an inner automorphism of 0. Then we say that G belongs to class H. From 
now on we will assume that G belongs to class W. A good example to keep in mind is the 
indefinite-metric unitary group U(p, q). 

CHARACTERS OF REPRESENTATIONS 

If 7T is a unitary representation of G, and if / E X1(G?), we have the bounded operator 
7r(/) = JG f(x)7r(x)dx on Hw. Now suppose that 7r has finite composition series, i.e., 
is a finite sum of irreducible representations. If / G C%°(G) then 7r(/) is of trace class. 
Furthermore, the map 

en : C?(G) -+ C defined by 0 7 r ( / ) = trace TT(/) 

is a distribution on G. 0,- is called the character, the d istribution character or the 
global character of 7T. Character theory for representations of semisimple Lie groups was 
developed in Harish-Chandra's papers [8], [9], [10], [12], [13], [14], [15] and [16]. 

Let Z(Q) denote the center of the universal enveloping algebra W(0). If we interpret U(g) 
as the algebra of all left-invariant differential operators on G then Z(Q) is the subalgebra 
of those which are also invariant under right translations. If 7r is irreducible then d7r\z($) is 
an associative algebra homomorphism Xn : Z(g) —• C called the infinitesimal character 
of 7r. We say that 7r is quasi-simp le if it has an infinitesimal character, i.e. if it is a direct 
sum of irreducible representations that have the same infinitesimal character. 
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Let - be quasi-simple. Then the distribution character 0-r satisfies a system of differ­
ential equations 

* ' ©* = Xn(*)Q* for all z G Z(g) 

The regular set 

G' = {x G G : g A d ( l ) is a Cartan subalgebra of 0} 

is a dense open subset whose complement has codimension ^ 2. Every x G G' has a 
neighborhood on which at least one of the operators z G Z(&) is elliptic. It follows that 
0-TIG' is integration against a real analytic function Tn on G'. A much deeper fact [15] is 
that Qn has only finite jump singularities across the singular set G \ G', so Tn is locally 
L1 and Qn is integration against it, 

©*(/) = / f(*)T„(x)dx for all / G GC°°(G). 
J G 

So we may (and do) identify Qn with the function Tn. This key element of Harish-
Chandra's theory allows the possibility of a priori estimates on characters and coefficients 
as well as explicit character formulae. 

DISCRETE SERIES FOR G R O U P S OF CLASS H 

Fix a Cartan involution 0 of G. In other words, 8 is an automorphism of G, 02 is the 
identity, and the fixed point set K = G° is a maximal compact subgroup of G. The choice 
is essentially unique, because the Cartan involutions of G are just the Ad(x) • 6 • Ad(x)~x, 
x G G°. If G = U(p,q) then 0(x) .= t x " 1 and K = U(p) x U(q). 

Every Cartan subgroup of G is Ad(G°)-conjugate to a ^-stable Cartan subgroup. In 
particular, G has compact Cartan subgroups if and only if K contains a Cartan subgroup 
of G. 

Harish-Chandra proved ([14], [19]) that G has discrete series representations if and 
only if it has a compact Cartan subgroup. Suppose that this is the case and fix a compact 
Cartan subgroup T C K of G. Let $ = $(g , t) be the root system, $ + = $ + ( g , t) a choice 
of positive root system, and let p = ^~2ae*+ <*> n a l f t n e t r a c e °-" a ^( t ) on £ a 6 $ + 0a-

If - is a discrete series representation of G and 0-r is its distribution character, then 
the equivalence class of 7r is determined by the restriction of Qn to T fl G'. So we can 
parameterize the discrete series of G by parameterizing those restrictions. Here we follow 
[19], [61] and [20]. 

Let Gf denote the finite index subgroup TG° = ZG(G°)G° of G. The Weyl group W f = 
W(G\T) coincides with W° = W(G°,T°) and is a normal subgroup of W = W(G,T). 

Let x £ -f« Since T° is commutative, x has differential G?X(0 = ^(0-^ where A G itj$ and 
where / is the identity on the representation space of x- Suppose that A + p is regular, i.e., 
that (A + p, a) =^0 for all a G $ . Then there are unique discrete series representations 7r° 
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of G° and nx of G* whose distribution characters satisfy 

F c wo siqn(w)ew(x+ri 

e"*(x)=±n^I(«°/a---"/a) aad 0**(za:)=x(*)0**(a:) 

for z e ZG(G°) and i E T ° n G'. Here note that 7T+ = x|zG(G°) ® ^x' T h e s a m e d a t u m X 
specifies a discrete series representation TTX of G, 7rx = Ind^ t(7r^). 7rx is characterized by 
the fact that its distribution character is supported in G*, where 

' - X ^ E ^ Й Г ^ Г ^ " 1 

with 7.: = -4cZ(^,)|Gt where {#i , . . . ,gr} is any system of coset representatives of G modulo 
G*. To combine these into a single formula one chooses the gi so that they normalize T, 
i.e. chooses the 7; to be a system of coset representatives of W modulo TV*. 

Every discrete series representation of G is equivalent to a representation 7rx as just 
described. Discrete series representations 7rx and 7rx/ are equivalent if and only if x' = 
X • W1 for some w £ W. 

G E O M E T R I C REALIZATIONS OF DISCRETE SERIES REPRESENTATIONS 

ON SPACES O F SQUARE INTEGRABLE HARMONIC DIFFERENTIAL FORMS 

If G is a compact connected Lie group and T is a maximal torus, then a choice $ + = 
$+(8> t) of positive root system defines a G-invariant complex manifold structure on G/T 
k v : X)aE*+ &a r e P r e s e r - t s the holomorphic tangent space. Now fix that structure and let 
X £ HQ be integral, that is, eA is a well defined character of T. View eA as a representation 
of T on a 1-dimensional vector space L\ and let LA —> G/T denote the associated homoge­
neous holomorphic hermitian line bundle. We write 0(L\) —> G/T for the sheaf of germs 
of holomorphic sections of LA —• G/T. The group G acts on everything here, including 
the cohomologies Hq(G/T]0(L\)). As before let p = ^ E « G * + a' T h e Bott-Borel-Weil 
Theorem ([5], [36]) is 

THEOREM. IfX + p is singular then every Hq(G/T\ 0 ( L A ) ) = 0. Now suppose that X + p 
is regular, let w denote the unique Weyl group element such that (w(X + p), a) > 0 for all 
a G $ + , and let £(w) denote its length as a word in the simple root reflections. Then (i) 
Hq(G/T]0(L\)) = 0forq^ i(w), and (ii) G acts irreducibly on H^w\G/T]0(L\)) by 
the representation with highest weight w(X + p) — p. 

