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HIGHER ORDER GEODESIC SYMMETRIES 

A. Garcia1, J. A. Jimênez2, and C. U. Sánchez1 

§1. Introduction 

Let (M, < , > ) be a connected, complete C -Riemannian manifold. A 

symmetry at a point x in M is an isometry s : M -*• M that has x as 

an isolated fixed point. An s-structure (of order k, k ^ 2) on M is a 

family of symmetries (of order k), (s ) , x 6 M. The main purpose of this 

note is to announce various results of manifolds that admit s-structures 

of order k. These manifolds are called pointwise Riemannian k-symmetric 

spaces. The final details will appear elsewhere. (For generalities on the 

subject see [Ko].) 

§11. The homogeneous structure of pointwise Riemannian k-symmetric spaces 

1. Pointwise Riemannian k-symmetric spaces are homogeneous manifolds (see 

e.g. [Ko]). However, their homogeneous structure is, in general, more 

complicated than that of the symmetric spaces of Cartan. To be more 

precise, an ordinary symmetric space M can be represented as a homo­

geneous space M = G/H, where G is a transitive group of isometries 

that admits an automorphism o of order two such that 

(1.1) (Ga)0 c H c G° , 

where (G ) denotes the identity component of the fixed point set (G ) 

of a. It is natural to ask if a pointwise Riemannian k-symmetric space 

admits such a representation with a an automorphism of order k of G. 

It turns out that the answer is no. In fact, 0. Kowalski [Ko] has shown 

S n with the metric induced as a geodesic sphere in complex projective 
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space admits an s-structure of order four for which the above property 

fails. This leads us to introduce the following: 

2. Let (M, < , > ) be a pointwise k-symmetric space of order k. The 

s-structure (s ), x € M, is said to be regular, if the symmetries 

satisfy the relation: 

s os = s os , 
x y p x 

where x and y are any points in M, and p = s (y). In this case M 

is called a (regular) Riemannian k-symmetric space. 

It turns out that Riemannian k-symmetric spaces are precisely the 

pointwise Riemannian k-symmetric spaces whose homogeneous structure is 

analogous to that of the symmetric spaces of Cartan. More precisely (see 

e.g. [Ko]): let G denote the identity component of the closure in I(M) 

(the group of isometries of M) of the group generated by the symmetries 

(s ). Then G acts transitively on M. Furthermore, let H denote the 

isotropy group of G at a point o in M, so that M = G/H. Then 

o~ : G -*• G, defined by o~(g) = s °g«s , is an automorphism of G of 

order k that satisfies (1.1). Conversely, given a triple (G,H,o) with 

o an automorphism of order k of G that satisfies (1.1), then G/H 

can be made, in a natural fashion, into a k-symmetric space. 

In the next section we state various results concerning the nontriv-

ial existence of pointwise and regular Riemannian k-symmetric spaces. 

Denote these two classes of spaces by (P) and (R) respectively. We 

shall see that the inclusion (R) c (?) is strict from a differentiable 

viewpoint. 

§111. Existence of (pointwise) Riemannian k-symmetirc spaces 

1. The most readily available examples are those of regular Riemannian 

k-symmetric spaces: ordinary Riemannian symmetric spaces are clearly 

regular 2-symmetric. 3-symmetric spaces of reductive type have been 

classified by J. A. Wolf and A. Gray [W-G]. k-symmetric spaces of dimen­

sion ii 5 have been classified by 0. Kowalski [Ko]. Compact simply 

connected 4-symmetric spaces have been classified in [J-l] (see also [G-J] 

for the reductive case). Furthermore, a large class of examples is 
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obtained as follows: 

Theorem A ([J-2]). (i) Let M = G/H be a Kahler C-space, then there 

exists an integer k > 2, such that for any k >, k , the space admits 

a regular s-structure of order k that makes the space into an Hermitian 

k-symmetric space. 

(ii) Let M = SU(k )/T, where k s 2, and T is a maximal torus of 

SU(k ). Then M is a Riemannian k-symmetric space for any k >. kn , and 

with respect to any SU(k )-invariant metric. Furthermore, M cannot be 

endowed with a Riemannian metric that admits a regular s-structure of 

order < k . 

