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Gamma-function and Gaussian-sum-function 

A.Helversen-Pasotto 

Let us recall that Euler gave the following integral presentation of the gamma-
function 

ГW = fe-4 
and that the Gaussian sum of a multiplicative character A of a finite field Fq is 
defined by 

G(A) = Y,.E(t)m 
t?0 

where E is the non-trivial additive character of Fq defined by: 

2-riTrftJ 

E(t) = e—T^ 

for t element of F g , where Tr(t) = t + tp + ... + t^'1 is the trace of t in the 
subfield F p of p elements, p prime and q = pn. 

Let us set 

X = {A : F ; -+ C*\A(txt2) = A(U)A(t2) for tut2JE F*q) 

where F* and C* denote the multiplicative groups of Fq and of C, the field of 
complex numbers, respectively. The Gaussian-Sum-function G is defined on X 
and takes its values in C, or more precisely in the extension field of Q, the field 
of rational numbers, obtained by adjunction of e p and e*-1. 

Lemma 1 Let G be a finite abelian group, \G\ the number of its elements, and 

A : G —• C* a group morphism, then 

J2A(g) = S(A)\G\, 
g£G 

where 6(A) = 1, if A is constant of value 1, and 6(A) = 0, if not 



so 

so 
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The proof is easy and well-known: If A is not constant of value 1, then there 
exists g0 in G such that A(g0) 7-= 1; it follows that 

£ A(g) = £ A(g0g) = A(g0) £ A(g) 
9 9 9 

(l-A(go))Y,A(g) = 0,. 
9 

Y,A(g) = o. 
9 

The following properties of Gaussian sums are consequences of Lemma 1 : 

(PI) For A not constant of value 1, the absolute value of G(A) equals the square-
root of q; for A constant of value 1 it is equal to 1. 

(P2) For A in X not constant of value 1, we have 

(G(A))-1 = q~
lA(-l)G(A-1), 

or more generally: for every A in X we have 

G(A)G(A-1) = qA(-l)-(q-l)6(A). 

This can be generalized to 

(P3) For A\ and A2 in X, we have 

G(AX)G(A2) = b(Au A2)G(AXA2) + (q - l)A1(-l)6(A1A2) 

where 6(y4i,.A2) = £ ^ o , i A\(t)A2(l — t) is so the called Jacobi sum. 

The analogy between G and T appears by considering that 

E(U+t2) = E(U)E(U) 

for *i,£2 € Fq and 
e-(ti+t2) = e-t l e-t2 

for t\,U in the real interval from 0 to 00, and that 

A(UU) = -4(*i)i4(*2) 
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for A in X and tt,t2 in F* just as 

(ht2)
a = t«t. 

for ti,t2 reals, a in C. 

The property (P3) of the Gaussian-sum-function is analogous to the well-
known relation between gamma and beta function 

T(ai)T{a2) = B(a1,a2)T{a1 + a2), 

where au a2 are complex numbers of real part greater than zero and 

BKa2)= / ta>-\i-ty 
Jo 

\ a 2 - l dt 

is the first Eulerian integral; the multiplication AtA2 in the character-group X 
translates into the addition of the complex numbers a^ and a2 just 

as 

taita2 = _ a i + a -

for t a real number and 

Ai(t)A2(t) = (AЉyt) 

foг t in Fq. 

The classical First Barnes' Lemma 

^ /+,°° r ( a 1 + 5 ) r ( a 2 - 3 ) r ( a 3 + 5 ) r ( a 4 - 5 ) < i S = r («i+a2)r(aa + as)r(<i3 +04)^04 +a,) 
-** j _ i o o Y{ai + a2 + a3 + a4) 

(see for instance [6] for the hypothesis concerning the complex numbers {a*, k = 
1,2,3,4} and the path of integration) translates into the following identity for 
Gaussian sums, for which we will give an easy direct proof. 

