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R E P O R T O N K - T H E O R Y FOR C O N V E N I E N T A L G E B R A S 

Andreas Cap1 

0. INTRODUCTION 

Studying topological K-theory one is led to K-theory of Banach algebras by replac­
ing bundles by the spaces of their sections. In fact the simplest proofs of some basic 
results in topological K-theory, in particular of Bott periodicity, heavily use Banach 
algebra techniques. In several applications of topological K-theory, notably to index 
theorems, the objects one is interested in are not general compact spaces and topolog­
ical vector bundles but compact smooth manifolds and smooth vector bundles. So in 
fact passing to the algebraic side one should work with algebras of smooth functions 
which are only Frechet algebras. This becomes more important if one is looking for 
non commutative analogs of algebras of smooth functions. On the other side there are 
quite simple topological algebras like the real or complex group algebra of an infinite 
discrete group which are not even Frechet and it would be nice to have some sort of 
topological K-theory for such algebras. 

This paper is a short report on the first step of a project, the aim of which is 
to generalize techniques and results of topological K-theory from Banach algebras 
to a much more general class of algebras which contains all complete locally convex 
algebras. A detailed exposition will appear elsewhere. 

There arises one serious problem at the beginning of such a generalization: One of 
the most important techniques of K-theory for Banach algebras is to relate the K-
groups of an algebra A to the stable topology of the topological groups GLn(A) of A-
module automorphisms of An. For a Banach algebra A the group GLn(A) is the group 
of invertible elements in the Banach algebra of all n x n matrices with entries from A 
and thus it is open in this space and a topological group. This situation completely 
changes if one passes to more general algebras, since in this case invertible elements 
do not form open sets in general, the composition maps in spaces of continuous linear 
maps need not being jointly continuous and the inversion also is not continuous in 
general. 

This difficulty can be overcome by forgetting about topology and passing to smooth 
structures in the sense of [Frolicher, 1980, 1981]. It then turns out that for any 
convenient algebra there is a natural smooth structure on the set of invertible elements 
such that the multiplication and inversion maps are smooth. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
1 Supported by project P 7724 PHY of Tonds zur Forderung der wissenschaftlichen Forschung* 
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1. S MOOTH SPACES AND CLASSIFYING SPACES OF SMOOTH GROUPS 

1.1. Definition. A smooth space is a set X together with a set of curves Cx C XR 

and a set of functions TX CRX such that 
(1) For any c G Cx and any / £ TX we have / o c G C°°(R, R). 
(2) The curves and functions determine each other in the following sense: If c G XR 

is such that / o c G C°°(R, R) for any / G TX then ceCx, and if / G R x is such that 
/ o c G C°°(R, R) for any c G Cx then / G Tx. 

A map / : X —:• Y between smooth spaces is called smooth iff it satisfies one of the 
following equivalent conditions: 
(1) / o c G CY for all c G Cx 
(2) <p o / G Tx for all tp G TY 

(3) <p o / o c G C°°(R, R) for all <p G Ty and all c G Cx 
Let C°° denote the category of smooth spaces and smooth maps. 

1.2. There is an obvious notion of the smooth structure generated by a given set of 
curves or real valued functions. Using this one easily concludes that the category C°° 
has initial and final structures with respect to the forgetful functor to the category of 
sets and thus is complete and cocomplete. 

Note that this implies that several standard constructions of homotopy theory like 
cones, suspensions, mapping cylinders and so on which can be defined as push outs, 
can also be done for smooth spaces. Moreover there is a natural notion of homotopies 
so that it is clear what is meant by the set of homotopy classes of smooth maps 
between two smooth spaces. 

Next it turns out that for smooth spaces Y and Z there is a natural smooth struc­
ture on the set C°°(Y, Z) of all smooth functions, such that a map / : X —• C°°(Y, Z), 
where X is an arbitrary smooth space, is smooth if and only if the canonically as­
sociated map / : X x Y —• Z is smooth. Thus the category of smooth spaces is 
cartesian closed, i.e. there is a natural isomorphism (which is even a diffeomorphism) 
C°°(X, C°°(Y, Z)) £ C°°(X x Y, Z). (For a proof see [F-K, 1.1.7 and 1.4.3]) 

1.3. Examples . (1) Any finite dimensional smooth manifold with its usual smooth 
curves and real valued functions is a smooth space. By a theorem of [Botnan, 1967] 
the definition of smoothness given in 1.1 coincides with the usual one for functions 
from Rn to R, and from this one easily concludes that this also holds for maps between 
finite dimensional smooth manifolds. 
(2) Any topological vector space has a natural smooth structure, namely the one 
generated by its topological dual. It is shown in [F—K, 4.3.16] that for maps between 
Banach spaces smoothness in the sense of 1.1 coincides with smoothness in the usual 
sense. 