In the Bott-Borel-Weil Theorem, £(w) can be described as the number of positive roots 
that w carries to negative roots, the representation of G with highest weight w(X + p) — p 
can be described as the discrete series representation with Harish-Chandra parameter 
w(X + p), and, by Kodaira-Hodge Theory, Hq(G/T\0(L\)) is naturally G-isomorphic to 
the space of harmonic differential forms of bidegree (0,#) on G/T with values in LA-
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Kostant and Langlands independently conjectured an analog of the Bott-Borel-Weil 
Theorem for connected noncompact semisimple Lie groups with finite center. The con­
jecture was proved in two stages by Schmid ([51], [53]) and the result was extended to 
general semisimple Lie groups in [61]. 

Let G again be a reductive Lie group of class H that has discrete series representations, 
i.e. that has a compact Cartan subgroup T. The root system $ = $((J,t) decomposes 
as the disjoint union of the c o m p a c t roo t s $K = $(£, t) = {<* £ $ - 0a C t} and the 
n o n c o m p a c t r o o t s &G/K = $ \ $/?. 

As in the compact case, a choice $ + = $ + ( 0 , t ) of positive root system defines a G-
invariant complex manifold structure on G/T such that X^a6*+ &a r e P r e s e r - t s the holomor-
phic tangent space. Fix a choice of $ + . Write $ £ for <£+ D $K and $QIK for $+ f] $G/K-

Let x € -T, let i£x be the representation space, and let E x —• G / T denote the associated 
hermitian homogeneous holomorphic vector bundle. Let • denote the Kodaira-Hodge-
Laplace operator 99 + d d on E x . Then we have spaces 

Hq(G/T;Ex) : harmonic L2 Ex-valued (0,?)-forms on G/T 

on which G acts naturally and the natural action of G is a unitary representation. 

As noted above, if G is compact then the space Hq(G/T;Ex) of L2 harmonic forms is 
naturally identified with the sheaf cohomology Hq(G/T; 0(EX)). 

In general, for reductive Lie groups G of class H, let A G HQ such that d\ = \I where I 
is the identity transformation of Ex. 

THEOREM. If \ + p is singular then every Hq(G/T\ E x ) = 0. Now suppose that \ + pis 
regular and let 

q(\ + p) = \{a e * £ : (\ + P,a) < 0}| + |{/5 € *%,K : (A+ />,/?) > 0}| . 

Then Hq(G/T;Ex) = 0 for q ^ q(\ + p), and G acts irreducibly on Hq(x+p)(G/T;Ex) by 
the discrete series representation 7rx. 

An interesting variation on this result realizes the discrete series on spaces of L2 bundle-
valued harmonic spinors. See [47], [52] and [62]. 

GEOMETRIC REALIZATIONS OF DISCRETE SERIES REPRESENTATIONS 

ON DOLBEAULT COHOMOLOGY SPACES 

Another important variation on the Kostant-Langlands Conjecture result—which in fact 
preceded its solution—is Schmid's Dolbeault cohomology realization [50]. Note that K/T 
is a maximal compact complex submanifold of G/T and denote s = dime K/T. Whenever 

A + p is antidominant: (A + />, 7) < 0 for all 7 £ $ + 
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we have s = q(X + p). This is the case where the bundle Ex —• G/T is negative. 

If 7r is a discrete series representation of G, we can choose the positive root system $+ so 
that 7r = 7rx where A = dx is such that A + p is antidominant. Thus there is no restriction 
on 7rx in 

THEOREM. Suppose that X+p is antidominant, sos — q(X+p). Then H8(G/T\ 0(EX)) has 
a natural Frechet space structure, G acts naturally on H3(G/T\ 0(EX)) by a continuous 
representation, and this representation is infinitesimally equivalent to 7TX. 

Here we use the following definition of infinitesimal equivalence. Let n and <f> be con­
tinuous representations of G on complete locally convex topological vector spaces Vn and 
V^. Let (VV)(K) a*-d (V^)(K) denote the respective subspaces of if-finite vectors. They 
are modules for the universal enveloping algebra U($). An infinitesimal equivalence of Vn 

with Vij, means a W(0)-isomorphism of (Vn)(K) o r-to (V^)(K)- I n the c a s e of the Theorem 
just stated, the infinitesimal equivalence, 

W(G/T-tEx)w ^H'(G/T-tO(Ex)){K) , 

as a map on spaces of if-finite vectors, is the map that sends an L2 harmonic form to (the 
sheaf cohomology class that corresponds to) its Dolbeault class. 

FORMULATION BY MEANS OF BASIC DATA 

We rephrase the theorem of Dolbeault cohomology realizations of the discrete series in 
anticipation of our realization of the tempered series. 

By basic da tum for G we mean a triple (if, b, x) s u c n that 

(i) H is a Cartan subgroup of G 

(ii) b is a Borel subalgebra of 0 with f) C b 

(iii) x -s a finite dimensional representation of (b, H) 

Here (i) means that b = rj + n where n = [b,b] = ]Ca€$+ 0 -a f ° r s o m e positive root 
system <£+ = $ + ( 0 , fy). And (ii) means that x consists of a Lie group representation 
of if on a finite dimensional vector space Ex and a Lie algebra representation of b on 
Ex, that are consistent in the sense that they satisfy both (a) the restriction to rj of the 
representation of b is the differential of the representation of H and (b) if h G H and £ G b 
then x(-4d(/i)£) = x( ' i )x (Ox( ' l )~ • Of* course (a) implies (b) in case H is connected. 

Now let X denote the flag variety of all Borel subalgebras b C 0. If B is a Borel 
subgroup of Gc (normalizer of a Borel subalgebra of g) then we can identify Gc /B with 
X by the usual gB *-> Ad(g)b. The G-orbit structure of X is pretty well understood [60]. 

