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TWISTOR SPINORS AND SOLUTIONS OF THE EQUATION (E) ON 

RIEMANNIAN MANIFOLDS 

by-

Thomas Friedrich (Berlin) and Olga Pokorna (Prague) 

1. Introduction 

Let Mn be a Riemannian spin manifold and denote by R its 

scalar curvature. The conformally invariant twistor operator £) 
acting on sections \y of the spinor bundle S is defined by 

the covariant derivative and the projection onto the kernel 

of the Clifford multiplication. The kernel Ker($) of this 

operator is the space of all spinor fields Y satisfying the 

first order differential equation 

V x ^ + 1 X-D \j> - 0 4l> 

where D denotes the Dirac operator (see £3],[4]). 

Killing spinors, i.e. spinor fields satisfying for some complex 

number \6(C the equation 

Vxiy =\ X"-\p 42> 

are special solutions of the twistor equation. A. Lichnerowicz 

(see [5]) studied the so-called equation (E) for spinor fields: 

7x(Dvy) + 4(nLi) **M> = 0. 43> 

In particular, A. Lichnerowicz proved that if a connected 

Riemannian manifold admits a non-trivial solution of the 

equation (E) then its scalar curvature R is constant. 

Consequently, in case of a compact Riemannian manifold the space 

of all twistor spinors coincides with Ker(E) and with the space 
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of all Killing spinors (see [2]). The aim of this note is to 

compare the kernel of the twistor operator with the space 

Ker(E) of all solutions of equation (E). 

2. A relation between Ker(E) and Ker(^)). 

We consider a Riemannian spin manifold (Mn,g) with a non-

trivial solution of equation (E). Then its scalar curvature 

R is constant. 

Proposition 1: 

Ker(E) = Ker(D2- 4 ( g . ^ ) r\ D^1(Ker( £ )) 

Proof: If \f> C Ker(E) we obtain from equation -< 3 > 

D V £_ e..Vei(DV) - - Z. ^-^TJ W = 4THrrĵ  ' 

2 n R 

i . e . \|> belongs to the kernel of the operator D - XTfrrrr* 

Furthermore, we have 

VX(D^) + 1 x.D(D\y)- 7x(DvJ?) + 1 X- 4 ( " . i ) V y = 

and, consequently, DV(; is a twistor spinor. Conversely, if 

>4>CKer(D2 - 4(n„i))o D"'
1(Ker( £))) then we have 

D2y= 4(",i) \p
 as w e l 1 as Vx(0vv) + ̂  X-D(D^) = 0 and Y 

belongs to Ker(E). 

Theorem 1: Let (Mn,g) be a Riemannian spin manifold with 

constant scalar curvature R ^ 0. Then the map 

Ker(E) B\|> > D \p e Ker(<£0 

is an isomorphism. 

Proof: By proposition 1 the map is well-defined. If Diy * 0 
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and \V£ l< e r (E . ) the equation <£3> implies 

^ - - r j x ^ - o-

Since R / 0 we conclude \v = 0, i . e . the map Ker(E) —=> Ker(JD ) 

is i n j e c t i v e . On the other hand, given a twistor spinor 

q?£Ker(.£>) we consider 

The„ . . . i S n j l l . V ^ l&bf* 
and V X ( D ^ ) + 4 (

R . 1 ) X.\p = 

- V x ( c f ) + J X.Df = 0. 

This means that \o belongs to Ker(E) and is the preimage of 

Cf, i.e. the map Ker(E) > Ker(^)) is surjective. 

Corollary: Let (Mn,g) be a connected Riemannian manifold with 

scalar curvature R / 0. Then rrn .. 
L2J+ X 

dim Ker(E) = dim Ker( -8) -̂  2 

Proof: see [3]. 

Proposition 2: If -\p£Ker(E) and R / 0 then 

v x >- RTSIT
 ( r r f c r j x - wc(x))-ov . 

Proof: If \p belongs to Ker(E) then by proposition 1 D-y is 

a twistor spinor. The general Lichnerowicz formula 

VDc?> " sr fer (3.rfer7 x ' * " R l c ( x ) * f > <*> 
valid for any twistor spinor cp (see [4]) now yields 

Vx (DS> a 2TiW (5lfelT x - WC(X)).DV . 
Moreover, since -u>eKer(E) it satisfies the equation 
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D ^ = ^ ň - T J ^ 
and we obtain 

*fe=I7Vx*r YŮ=Ž1 ( ^ T J x ~ R i ' ( x ) ) . D y 

Theorem 2: 
a) Let (Mn,g) be an Einstein manifold with scalar curvature 

R £ 0. Then Ker(E) and Ker(^9) coincide, i.e. 

Ker(E) = Ker(£)). 

b) Let (Mn,g) be a connected Riemannian manifold such that 

Ker(E)r\ Ker( £)) t {0^. Then (Mn,g) is an Einstein space. 

Proof: Suppose first that Mn is an Einstein space, 

Ric(X) = - X. If vf>e Ker(E) we obtain from proposition 2 

V*XM> - S f e # (2lfcTJ x " « C ( X ) ) - D V . - \ X-DVK 

and y is a twistor spinor. Conversely, if H>^Ker(.0) we 

use the Lichnerowicz formula <4> 

^x(DY> = T&=T> ( ^ T J x " Ric<x»'V 

which reduces in an Einstein space to 

VX<
DM>> + i r r i b r j x " * = °-

This means that in an Einstein space every twistor spinor is a 

solution of equation (E). We consider now an arbitrary Riemannian 

manifold as well as a non-trivial solution \y e Ker(E) n Ker(£) ). 

Using the formulas <3> and<4>we obtain the condition 

- ̂ T T X'V ' !>TH-2T (^TlbT7 x " R i c ( x»* ̂  
and, finally, 

Ric(X)*y -= £ X *\|> . 

Since y is a twistor spinor, the zeroes of iy are isolated 

points (see [3*]) and therefore we conclude 

Ric(X) = § X, 

i.e. Mn is an Einstein space. 
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3. An example 

2 
Let M be the simply connected Riemannian surface with constant 

2 
scalar curvature R. Then M admits two Killing spinors cf 

and \j; . According to the decomposition of the spinor bundle 
+ - 2 

S = S © S on M we decompose the Killing spinors into 

U> = \y + \ f" / c f = t f + cf"« we consider the three-dimensional 
3 2 1 

Riemannian manifold M = M x R . The general solution of 
3 2 1 

equation (E) on M = H x R (case R< 0) is given by 
l|/ ( x , t ) = { A Q C O S ( | t ) + A s i n ( | t ) J \ j ; + ( x ) + 

+ JA Q s i n ^ ^ " A l c o s ^2 fcH Y " ^ x ^ + 

+ {BQ c o s ( | t ) + B1 s i n ( | t ) J c f + ( x ) + 

+ | -B o s i n ( | t ) + B1 cos ( | t ) y c p " ( x ) . 
3 2 1 A similar formula we can get on M = S x R (case R >0): 

y(x,t) = [AQ cosh(| t) + A1 sinh(| t) J- y +(x) -

- i |Ao sinh(| t) + A± cosh(| t)Jl^"(x) + 

+ JBQ cosh(| t) + B± sinh(| t) J cp
 +(x) + 

+ i | BQ sinh(| t) + B1 cosh(| t)jcp"(x). 
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