1.4. Natural topologies on smooth spaces . On a smooth space there are two 
obvious natural topologies. First there is the final topology with respect to all smooth 
curves which is important in the theory of convenient vector spaces, and second there 
is the initial one with respect to all real valued smooth functions. We denote these 
topologies by TC and T>-, respectively. By definition a smooth function between smooth 
spaces is continuous if one puts on both spaces either the TC or the TF topology. 
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Definition. (1) A base space is a smooth space for which the two natural topologies 
coincide and are compact. 
(2) A smooth space is called smoothly paracompact iff any rj—open covering has a 
subordinate smooth partition of unity. 

1.5. Definition. (1) A smooth group is a group with a smooth structure such that 
the multiplication and inversion maps are smooth. 
(2) For a smooth group G and a smooth space X we define a smooth principal G-
bundle over X as usual in differential geometry as a locally trivial (with respect to 
the 7> topology) fiber bundle with fiber G and smooth transition functions acting as 
left translations. 

1.6. Let G be a smooth group. We want to construct a classifying space for G as 
a smooth variant of Milnor's construction. So we consider the set of all sequences 
(*i>0i)i€N> where ti G [0,1] and </, £ G such that only finitely many ti are nonzero 
and $3.ei\|*i = *' ^ n ^ s se* w e ^ e n n e a n equivalence relation by (U>9i) ~ (tii9i) ^ 
and only if U = t\ for all i and gi = g\ for those i for which U is nonzero. Let EG 
denote the set of equivalence classes. 

Let c : R —• EG be a curve. Then c(t) = (ci(t),Ci(t)) where the Cj are curves into 
[0,1] and the c,- are curves into G. On EG we put the smooth structure generated by 
the set of all curves c : R —+ EG such that for any i the curve Cj is a smooth curve into 
[0,1] and the restriction Cj \ cj"1((0,1]) : cj"1((0,1]) —* G is smooth. Now it turns out 
that the smooth curves for this structure are exactly those which have this property. 

Next we define a right action of G on EG by (Ui9i)m9 : = (*•? 9i '9)- Then this action 
is immediately seen to be smooth and free and we define BG to be the set of orbits 
with the final smooth structure with respect to the natural mapping p : EG —* BG. 
Then one easily shows that p : EG —* BG is a smooth principal G-bundle. 

Repeating the classical proofs for Milnor's construction with several changes one 
proves the following 

1.7. THEOREM. For any smoothly paracompact space X there is a bijection between 
the set of all isomorphism classes of smooth principal G-bundles over X and the set 
of smooth homotopy classes [X, BG]. 

1.8. Remark. It turns out that the constructions of associated bundles and frame 
bundles can also be carried out in the smooth category. Thus the space BG is also 
classifying for smooth fiber bundles with fixed fiber, fixed structure group and fixed 
action of the structure group. In particular this can be applied to the group Diff(.X) 
of all smooth functions from a smooth space X to itself which have a smooth inverse 
(it is shown in [F—K, 1.4.8] that this is a smooth group), to conclude that the smooth 
space .BDiff(A') is classifying for smooth fiber bundles with fiber X and without 
structure group. 

2. CONVENIENT VECTOR SPACES, ALGEBRAS AND MODULES 

2.1. Definition. (1) A smooth vector space is a real vector space E provided with 
a smooth structure such that the addition E X E —• E and the scalar multiplication 
R X E —• E are smooth maps. 
(2) A smooth vector space is called convenient iff its smooth structure is generated by 
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some set of point separating linear functionals and for any smooth curve c : R -* E 
there is a smooth curve c : R —i• E such that for all smooth linear functionals A : E —• R 
w e h a v e £ | 0 ( A o c ) ( t ) = A(c(0)). 
(3) For convenient vector spaces E and F we write L(E, F) for the vector space of all 
smooth linear maps from E to F and we write E1 for L(E, R). 

2 .2 . On a convenient vector space E there is a canonical locally convex topology, 
namely the finest one for which E1 becomes the topological dual of E. (c.f. [F—K, 
2.1.9]). On the other hand on any locally convex vector space we can consider the 
smooth structure generated by the topological dual. It turns out that the resulting 
smooth vector space is convenient if and only if the locally convex vector spaces is 
Hausdorff and satisfies the following completeness condition (called c°°-completeness 
or Mackey completeness): Every sequence (xn) such that there are positive reals tm>n 

with limm)n-H.oo tm>n = oo such that the set of all t m > n (x m — xn) is bounded in E (such 
a sequence is called a Mackey-Cauchy sequence) converges (weakly). 