Fix a basic datum (if, b ,x) and the associated homogeneous vector bundle Ex -* G/H. 
Let On(Ex) —> G/H be the sheaf of germs of smooth sections annihilated by the right 
action of n = [b, b]. Then G acts naturally on the cohomologies Hq(G/H\ C\t(Ex)). 
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The theorem of Dolbeault cohomology realizations of the discrete series identifies discrete 
series representations and the representations infinitesimally equivalent to cohomology rep­
resentations for basic data (H, b,x) with H compact. We see this as follows. When H is 
compact, gH i—> Ad(g)b gives a diffeomorphism of G/H onto the orbit G-b. The orbit G-b 
is open in X , thus inherits the structure of complex manifold from X. This is the same 
complex structure that we considered before—n represents the antiholomorphic tangent 
space—and 0 n ( E x ) is the sheaf of germs of holomorphic sections of E x —• G/H. Thus, for 
H compact and E x —> G/H sufficiently negative, the Hq(G/H; On(Ex)) yield the discrete 
series representations of G up to infinitesimal equivalence. 

We will take this viewpoint in describing the tempered series of representations and, 
more generally, the standard admissible representations of G. 

SECTION 2. T E M P E R E D S E R I E S : 

D E F I N I T I O N , PARAMETERIZATION AND G E O M E T R I C C O N S T R U C T I O N . 

T H E G E N E R A L N O T I O N O F INDUCED REPRESENTATION 

Let G be a separable locally compact group, dx = dfiG(x) its left Haar measure, and 
AG its modular function. Thus 

/ f(xy)dy=f f(y)dy=f /(y^A^y" 1)^ 
J G J G J G 

and 

/ f(xyx~x)dy = AG(x) / f(y)dy= f(yx~l)dy 
J G J G J G 

for y G G and / G CC(G). 

Let K be a closed subgroup, dk = dfxK(k) its left Haar measure, and AK its modu­
lar function. If 77 is a weakly continuous homomorphism from K to the bounded linear 
operators on a Hilbert space Vv we denote 

Ce(G/K;Vч) = Ce(G/K;т,) = { 

f is continuous, 

/ : G —• Vv : / i s compactly supported mod if, and 

f(xk) = i r t fc)- 1 /^) for x G G, k G K 

Consider CC(G/K;AG/K)y where AG/K : K -> R+ by AG/K(k) = AG(k)/AK(k). 

The linear map r : CC(G) -> CC(G/K\ AG/K), defined by (Tf)(x) = fK f(xk)dk, is 
surjective, and rf = 0 implies j G f(x)dx = 0. Now JG (rF)(x)dx is a positive continuous 

G-invariant linear functional on CC(G/K;AG/K). We write it as integration against a 

measure d(xK) = dfiG/K(xK): 

I F(xK)d(xK)= f F(xK)dfiG/K(xK)= [ (TF)(x)dx 
J G/K J G/K J G 
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for F e CC(G/K\ AG/K). One can in fact express this as a genuine integral. 

Now let 77 be a (weakly continuous) unitary representation of K, let V„ denote the 
1 li 

representation space of 77, and notice that rj®AG,K is a weakly continuous homomorphism 

from K to the bounded linear operators on the Hilbert space V^. So we have the space 
1 l i 1 l i 

CC(G/K; rj®A^K). If F1 , F2 E CC(G/K\ rj®AG^K) then, since 77 is unitary, the pointwise 
inner product satisfies 

{F1(xk),F2(xk))Vti = A G / K ( f c ) - 1 ( F 1 ( x ) , F 2 ( x ) ) ^ 

so our "integral" over G/K defines a global inner product 

(ад=í 
J 

(Fi(*),*!.(-•))* dfiG/K(xK). 
G/K " 

111 
G acts on the Hilbert space completion of Cc(G/K',rj®AG,K) with respect to the global 

inner product defined just above: [~(x)F](y) = F(x~ly). This natural action is a unitary 
representation of G, denoted IndK}G(rj) and called the representation of G i nduced or 
un i t a r i ly i nduced by rj. 

It is often convenient to view Ind/ffG(*7) as the action of G on L2 sections of the Hilbert 
1/2 

space bundle over G/K associated to G —• G/K by the action 77 ® AG,K of K on Vv. And 

of course the notion of induced representation is simplified when AQ/K = 1. 

A useful example: Suppose that AQ/K = 1 and let IK denote the trivial 1-dimensional 
representation of K. Then IndjffG(lK) 1S the left regular representation of G on L2(G/K). 
In particular, Ind{i}|G({l}) is the left regular representation of G. 

An important tool in working with induced representations is i nduc t i on by s tages: 
given closed subgroups K C M C G one has 

Ind^|G(^) is equivalent to IndMTG(IndjffM(rj))> 

This shows, for example, that if if is a closed subgroup of G then the left regular repre­
sentations satisfy LQ — IndtffG^K)-

. For more details on induced representations, including projective representations, the 
Mackey little-group method, and complete proofs, see papers of Mackey ([39], [40], [41], 
[42], [43], [44]), Moore ([2], [45], [46]) and Duflo ([4], Ch. V), and the summary ([63], 
Appendix). 

CUSPIDAL PARABOLIC SUBGROUPS AND T E M P E R E D SERIES 

Let J J b e a Cartan subgroup in the reductive Lie group G of class H. Fix a Cartan 
involution 0 of G such that 0(H) = H. Its fixed point set K = G9 is a maximal compact 
subgroup of G. We decompose 

f)o = t0 0 a0 and H = T x A where T = HHKandA = expG(a0). 
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Then the centralizer ZG(A) of A in G has form M x A where 0(M) = H. Now [61] M 
is a reductive Lie group of class W, and T is a compact Cart an subgroup of M, so M has 
discrete series representations. 

Suppose that the positive root system $ + = ^ + ( 0 , J)) is defined by positive root systems 
$+(m, t ) and <->+(g0,a0). This means that 

$+(m, t) = {a| t : a G $ + ( g , f)), a\a = 0} 

and 

* + ( 0 o , do) = {/3|ao : 0 G $+(0,1)), 0 | . -i 0}. 