P r o p o s i t i o n 1 For AUA2,A3,A4 in X we have 

--^Y £ G{A1A)G{A2A-l)G{A3A)G{A4A^1) = 

G{A1A2)G{A2A3)G{A3A4)G(A4Al) 

' ~ AЄX 

= <<< - 1)(A,*)(-1 W A * * * ) + aiAlA,A,A.) 
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Proof: Using the property (P3) we get 

G(A1A)G(A2A'1) = G(AlA2)b(AlA}A2A'1) + (q-l)(A1A)(-l)6(A1A2) 

and 

G(A3A)G(A4A~1) = G(A3A4)b(A3A,A4A~1) + (q - 1)(A3A)(-1)*(A3A4); 

therefore the lefthand side of the identity becomes 

1 

. 9 - 1 

with 

(5i + S2 + S3 + S4) 

Si = G(A1A2)G(A3A4) J2 KA^A^WA^A^-1), 
A€X 

52 = (q- l)6(A1A2)Al(-l)G(A3A4) £ A(-\)b(A3A, A4A~\ 
AGX 

53 = (q- l)6(A3A4)A3(-l)G(A1A2) £ A(-\)b(AxA, A2A~X), 
Aex 

S4 = (q - l)3S(A1A2)6(A3A4)(A,A3)(-l); , 

now we compute the summation term in S\ : 

£ KA^A.A-^A.A, A4A~l) = £ Ms)A2(l-s)A3(t)A4(l-t)J2 A( _ '* _ J 
AeX .f#0,l;t^O,l A * ' * ' 

and using a dual form of Lemma 1 we get 

TA( St \ - l q ~ l i^« = ( l - « ) ( l - 0 \ = f 9 - 1 if * = 1 - -s 1 
^ V ( l - 5 ) ( 1 - * ) / \ 0 otherwise J \ o otherwise J 

therefore we get 

~^(Si+S2+S3+S4) = G(AiA2)G(A3A4) 2(-4iA4)(3)(A2A3)(l-5)+52+53+54, 
9 '9-0,1 

where 

з2 = Ä(ЛiЛ2)Л,(-l)G(Л3Л4) V A(-l)A3(s)A4(l - s)A(-?—) 
-4ЄЯ>?-Ò,1 
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S3 = 6(A3A4)A3(-l)G(AlA2) £ A{-l)Al{s)A2{l - s)A(-^-) 
AGX.^0,1 * 5 

54 = (q - l)2S(A1A2)6(A3A4)(A1A3)(-l)] 

using the fact that jj^ ^ 1 we see that 

Í/(I^>=° 
applying a dual version of Lemma 1; therefore s2 = 53 = 0 ; inverting the property 
(P3) we get 

b{AxA4, A2A3) = G{gl^MMM)] +{<!~ l)S(AlA2A3A4)(A1A4)(-l) 

and substituting the summation in the first term S\ by this expression we obtain 
altogether 

1 r o ± c ± c ± n G(A1A2)G(A2A3)G(A3A4)G(AiA1) 
(o\ -t 02 -r 03 -f- o4) = q-V l ' ' ' * ' «' G ^ ^ j W U ) 

+(9 - l)ff(i4142i43i44)(i41i44)(-l)G(A1A2)G(i43-44) 

+(? - l)26(AlA2)S(A3A4)(A1A3)(-l^ 

property (P2) allows easily to see that this expression is equal to the righthand 
side of the announced identity. 

This simple and elementary proof seems to be new; at least no reference to it 
is known to the author who thanks Patrick Sole and Frederic Testard for helpful 
comments during her seminar talks on the subject at Nice. 

A different proof, using Mellin-transforms, has been found by Patrick Sole 
and the author, and has been adapted to the classical case by P.Sole; this seems 
to constitute a new proof of the classical Barnes' identity avoiding the use of the 
theorem of residues [2]. 

For other proofs, historical remarks, related questions and further references 
see [1, 2, 3, 4]. 

For elementary background concerning Gaussian sums see [5], 
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