So we can view any separated c°°-complete locally convex vector space as a conve­
nient vector space. It turns out that a linear map between two such spaces is smooth if 
and only if it is bounded. In fact one shows that the constructions described above es­
tablish an equivalence between the category of convenient vector spaces and smooth 
linear maps and the category of separated c°°-complete locally convex spaces and 
bounded linear maps, and we will always identify these two categories. Note that two 
locally convex vector spaces can be isomorphic as convenient vector spaces without 
being isomorphic as locally convex spaces. 

2 .3 . As by definition a convenient vector space is a smooth space it also carries the 
canonical topologies defined in 1.4 and in particular the r^-topology which is also 
called c°°-topology or Mackey-closure topology. (We will use the notation c°°-closed 
for closed in this topology etc.) 

In general the c°°-topology on a convenient vector space is not a vector space topol­
ogy since the addition is only partially continuous. It turns out that the (bornological) 
locally convex topology constructed in 2.2 is the finest locally convex topology which 
is coarser than the c°°-topology. A condition which ensures that the two topologies 
coincide is that the locally convex topology is metrizable. 

2.4. We list without proofs some facts about the category Con of convenient vector 
spaces and smooth linear maps. Proofs of these results can be found in [F—K]. 
(1) The category Con is complete and cocomplete. 
(2) c°°-closed linear subspaces of convenient vector spaces are again convenient. 
(3) If X is a smooth space and E is a convenient vector space then the space C°°(X, E) 
is a convenient vector space. 
(4) For convenient vector spaces E and F the space L(E,F) is a c°°-closed linear 
subspace of C°°(E, F) and thus convenient. 
(5) Multilinear maps between convenient vector spaces are smooth if and only if they 
are bounded. 

2.5. Definition. A convenient algebra is a convenient vector space A together with 
a bilinear bounded map n : A x A -+ A such that A is an associative algebra with 
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multiplication \i. We will always assume that the algebra A has a unit and that all 
homomorphisms preserve the units. 

For a convenient algebra A we denote by Aop the opposite algebra to A, which 
obviously is also a convenient algebra. 

2.6. Examples . (1) Let E be a convenient vector space. Then the composition map 
o : L(E, E) x L(E1 E) —* L(E, E) is smooth by cartesian closedness of the category 
of smooth spaces. Thus (L(E, E), o) is a convenient algebra. 
(2) Let X be a smooth space, A a convenient algebra and consider the space C°°(X, A) 
which is a convenient vector space by 2.4(3). Using cartesian closedness one easily 
shows that the point wise multiplication in C°°(X, A) is smooth and thus C°°(X, A) 
with the point wise operations is a convenient algebra. In particular this applies to 
C°%Y,R). 

2.7. To establish the correspondence between convenient algebras and smooth groups 
one easily proves the following result: 

PROPOSITION. Let A be a convenient algebra. By A* we denote the set all invertible 
elements of A. Let i : A* —• A be the inclusion and let v : A* —• A be defined by 
v(a) := a"1. Then A* with the initial smooth structure with respect to the maps i 
and v is a smooth group. 

2.8. Convenient modules . Let A be a convenient algebra. A convenient right 
module over A is a convenient vector space M together with a bounded homomor-
phism of algebras pM ' Aop —• L(M, M). If M and N are convenient right A-modules 
then a module homomorphism / : M —• N is a bounded linear map such that for all 
a £ A we have PN(<*) ° / = / ° PM(<*)- By HomA (M ,N ) we denote the space of all 
module homomorphisms. One easily verifies that this is a c°°-closed linear subspace 
of L(My N) and thus a convenient vector space. 

Concerning the categorical properties of modules one has the following 

THEOREM. For any convenient algebra A the category of convenient right A-modules 
and bounded module homomorphisms is a complete and cocomplete additive category. 