In other words, given f), the Borel subalgebra 

b = h + n where n = [b, b] = Y^ 0 _ a 

is chosen to maximize u = n fl rl. Note that u has real form u0 = u VI g0, which is the sum 

27E$+(0o,ao) (0°)7 °^ * n e positive restricted root spaces. 

A subalgebra p C 0 is called parabolic if it contains a Borel subalgebra. A subgroup 
P c G i s called parabolic if (i) its complexified Lie algebra p is a parabolic subalgebra of 
a; and (ii) P is the normalizer of p in G. A parabolic subgroup PcGis called cuspidal 
if the Levi component L C P has a Cart an subgroup that is compact modulo the center 
of L. 

We now have the cuspidal parabolic subgroup P = MAU of G, where M and A are as 
before, where MA = M x A is the Levi component of P , and where U = expG(uo). 

Let x € H and consider the basic datum (H, b,x)« The representation of b is deter­
mined because x represents H irreducibly: x(n) = 0 ar-d xlb is t n e differential of the 
representation of H. Decompose x — ^ ® e%(T •> ^ £ ^\ a £ ao- Suppose that *v + PM 
is $+(m,t)-nonsingular where d?/> = vl with 1/ EC t j . Then 1/) specifies a discrete series 
representation rj^ of M. The Levi component M x A o f P acts irreducibly and unitarily 
on HVijj by r]^ ® e,<T. That extends uniquely to a representation (which we still denote 
77̂ , ® e,<T) of P on .ff,̂  whose kernel contains J7. Now we have the standard tempered 
representation 

TTX = 7 ^ = Indp |G(w ® e,<T) / 
o 

of G. One can compute the character of 7rx and see that it is independent of the choice 
of positive root system $ + ( 0 , fy) that is defined by choices of $+(m, t) and $ + (0o , a o ) . 
With H fixed up to conjugacy, and as xj> and a vary, we have the .ff-series of tempered 
representations of G. 

G E O M E T R I C REALIZATIONS OF T E M P E R E D SERIES REPRESENTATIONS 

ON HILBERT SPACES OF PARTIALLY HARMONIC DIFFERENTIAL FORMS 

Fix a 0-stable Cartan subgroup H C G and a positive root system $+ = $ + ( 0 , fy) 
defined by positive root systems $ + ( m , t) and $~*~(&o, &o) as above. The associated cuspidal 
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parabolic subgroup P = MAU contains TAU = HU as a closed subgroup, and we have a 
G-equi variant fibration 

G/TAU —> G/P with structure group M and typical fibre M/T. 

Notice that the fibre M/T has an M-invariant complex structure for which 2ae$+(m,t) m a 

is the holomorphic tangent space. So an irreducible unitary representation 

X = il>®ei<T eii = TA 

defines a G-homogeneous hermitian vector bundle E x —> G/TAU that is holomorphic over 
every fibre of G/TAU -> G/P. Define Hilbert spaces 

Hq(G/TAU;Ex) : L2 sections of H * ( M / T ; E X | M / T ) -> G/P 

where the Hilbert space bundle 

H * ( M / T ; E X | M / T ) -> G/P has structure group MAU, typical fibre Hq(M/T;Ex\M/T). 

Here, as in the discussion of realization of the discrete series, Hq(M/T;Ex\M/T) is the 
Hilbert space of harmonic, L2(M/T), E x | M / T -valued (O.g)-forms on M/T. Let rj denote 
the (necessarily unitary) representation of M on Hq(M/T;Ex\M/T). Then MAU acts on 
Hq(M/T;Ex\M/T)byr1®ei<'. 

As above define v G tg by dxj) = vl. If v + pM is $ + ( m , t)-singular then 

Hq(M/T; E X | M / T ) = 0 for every q > 0. 

If v + pM is $+(m, t)-nonsingular and 

q(" + PM) = |{« G $ £ n M : ( i /+ DM,a) < 0}| + |{/5 G ^ , * n M : (A + r W ) > 0}| 

then as before Hq(M/T; E X | M / T ) = 0 for q 7- 5(1/ + p M ) , and M acts irreducibly on 

Hq(u+pM)(M/T;Ex\M/T) by the discrete series representation 77 .̂ Thus we have [61] 

THEOREM. Ifv + pM is $+(m, t)-si.nguJar t ien eveiy Hq(G/TAU; Ex) = 0. Now suppose 
thatv+pM is $+(m,t)-regular and let q(v+pM) be as just above. Then Hq (G/TAU ;EX) = 
0 for q ^ ?(*/ + /9M), and G acte 022 H^V^M\G/TAU;EX) by £/ze standard H-series 
representation nx = 7r̂ )tT = Indp^c^^ ® e"7) ofG. 

A variation on this theorem realizes the tempered series on spaces of L2 bundle-valued 
partially harmonic spinors. See [62]. 

The standard //"-representation nx = 7r̂ )<T is irreducible whenever a G cij is $ + (0o- &o)-
nonsingular. Plancherel measure for G thus is carried by the irreducible representations 
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among the H-series representations realized above, as H varies over the conjugacy classes 
of Cart an subgroups of G. 

G E O M E T R I C REALIZATIONS OF T E M P E R E D SERIES REPRESENTATIONS 

ON PARTIAL DOLBEAULT COHOMOLOGY SPACES 

We now replace Hq(M/T\ EX|M/T) by the Dolbeault cohomology space that realizes the 
representations rj^ of M and rj^p ® etcr of MA and P = MAU. The space (K H M)/T is a 
maximal compact complex submanifold of G/TAU. Let s = dime (K C\ M)/T. Whenever 

v + PM is $ + ( m , t)-antidominant: (v + DM,7) < 0 for all 7 G $ + ( m , t) 

we have s = q(v + pM)- Much as before, this is the case where the bundle EX|M/T —» M/T 
is negative. 

Let On(Ex) -> G/TAU denote the sheaf of germs of C°° sections of E x -+ G/TAU 
that are holomorphic along the fibres of G/TAU —> G/P , i.e. are annihilated by the right 
action of n. 