Remark. Part (ii) shows that for each k _£ 2, the classes (R ) of 

regular Riemannian k-symmetric spaces are essentially distinct from a 

differentiable viewpoint. Our next theorem states that the inclusion 

(R) c (?) is strict from a differentiable viewpoint. 

2. Theorem B ([J-3]). Let M = V 0 be the real Stiefel manifold of 
n,n-z 

orthonormal 2-frames in Euclidean n-space. Regard M as the homogeneous 

space S0(n)/S0(n-2) endowed with the SO(n)-invariant metric < , > 

induced by the negative of the Killing form of SO(n). Assume that n is 

even, n = 2q, and that n > 30. Then (M, < , > ) is a pointwise 

Riemannian k-symmetric space for any k = 2m, m >. 2. Furthermore, M is 

not diffeomorphic to the underlying manifold of a regular Riemannian 

h-symmetric space for any h >. 2. 

Remark. It should be pointed out that the underlying manifold of most 

Stiefel manifolds (real, complex, or symplectic) can not be endowed with 

the structure of a pointwise Riemannian h-symmetric space for h ^ 2 (see 

loc. cit.). In this context, a natural problem is that of determining for 

a given differentiable manifold M all possible Riemannian metrics on M 

that admit (regular) s-structures, and of what orders. This brings us to 

our next subject matter. 

*>IV. Regular s-structures of finite order on compact Riemannian 

symmetric spaces 
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Let (M, < , > ) be a Riemannian manifold. The degree of symmetry 

o'f the metric can be measured by determining whether or not the metric 

admits regular s-structures and if so, of what order. For example, in 

this setting, Hermitian symmetric spaces of Cartan are the most symmetric 

since they admit regular s-structures of order k for all k >- 2. It is 

natural to ask if non-Hermitian symmetric spaces admit regular s-struc­

tures of order k for some k > 2. This was done for spheres by the third 

named author in [Sa] by means of the theory of extrinsic k-symmetric 

spaces. The next theorem gives a more general answer in the case of posi­

tive Euler characteristic. 

Theorem C ([J-S]). Let (M, < , >n) be a compact simply connected irre­

ducible Riemannian symmetric space with positive Euler characteristic. 

Then, 

(i) if M is not a Hermitian symmetric space, the Riemannian metric 

< , >n is the only metric on M (up to homothety) that admits regular 
6 

s-structures of order k ̂  2. Furthermore, save for M - S , the geo­
desic involutions are the only possible regular s-structure on M. If 

f\ ft 
M = S , then the representation of S as the coset space G /SU(3) 

z: 2 
renders S as a 3-symmetric space. 

(ii) if M is a Hermitian symmetric space, the metric < , > admits 

regular s-structures of order k, for all k >. 2. Furthermore, save in the 

following cases, the metric < , > is, up to homothety, the only metric 

on M that admits regular s-structures: 

(a) M = (DP represented as Sp(n4-l)/Sp(n)xU(l), or 

(b) M =- S0(2n)/U(n) represented as S0(2n-1)/U(n-1), or 

(c) M - SO(7)/SO(5)xSO(2) represented as G /U(2). 

In these last three cases, M has a one-parameter family of non-symmetric 

metrics < , > » t > 0, that admit regular s-structures of order k, for 

any k >- 3. 
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Remark. In the case of zero Euler characteristic, the topological classi­

fication is far from complete. Thus our results are not as definite as in 

the case of positive Euler characteristic. We can prove the following 

Theorem D ([J-S]). Let (M, < , > ) be a compact simply connected irre­

ducible Riemannian symmetric space with zero Euler characteristic. Assume 

that M = G/H with G simple, and G = I(M)n- Then the only regular 

s-structure that (M, < , > ) admits is precisely that obtained from the 

geodesic involutions. 