2.9. Definition. Let A be a convenient algebra. A finitely generated projective 
right .A-module is a convenient right A-module P for which there exists a convenient 
right .A-module Q such that for some n we have P @Q = A n , the n-fold direct sum 
of copies of A. By V(A) we denote the category of finitely generated projective right 
A-modules and bounded module homomorphisms. Using theorem 2.8 one proves: 

PROPOSITION. For any convenient algebra the category V(A) of finitely generated 
projective right A-modules is a pseudo-abelian category, (c.f. /Ka, 1.6.7]) 

2.10. On the category of convenient vector spaces there is a tensor product ® which 
has the universal property for bounded bilinear maps (c.f. [F -K, 3.8.4]). This tensor 
product can be used to define for a convenient algebra A a tensor product over A which 
associates to a convenient right A-module M and a convenient left A-module N a 
convenient vector space MgUN , which has the universal property that any bilinear 
bounded map / : M X N -* E into an arbitrary convenient vector space such that 
/ (p(a)(m), n) = / ( m , X(a)(n)) induces a unique bounded linear map / : M®AN —> E. 
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(Here p denotes the right action of A on M and A denotes the left action of .A on .AT.) 
This tensor product has the property that if N is also a right module over a convenient 
algebra B such that the actions of A and B commute then there is a natural right 
S-module structure on M®AN. 

Now let <p : A —* B be a bounded homomorphism of convenient algebras. Then 
via <p we get a left A-module structure on B and so for a right A-module M we can 
form the convenient vector space M®AB which is then a right B module. Using this 
construction one proves: 

PROPOSITION. Any bounded algebra homomorphism <p : A —> B between convenient 
algebras induces an additive functor V(<p): V(A) —• V(B). 

3 . K-THEORY FOR CONVENIENT ALGEBRAS 

3 .1 . Definition. Let A b e a convenient algebra, X a base space (c.f. 1.4). An A -
bundle over X is a locally trivial smooth fiber bundle over X such that any fiber is 
a finitely generated projective right .A-module and such that the transition functions 
are module homomorphisms. We allow the isomorphism type of the fibers to be 
different over different connected components of X. 

A morphism between two A-bundles over X is a fiber respecting smooth map such 
that the restriction to each fiber is a module homomorphism. 

By £A(X) we denote the category of all A-bundles over X and their morphisms. 
Using the fibered product in the category of smooth spaces as the definition of the 

direct sum of two A-bundles over X one shows: 

3.2. PROPOSITION. For any convenient algebra A and any base space X the category 
£A(X) is additive. 

3 .3 . Our next task is to derive an analog of the theorem of Serre and Swan, i.e. to es­
tablish a correspondence between A-bundles over X and modules over the convenient 
algebra C°°(X, A) via sections of the bundles. First one shows that for a locally trivial 
vector bundle over a smooth space with fiber a convenient vector space, the space of 
sections is in a natural way a convenient vector space. (In fact this result holds for 
a more general class of Vector bundles', see [F—K, 4.6.15]). Next one verifies that 
for an A-bundle over X the point wise action of the convenient algebra C°°(X, A) 
on the space of sections of the bundle defines a convenient right C°°(X, A)-module 
structure. To show that these modules are finitely generated and projective one needs 
the following 

LEMMA. Let A be a convenient algebra, X a base space, n : E —• X an A-bundle 
over X. Then there is a natural number n and a homomorphism of A-bundles p : 
X x An - • X x An such that p o p = p and E ^ Ker(p) as an A-bundle over X. 

In the case of a Banach algebra A one can prove more: In this case for any morphism 
on an A-bundle which is a projection, the kernel is again locally trivial and thus an 
A-bundle. In particular this implies that any A-bundle is a direct summand in a 
trivial one. But the proofs of these results use heavily the fact that the invertible 
elements of a Banach algebra form an open subset. Since already for quite simple 
convenient algebras the sets of invertible elements are not even c°°-open (c.f. [F—K, 
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5.3.6]), I do not think that these results remain true for convenient algebras, although 
I do not know explicit counter examples. 

3.4. It is a general theorem that to any additive category one can associate a pseudo-
abelian category which has a certain universal property and is uniquely determined up 
to equivalence (c.f. [Ka, 1.6.10]). Now we can formulate the analog of the Serre-Swan 
theorem as follows: 

THEOREM. The pseudo-abelian category associated to the additive category £A(X) 
is equivalent to V(C°°(XyA)). 

The results on Banach algebras mentioned at the end of 3.3 immediately imply that 
in this case the category £A(X) itself is pseudo-abelian and thus one gets: 

COROLLARY. If A is a Banach algebra and X is a base space then the categories 
£A(X) and V(C°°(X,A)) are equivalent. 

3.5. If X and Y are base spaces, / : X —» Y is a smooth map and E is an A-bundle 
over Y then one easily verifies that the pullback (in the category of smooth spaces) 
f*E is an A-bundle over X. Moreover the pullback commutes with direct sums and 
thus / induces an additive functor £A(I) - £A(Y) —• £A(X). 