If 77 is a discrete series representation of M, we can choose the positive root system $ + 

to be defined by $ + ( m , t) and $ + (0o , <*o) (any choice of the latter will do) so that v + PM 
is <£"*"(m, t)-antidominant. Thus there is no restriction on 7TX in 

THEOREM. Suppose that v + PM -s $ + ( m , t)-antidominant, so s = q(v + PM)- Then 
Hs(G/TAU\0(Ex)) has a natural Frechet space structure, the natural action of G on 
H9(G/TAU\0(Ex)) is a continuous representation, and this representation is inGnitesi-
mally equivalent to TTX. 

FORMULATION USING BASIC DATA 

Fix a basic datum (H, b ,x ) : H is a Cartan subgroup of G, b is a Borel subalgebra of 
0 such that r) C b, and x -s a finite dimensional representation of (b ,H ) . Then we have 
the associated hermitian homogeneous vector bundle E x —• G/H and the sheaf of germs 
of C°° sections annihilated by the right action of n = [b,b], On(Ex) —> G/H. G acts 
naturally on the cohomologies Hq(G/H\ On(Ex)). 

Since X -s a representation of (b,fl"), not just H, the bundle E x —> G/H pushes 
down to a bundle E x —• G/TAU. The germs in On(Ex) —* G/H are constant along 
the fibres of G/H —> G/TAU and one verifies without difficulty that the spectral se­
quence collapses. Thus there are natural G-equivariant isomorphisms Hq(G/H\ On(Ex)) = 
Hq(G/TAU;On(Ex)). 

We identify G/TAU with the G-orbit of b in the flag variety X , as in [61]. The point 
here is that the isotropy subgroup G fl B = TAU and that the partial complex structure 
(CR structure) induced on G • b by X is one for which the holomorphic tangent space of 
the typical fibre M/T of G/TAU -> G/P is £a€*+(m,t) m 0 . 
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THEOREM. Every standard tempered series representation -KX of G, x € & a n c ' H £ 
Car(G), is realized up to infinitesimal equivalence as the natural action of G on a partial 
Dolbeault cohomology space H3(G • b; On(Ex)) for a basic datum (H, b,x) as follows, b 
is maximally real subject to the condition f) £ b, x £ H, and s = dime (-K" ^ M)/T. 

This theorem is the starting point for the construction of standard admissible represen­
tations of G. 

SECTION 3. ADMISSIBLE REPRESENTATIONS AND THEIR GEOMETRIC CONSTRUCTIONS. 

CLASSICAL GEOMETRIC QUANTIZATION 

In [56], Schmid and I formulate "classical" geometric quantization for semisimple Lie 
groups in a manner consistent with the constructions just described for the tempered series. 
Fix a basic datum (H, b, x), b = f) + n with n = [b, b] = ]T)aG$+ 0-«> a s before. Then we 
have the associated homogeneous vector bundle E x —> G/H and the sheaf 

e>n(Ex) -> G/H : germs of C°° sections / of E x - • G/H such that 
( 3 - 1 ) f(x;Q + X(0 ' f(x) = 0 for all x £ G and £ £ b. 

We view b as a choice of G-invariant polarization on the homogeneous space G/H, and we 
associate the representations of G on the cohomologies Hq(G/H] On(Ex)). 

In the earlier discussion of the tempered series, x w a s irreducible as a representation of 
H on Ex, so necessarily x(n) = 0. Thus, there the differential equation in (3.1) reduced 
to 

f(x\Z) = 0 for all x £ G and all f £ b. 

In general f(x\ £) + x(£) ' f(x) = 0 is the appropriate equation; see [57]. 

We try to calculate the G-modules Hq(G/H; On(Ex)) from the complex 

(3.2) C°°(G/H; Ex ® A#N*), dn 

where dn : Cco(G/H\Ex ® A^N*) -> C°°(G/H;EX ® A^+1N*) is the unique first order 
G-invariant differential operator with symbol ($/*))* ® Ex ® A^n* - • Ex ® Ap + 1n* given 
by (<£, e,u;) »-> e ® (g(<^) A u) where g : (g/l))* - • n* is dual to n = b/l) *-̂  0 /^ . 

It is convenient to pull the bundles E x ® A*N* —> G/H back to G. Then the complex 
(3.2) becomes 

(3.3) {C°°(G) ® Ex ® A # n*} H , dn 

where H and n act from the right on C°°(G), where {... } H denotes the space of H-
invariants, and where dn is the coboundary operator for Lie algebra cohomology of n. If 
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n n i t = 0, i.e. if the polarization b is totally complex, then (i) H is as compact as possible 
among the Cartan subgroups of G, (ii) G/H has an invariant complex structure as the open 
orbit G • b in the flag variety X , (iii) E x —• G • b is a G-homogeneous holomorphic vector 
bundle, and (iv) On(Ex) —• G • b is the sheaf of germs of holomorphic sections of E x . This 
is always the case when H is compact, where it leads to the C°° discrete series of G. If H is 
not necessarily compact, but b is maximally real in the sense that u = n n i t is maximized 
for the given choice of II, then we have seen that the complex (3.3) leads to the C°° 
realization of the if-series of tempered representations of G. There are serious problems 
with the complex (3.3) for general (II, b), and one sees them already when the polarization 
b is totally complex but H is noncompact, e.g. in 5L(3;C). First, (3.3) may fail to be 
acyclic, so it will compute the hypercohomology of a complex of sheaves rather than the 
cohomology of a single sheaf. Second, there is no reason to expect dn to have closed range. 
In fact, even when things go well, say for the discrete series, the proof of closed range 
is delicate. Zuckerman's derived functor construction [58], an algebraic version of (3.3), 
avoids these problems. But it leads to (0, jK)-modules rather than G-modules. Now I am 
going to describe some geometric complexes, variations on (3.3), which also circumvent 
the problems with (3.3), and which effectively yield all standard representations. Then I'll 
indicate how these geometric complex constructions of G-modules relate to Zuckerman's 
construction of (g, TiT)-modules. This is joint work with W. Schmid [56]. 

HARISH-CHANDRA MODULES AND GLOBALIZATIONS 

By representation of G we mean a continuous representation ( T , If) of G with finite 
composition series, on a complete locally convex Hausdorff topological vector space V. By 
Harish-Chandra module for G we mean a W(0)-finite If-semisimple (0,IQ-module in 
which every vector is _K"-finite and the If-multiplicities are finite. 