§V. Differences between Cartan symmetric spaces and Riemannian 

k-symmetric spaces with k > 2 

Although (regular) Riemannian k-symmetric spaces have a similar homo­

geneous structure to Riemannian symmetric spaces of Cartan, their theory 

has some major differences: 

1. It is well known that the algebra of G-invariant differential opera­

tors P(G/H) on the homogeneous space G/H is commutative if (G,H) is 

a symmetric pair (see e.g. [H-2]). By contrast, (SU(k),T), T a maximal 

torus of SU(k) is a k-symmetric pair (see II above), and yet, 

D(SU(k)/T) is non-commutative for k > 2 (see e.g. [H-2, p. 243]). 

Furthermore, since (see e.g. [J-2]) I(SU(k)/T) «- SU(k)/Z with respect 

to any SU(k)-invariant metric, it follows that these spaces provide ex­

amples of non-commutative naturally reductive spaces (see loc. cit. for 

more details). 

2. Duality fails. Given a compact Riemannian 4-symmetric space it is 

possible to associate, in a natural way, a non-compact dual. However, 

the classification in [G-J] shows that this does not exhaust all non-

compact Riemannian 4-symmetric spaces. 

3. A Riemannian k-symmetric space with k > 2 may have non-equivalent 

regular s-structures. For example, the 3-symmetric space 

S0(2n+2)/U(n)xU(l) admits two non-equivalent 4-symmetric structures whose 

fibrations are described as follows (see [J-2], and (b) and (c) below): 
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Base Space Fiber Space 

SO(2n+2)/U(n+l) U(n+1)/U(n)xU(l) 

SO(2n+2)/SO(2n)xSO(2) S0(2n)/U(n) 

4. The classification in [G-J] shows the existence of non-compact Rie-

mannian 4-symmetric spaces G/H with G a non-compact simple Lie group 

that cannot be endowed with G-invariant naturally reductive Riemannian 

metrics. 

5. Almost complex structures on k-symmetric spaces, invariant under the 

symmetries, are not necessarily integrable for k > 2. 

On the positive side, we can say the following: 

(a) Riemannian k-symmetric spaces, with k odd, have associated in a 

natural fashion an almost-complex structure. This structure was used by 

A. Gray in [Gr] to give a characterization of 3-symmetric spaces in terms 

of their curvature tensor 

(b) Riemannian k-symmetric spaces, with k even, can be regarded, in a 

natural fashion, as fiber bundles over ordinary symmetric spaces whose 
k 

fibers are complete totally geodesic submanifolds which are regular y-sym­
metric spaces as well (see e.g. [J-l] and [G-J] for a detailed description 

of these fibrations for k = 4). Furthermore, these spaces have associat-
3 

ed an f-structure (f + f = 0) wl 

complex structure (see e.g., [Ra]). 

3 
ed an f-structure (f + f = 0) which plays the analogous role of a 

(c) The fibrations in (b) provide a generalization of the twistor fibra­

tions used to study harmonic maps (see e.g., [Bu], [S] and [Ra]). 

§VI. Outline of the proofs 

1. Theorem A part (i): In this case, H is the centralizer of a torus 

S of G (see [Be])- Thus, one has to chose an element s € S so that 

conjugation with respect to s in G defines an automorphism cr of 

order k that satisfies (1.1). 

2. Theorems A (part (ii))* B, and C, are proved in a similar way. For a 
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given manifold M, one has to proceed as follows: 

2.1. Determine all possible representations of M as a homogeneous space 

G/H, with G as a compact connected Lie group acting effectively and 

transitively on M. This part is clearly topological in nature. See 

[J-2], [H-S], [0,1], and [Sh]. 

2.2 Given any such a representation G/H, determine whether or not G 

has finite order automorphisms a for which (1.1) holds true. If such 

automorphisms exist, determine all possible orders. For this part, the 

structure theory of finite order automorphisms of complex semisimple Lie 

algebras is of fundamental importance. See e.g. [H-l], and [W-G]. 

3. Theorem D is proved as Theorem C, but the topological part has to be 

replaced by its Riemannian counterpart. Namely, at this time, only the 

representations G/H of M with G a subgroup of I(M, < , > ) are 

available ([0-1]) for general M. 
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