On the other hand suppose that <p : A —• B is a bounded algebra homomorphism 
between convenient algebras. Then one shows that for any finitely generated projec­
tive right A-module P the functor V(<p) constructed in 2.10 induces a smooth map 
B(Aut(P)) —• B(Aut(V(y>)(P))) between the classifying spaces of the smooth groups 
of module automorphisms. Now let E be an .A-bundle over a base space X. Then 
over each connected component of X the restriction of the bundle is classified by a 
smooth map (in fact a homotopy class) into B(Aut(P)) for some finitely generated 
projective right .A-module P. Composing the classifying maps with the maps con­
structed above one gets a smooth .B-bundle over X and one verifies that via this 
construction ip induces an additive functor £^(X) : £A(X) —• £B(X). 

3.6. Definition. (1) Let C be an additive category. We define the Grothendieck 
group K(C) of C to be the universal abelian group associated to the commutative 
monoid of all isomorphism classes of objects of C 
(2) For a convenient algebra A we put Ko(A) := K(V(A)). 
(3) For a convenient algebra A and a base space X we define KA(X) := K(£A(X)). 
Using the results of 2.10 and 3.5 one immediately concludes that A i-> Ko(A) is a 
covariant functor and that (A,X) i—• KA(X) is a functor which is covariant in A and 
contravariant in X. 

It is also possible to define higher K-groups via suspensions but we will not consider 
these groups in this paper. 

3.7. Our final task is to give a homotopy theoretic interpretation of the group KA(X). 
For an .A-bundle over X we get a locally constant function X —• KQ(A) by assigning 
to each point the isomorphism class of the fiber over this point. By the universal 
property of the Grothendieck group this induces a group homomorphism KA(X) —• 
H°(XJKo(A))J where H°(X,Ko(A)) denotes the group of locally constant functions 
from X to Ko(A), and we define KA(X) to be the kernel of this homomorphism. One 
easily shows that there is a natural isomorphism KA(X) 2 K'A(X) © H°(X,K0(A)). 
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3.8. For any n £ N let $A(X) be the set of isomorphism classes of A-bundles over 
X with fiber An. Let GLn(A) be the smooth group of all isomorphisms of right A-
modules An —• An, i.e. GLn(A) = Aut(An). Then by 1.8 there is a bijection between 
$n(X) and [X, BGLn(A)\, the set of homotopy classes of smooth maps from X to the 
classifying space of the smooth groupG\Ln(A). Adding trivial bundles with fiber A 
we get maps $ £ —> $ n + 1 and we denote by $A(X) the direct limit of the so obtained 
inductive system of sets. Then it turns out that the direct sum of A-bundles induces 
the structure of a commutative monoid on $A(X). 

Now the map which sends an A-bundle with fiber An to the difference of its class in 
KA(X) and the class of the trivial bundle X x An in KA(X) induces a homomorphism 
of monoids $A(X) —• KA(X) and one shows that this homomorphism is injective. 
Moreover one proves that any element of KA(X) can be written as a difference of two 
elements from the image of this homomorphism and thus one gets: 

LEMMA. The group K'A(X) is isomorphic to the Grothendieck group of$A(X) and 
the homomorphism constructed above is equivalent to the canonical homomorphism 
to the Grothendieck group. 

Note that since the homomorphism to the Grothendieck group is injective in this 
case, the passage to the Grothendieck group just means that for each element that 
does not already have an inverse one adjoins an inverse. 

3.9. The above lemma admits a homotopy theoretic interpretation. We already know 
that $A(X) = [X,BGLn(A)\. Now / • - • / © HA induces a smooth homomorphism 
GLn(A) —• GLn+\(A) and thus a smooth map between the classifying spaces which 
in turn induces a map [X,BGLn(A)\ —» [X, BGLn+\(A)\, that clearly corresponds to 
the map $A(X) —> $n+i(-^0 constructed above. Let [X, BGL(A)\ denote the direct 
limit of the so obtained inductive system. Then there is a bijection between $A(X) 
and [X,BGL(A)\. 

Consider the group Ko(A) as a smooth space with discrete structure. Then the 
maps constructed above induce maps 

[X,K0(A) x BGLn(A)\ - [X,K0(A) x BGLn^(A)\ 

and we define [X,Ko(A) x BGL(A)\ to be the direct limit of the so obtained induc­
tive system. Then clearly this set is again a commutative monoid and using that 
H°(X, iiTo(A)) = [X, Ko(A)\ one easily shows that one gets a monoid homomorphism 

tp : [X,Ko(A) x BGL(A)\ -> H°(X,K0(A)) x K'A(X) =" KA(X) 

and one easily proves: 

THEOREM. The map <p : [X,K(A) x BGL(A)\ —> KA(X) is injective and can be 
identified with the natural homomorphism to the Grothendieck group. 
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