If (7r, V) is a representation of G, then V = {v £ V : v is If-finite} is a Harish-Chandra 
module for G, is dense in If, and consists of smooth (in fact analytic) vectors. 

If V is a Harish-Chandra module for G, and if (7r, V) is a. representation of G such that 
V is (0, If )-isomorphic to the space of if-finite vectors in tf, then (7r, V) is a globalization 
of V. 

For the derived functor construction let M(Q,K)(K) denote the category of If-finite 
(0, If )-modules, let M(&, Hf)K)(HnK) be the category of Hn If-finite (0, IInIf )-modules, 
and let 

r : M(0, H D K\HnK) - M(&, K)(K) 

denote the functor that sends a module to its maximal If-finite If-semisimple submodule. 
T is left exact. Its right derived functors Rq(T) are the Zuckerman functors. Now the 
basic datum (II, b ,x) specifies (0, If)-modules 

(3.4) A*(G, H,b,X) = (B?){Homb(U(Q), Ex\HnK)}. 

These Zuckerman derived functor modules are Harish-Chandra modules for G. The mod­
ules (3.4) at first glance seem rather far from the cohomologies of the complex (3.3), but in 
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fact there is a tight connection. Write C fo r for formal power series sections at 1 if G G/H. 
Evaluation of formal power series sections at 1 • H .maps CioT(G/H;Ex <g> APN*) isomor-
phically (as (0, if)-module) onto Eom^(U(g),Ex <g> A l > n*) ( H n K ) . The complex 

C r f o r (G/ f f ;E x 0A # N*) , dn 

gives a well defined injective resolution of Homb(W(0),-Gx) (Wn^), its 0-cohomology, so 

(3.5) A"(G,H,b,x) e. f r»(o f O T(G/i- ' ;E x® A # N*) ( J 0 , d n ) . 

This isomorphism defines a map from the if-finite version of (3.3) to the derived functor 
module, 

(3.6) H«(C°°(G/H-Ex®A*N*)(Kh dn) -> ^(^(G/H^ ® A # N*) ( I 0 , dn), 

which is the coefficient morphism defined by the Taylor series expansion at 1 • H. This 
will be a key point in showing that various geometrically defined representations of G are 
globalizations of the modules (3.4). 

There are four functorial globalizations, the C°° and C~°° (distribution) globalizations 
of Casselman and Wallach [59] and the minimal and maximal globalizations of Schmid 
[55]. For reasons to be explained shortly, the maximal globalization is the one that is 
appropriate here. 

Here are the basic facts on the maximal globalization [55]. Let (7r, V) be any globaliza­
tion of a Harish-Chandra module V. Every element of the dual Harish-Chandra module 

V' : if-finite vectors in the algebraic dual of V 

extends to a continuous linear functional on V. If v G V and v' G V , the coefficient 
fvy(x) = (v\7r(x)v) is a C°° function on G. The Taylor series of fvy at 1 depends only 
on the action of U(&) on V. Any finite U(&) generating set {v[,.. -,v'm} C V defines an 
injection V «-• C00(G)m by v »-» (fvy , . . . ,fvym)- The induced topology is independent 
of {v'j} because we pass between any two such generating sets by a W(0)-valued matrix. 
So we have 

(3.7) F m a x : completion of V in the topology induced by C00(G)m. 

Knax is a globalization of V. It is called the maximal globalization because, if U is 
any globalization then the identity map U(K) —* V extends to a G-equivariant continuous 
injection U <-* Vm*x. 

In a Banach globalization (7r, V) of V the subspace V" of analytic (Cu) vectors has a 
natural structure of complete locally convex Hausdorff topological vector space. Suppose 
that the Banach space V is reflexive, V' is its Banach space dual, and IT' is the dual of IT. 
Then 

V"Ui : strong topological dual of (V1)" 
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is the space of hyperfunction vectors (C~~ vectors) of V'. It is another globalization 
and ([55], p. 317) the inclusion V~~ c—• T7max is a topological isomorphism. This has an 
extremely important consequence: V »-» Vm^ is an exact functor. 

See [34] and [35] for an introduction to hyperfunctions. 

HYPERFUNCTION QUANTIZATION 

The Dolbeault lemma holds with C°°, C~°°, or C~~ coefficients. So for compact H 
the complex (3.3) computes Dolbeault cohomology H*(G/H;On(Ex))—even when C°° is 
replaced by C~°° or C~~. Thus each Dolbeault cohomology realization of a discrete series 
representation of M already is the maximal globalization of its underlying Harish-Chandra 
module. Thus, in the induction step for constructing a tempered series representation of 
G, if we use any coefficients other than G_ u ; , we will not get a canonical globalization of the 
underlying Harish-Chandra module. This is one reason to use hyperfunction coefficients 
instead of G°° coefficients in (3.3). Also, the general theory of hyperfunctions suggests 
that C~~ coefficients might take care of the problem of closed range for dn. (In fact that 
will turn out to be the case.) Thus, for several reasons, we study the hyperfunction analog 

(3.8) {C~~(G) ®EX® A # n*} H , dn 

of the classical complex (3.3). This is the pull back to G of the hyperfunction analog of 
(3.2), so of course H*({C~-(G) ® Ex ® A # n*} H , dn) 2 H«(C~-(G/H] Ex ® ATM*), dn). 

As before, note that \ -s a representation not just of H but of (b,fI), so the bundle 
E x —* G/H pushes down to the orbit of b in the flag variety. Now we have 

E x —> S : G-homogeneous vector bundle where S = G • b C X. 

By homogeneity, the G-orbit S C X is a partially complex manifold whose holomorphic 
tangent spaces (intersection of the complexified tangent space of S with the holomorphic 
tangent space of X) have constant dimension. So we also have 

N s —i• S : antiholomorphic tangent bundle of S C X. 

The Dolbeault operator d = dx of X involves differentiation in all directions given by an 
antiholomorphic frame. If we start that frame with an antiholomorphic frame for 5, i.e. 
with a basis of the fibre of Ns , then we have a well defined Cauchy-Riemann operator 
(partial Dolbeault operator) 

5 s : the part of 5 = dx defined on 5. 

That gives us the Cauchy-Riemann complex 

(3.9) C~-(S;Ex®A*N*s),ds 

with hyperfunction coefficients. In the case of a maximally real polarization b we had a 
fibration S = G/TAU —> G/MAU = G/P, where P is a cuspidal parabolic subgroup of 
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G. The fibres M/T were the maximal complex submanifolds and the base G/P gave the 
totally real directions. The situation is a bit more complicated when b is not maximally 
real, but in all cases the Cauchy-Riemann complex (3.9) is closely related to the geometry 
underlying the structure of representations constructed from (if, b, x)-

Let S denote the germ of an open neighborhood of S in X. Then Ex —• S has a unique 
holomorphic 0-equivariant extension Ex —> S to S. Write Nx —> X for the antiholomorphic 
tangent bundle. Now we have the Dolbeault complex 

(3.10) Csu(S;Ex®A*Nx),d 

with hyperfunction coefficients supported in S. A basic fact here [35] is that 

H'(Cs"(S; Ex ® A ' N * ) , 3 ) S Hl.(S; 0 (E X ) ) 

where the right hand side is local cohomology along S. 

T H E COMPARISON T H E O R E M 

One of the main results of [56] compares the cohomologies of the complexes (3.8), (3.9) 
and (3.10) with the Zuckerman modules (3.4): 

THEOREM. Fix a basic datum (if, b, x) , let S = G • b C X, and let u =codim^(S C X). 
Then there are canonical isomorphisms 

F ( r w ( G / i J ; E x 0 A # N * ) , 4 ) = H<(C-»{S; E x ® A * N £ ) , d 5 ) 

* H?+c(S;0(Ex)) 

These cohomologies carry natural Frechet topologies. In those topologies the isomorphisms 
are topological and the action of G is continuous. The resulting representations of G are 
canonically and topologically isomorphic to the action of G on the maximal globalization 
ofA0(G,H,b,X). 

Cohomologies of the complexes (3.8), (3.9) and (3.10) play different roles here. The one 
closest to the classical construction, Hq(C~ui(G/H;Ex ® A#N*),dn), fits the orbit picture 
best, essentially as prequantization of a regular semisimple orbit, and it is tied rather 
directly to the Zuckerman construction. The cohomology Hq(C~UJ(S]Ex ® A#N£), c?s) is 
a natural geometric object, and as noted above the geometry of S is tied to the structure 
of the representation of G on that cohomology. Also, the Frechet topologies will come out 
of the geometry of S. if J, (5 ; 0(EX)) is more of an analytic object, and we will need it 
to identify the infinitesimal characters of our representations. 

The complexes (3.8), (3.9) and (3.10) do not have obvious Frechet topologies because 
there is no reasonable topology for hyperfunctions on a noncompact manifold. So we have 
to be cautious about the meaning of the topological part of the theorem. We will see that 
the cohomology of the Cauchy-Riemann complex (3.9) can be calculated from a certain 
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subcomplex that does have a natural Frechet topology. In fact, from ([38], Theorem 3.13), 
that subcomplex will be a complex of strongly nuclear Frechet spaces. A closed range 
theorem carries the topology down to the cohomology of (3.9) and then, through the 
isomorphisms, to the cohomologies of (3.8) and (3.10). 

Now I'll try to indicate the idea of proof of the Comparison Theorem. 

T H E ALGEBRAIC ISOMORPHISMS 

The first isomorphism of the Theorem, as G-modules without topology, is pretty straight­
forward. The Cauchy-Riemann complex (3.9) pulls back to the complex 

(3.11) {C-U(G) ®EX® A*(n/n n n)*}nnH-H, dn>nnlf 

for relative Lie algebra cohomology of (n, n H n) and hyperfunction coefficients. G/H —•• S 
has euclidean space fibres HU/H ~ U, where U is the unipotent Lie group corresponding 
to the real form u0 = u H 0o of u = n H rT. We apply the Poincare Lemma to those 
fibres to see that inclusion of the complex (3.11) in the complex (3.8) induces cohomology 
isomorphisms. 

The isomorphisms H^(C-U(G/H; EX®A#N*), dn) *- # | + C ( S ; 0(EX)) are not as obvious. 
They depend on some local cohomology arguments. 

CONSTRUCTION OF THE TOPOLOGY 

If $ + is a positive root system for (0,fy) that is not maximally real, then there is a 
complex simple root a such that a € — $ + . We use this to construct a maximally real 
positive root system $ m a x , the corresponding Borel subalgebra b m a x G X and the orbit 
5max = G • b m a x , and the associated cuspidal parabolic subgroup P — MAU C G, in such 
a way that 

(3.12) 

Here all fibres are complex submanifolds of X. 

Generally, when W —• U is a Cw fibration, one has a well defined sheaf CyUJ(W) of germs 

of hyperfunctions on W that are C°° along the fibres. Apply this to (3.12) to get CQJP(S). 

Now we have a complex consisting of the differentials ds and the sheaves 

C~"p(S\ E x ® A^NJ) : sections of E x ® APN£ - • S with coefficients in C^p(S) 

Taking global sections we arrive at the partial Cauchy-Riemann complex 

(3.13) CaJP(S;Ex®A'Ns),-ds 

^ Ь и g- b m a x defines a fìbration *Ь "~* *ь m a x , 

9 - Ьmax ^ gP defines a fibration -îщax -• G/P, and 

g • b Һ-* gP defines a fibration 5 -> G/P. 
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Here the basic facts are 

1. The inclusion of (3.13) in the Cauchy-Riemann complex (3.9) induces isomorphisms 
in cohomology. 

2. The CQ(J,
P(S; E X 0 APN£) have natural Frechet topologies. In those topologies, c?s is 

continuous and the actions of G are continuous representations. 

The topologies are constructed as follows. First note that standard hyperfunction theory 
can be developed just as well for functions with values in a reflexive Banach space. Now, 
suppose that V —> M is a C~ vector bundle over a compact C~ manifold M whose 
typical fibre is a reflexive Banach space V. Let V* —• M be the dual bundle. Then 
the space C - U , (M;V) of hyperfunction sections has a natural Frechet topology as the 
strong dual to C~(M\ V*). We use this with V = C°°(F) where F is the typical fibre of 
S —• G/P. In fact C°°(F) is the topological limit of Sobolev spaces Vn of functions on F, 
so V = C°°(F) -» G/P is a limit of Hilbert bundles Vn -+ G/P. Now 

C~Jp(S) = C-~(G/P; C°°(F)) = lim C'U(G/P; V„) 

has a natural topology, G-invariant and c?5-invariant by construction, and Frechet because 
it is given by an increasing family of seminomas. 

TENSORING AND THE UNDERLYING HARISH-CHANDRA MODULE 

Tensoring arguments reduce the proof of the Theorem to a fairly special case. We first 
indicate the properties that behave well with respect to tensoring. 

We say that an admissible Frechet G-module has property ( M G ) if it is the maximal 
globalization of its underlying Harish-Chandra module. We say that a complex (C*,d) 
of Frechet G-modules has property (MG) if (i) d has closed range, (ii) the cohomologies 
Hp(C*,d) are admissible and of finite length, and (iii) each Hp(C*,d) has property (MG). 
Given a basic datum (H, b, x) we say that the corresponding homogeneous vector bundle 
E x —> S has property ( M G ) if the partially smooth Cauchy-Riemann complex (3.13) 
has property (MG). 

Now of course we want to prove that E x —> S has property (MG) for every choice of 
( # , b, x) . But the Comparison Theorem asserts a bit more. HP(S] Ex) = HP(C~~(S\ E x ® 
t\*Ws)yds) is calculated by the Frechet complex (3.13). As ds commutes with projection 
to .fiT-isotypic subspaces we can compute HP(S\EX)(#-) from the subcomplex of .fiT-finite 
forms in (3.13). Those forms are smooth because they are smooth along the fibres of 
S —* G/P by definition, and because K is transitive on the transverse directions. In 
particular they have a formal power series expansion at 1 • H. Now one can use (3.6) to 
define morphisms 

(3.14) E<(S;Ex)lK) -> A*(G,H,b,x). 

The other assertion of the Comparison Theorem is that the maps (3.14) are isomorphisms 
of Harish-Chandra modules. So we say that the homogeneous vector bundle E x —> 5 has 
property (Z) if (3.14) are isomorphisms. 
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Let F b e a finite dimensional G-module, F —» S the associated homogeneous vector 
bundle. Using exactness of the maximal globalization functor one can prove: If E x —• S 
has property (MG) so does E x ® F —• 5; if E x —> S has property (Z) so does E x ® F —i• S. 
However, tensoring has to start somewhere. Consider the condition on (if, b) 

There exist a positive root system $* and a number C > 0 such that: 

(3.15) if E x -> S is irreducible, A = d\ E I)* and the (£A, a) > C for all a G $ + 

then E x —> 5 has both properties (Z) and (MG). 

The tensoring result for properties (MG) and (Z) is the analytic component of 

PROPOSITION. Fix (H, b) and assume (3.15). Then, for all basic data of the form (H, b, x), 
E x —• S has both properties (MG) and (Z). 

MAXIMALLY REAL POLARIZATIONS 

Fix (if, b) with b maximally real. The point is to prove (3.15) deep in some Weyl 
chamber of (g, f)). In doing this, $ + is as in (3.15); it does not denote the positive root 
that defines b. 

Suppose first that H is compact and let $ + correspond to the negative chamber. If 
G is connected an idea of Aguilar-Rodriguez [1] extracts the (Z) assertion of (3.15) from 
Schmid's thesis [50] by using the Bott-Borel-Weil Theorem on an extremal if-type. The 
(Z) assertion of (3.15), for G not necessarily connected, follows by considering the structure 
of S and of Gdisc- And for compact H the (MG) assertion of (3.15) is essentially proved 
in [50]. 

Now suppose that H is not necessarily compact. Let $"*" be the maximally real positive 
root system defined from $ + ( 0 , a ) and —$ + (m, t ) . Compute the Aq(G, H, b ,x) from the 
complex of X-finite Ex-valued forms on G/H with formal power series coefficients. Watch 
the fibration G/H —> S and S —> G/P as in construction of the standard tempered series 
representations and their geometric realizations.. This gives the (Z) and (MG) assertions 
of (3.15). 

At this point of the argument, the Comparison Theorem is proved for maximally real 
polarizations. In the geometric realizations of the tempered series, we used certain results 
that were only published for "sufficiently nonsingular" infinitesimal character. Now we 
have justified the statements of those results without any nonsingularity condition. 

CHANGE OF POLARIZATION 

Now consider (H, b) where the Borel subalgebra b = X}<*e$+ 0-<* *s n o t maximally real. 
Then there is a complex simple root a such that a is negative. We thus have $ J = s a $ + , 
b0 = sQb and S0 = G • b0 , and S fibres over So with fibre exp(ga) • b = C. The point is to 
compare results for (if, b) with results for (if, bo). 
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Let Xa denote the flag manifold of parabolic subalgebras of 0 that are Int(g)-conjugate 
to b a = 0 + g a . The natural projection pa : X —* Xa maps S onto Sa = G -ba with fibre 
C, maps So onto Sa bijectively. We use the fibrations S —+ Sa and 5 0 —• 5 a to compare 
cohomologies over S and 5 0 . In effect, view a nonzero element u)a € (0 -a )* as an element 
of ^-weight a in 0*. Exterior product with u)a with restriction from n0 + 0 _ a to n defines 
e(u)a) : A^nJ —> Ag+1n*. One proves that (—l)qe(u)a) induces a morphism of complexes 

(3.16) CTw(So;Ex ® A*NJ0) -* C"u;(5;Ex ® L_a ® A*+1N*S) 

whose image consists of forms that are holomorphic along the fibres of S —• 5 0 . With that, 
one can reduce the proof of the Theorem to 

_ - . - . - , , » r* - i 2(A + p — a.a) 

Let x be irreducible, ax = A € t) , with —-— not a positive integer. 

Then (3.16) induces isomorphisms, in particular H°(C~u;(S;Ex ® I—a),~8s) = 0. 

The proof of (3.17) is quite technical. 
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