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LIFTINGS OF 1-FORMS 

TO T H E p r -VELOCITIES B U N D L E 

Mariusz Gasowslri 

Our starting point are notions introduced by Morimoto [2],[3] and the classifica­

tion of liftings to the higher order tangent bundle made by Gancarzewicz and Mahi 

[1]. We want to classify all linear liftings of 1-forms to pr-velocities bundle. We 

deduce that every lifting is linear combination over R of Morimoto's liftings and o,i-

liftings(introduced in this paper). Further we will assume that all considered objects 

are smooth (of class C°°). 

1. Preliminaries 

In this section we present the definition of lifting of 1-forms and some related basic 

facts. 

Let M be a smooth manifold. Denote by T^r,p^M the set of r-jets at 0 € Rp of 

mappings from RP to M. It forms bundle over M called pr -velocities bundle. The 

mapping n: T^r,p^M — • M is the bundle projection. 

Aiht) = 7(0). 

Every chart (U, xl) on M induces the chart (ir~l(U)yx
i,lf) on T^r,p^M, where i is an 

integer number between 0 and dim(M), v is an element of Np such that \v\ < r. The 

induced chart is given by 

(1.1) xi'"{rot) = ^D"(xioy)(0). 

Now we present the definition of lifting of 1-forms to the pr-velocities bundle. 

Definiton 1.2. A mapping 

C:X*(M)—+ **(T< r ' '>(M)), 

°This paper is in final form and no version of it will be submitted for publication elsewhere. 



8 2 MARIUSZ GASOWSKI 

where X*(M) and X*(T<r^(M)) are the modules of 1-forms on M and on T<r^M, 

is called lifting of 1-forms from M to T<r,p^M if following conditions hold: 

(a) C is linear over R, that is, for every 1-forms u), u)t on M and every real numbers 

a,b 

C(au) + but) = aC(u)) + bC(u)t) 

(b) C is local, that is, for every open subset U C M and for every 1-forms u, u)t on M 

such thai u)\u = uf\u 

(c) C is natural, that is, for every diffeomorphism </>: U — • V of open sets U, V C M 

and for every 1-form u) 

Wv) = (T<'*V)'.C(i_.), 

where * denotes the pull-back of 1-form, 

(d) C is regular, that is, for every open set K C Rk and for every smooth mapping 

u): K x M — • T*M, the induced mapping 

K x T<r^M B (iiP) — • (Cu)t)(p) € T*(T<r^M) 

is smooth. 

The proposition below is the simple conclusion from Definition 1.2. 

Proposi t ion 1.3 Let C be a lifting of 1-forms from M to T<r,p^M. For any 1-form 

u) and for any vector field X on M 

C(Lxu)) = Lxc(Cu). 

Let define notion of (A)-lifting(see: [2]). Let / be a function defined on M, / € 

C°°(M). (A)-lifting of /(denoted by / W ) is a function on T^M given as follows: 

(1.4) / ( A ) ( iu7) = ^ A ( / o 7 ) ( 0 ) . 

Immediately from (1.1) and (1.4) it's clear that 

(1.5) *•> = (a1*)00-

Lemma 1.6 For any A € Np : |A| < r there exists one and only one mapping 

Ly.X*(M) — • X*(T<r^M) satisfying the following condition 

Lx(fdg) = Y,f{V)d^V)^ 
v<\ 
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whtrt J/ < A mtans, that for any i = 1. . .p V{ < A,-. Proof of Lemma 1.6 is analogous 

to considerations in [2]. The mapping constructed in Lemma 1.6 is called (A)-lifting 

of 1-forms. L\((JJ) will be denoted by u/A). 

Theorem 1.7 For tvtry A € Np such that \\\ < r tht mapping 

(\):X* 3 u; — JA> € X*(T<r^M) 

is a lifting of 1-forms to T^r%p^M in mtaning of Dtfinition 1.2 

Now we define just another type of liftings to T^r,p^M. Let 7rlfl- be a projection 

from T^r^M to TM defined as follows 

(1.8) *£f«(io7) = *(<>)), 

where 7: (—c, e) —• M is a curve derived from 7 by formula 

7(0 = 7(0,. . . ,< , . . . ,0) . 

For any 1-form u; on M and for any integer number t = 1, . . . ,p we can define 1-form 

cj°%i by 

(1.9) / ' r d H g , 

Theorem 1.10 For tvtry l , . . . , p tht mapping 

()0li:X*(M) 3 u —> u;0'* € AT*(T<f^M) 

i* a lifting of 1-forms from M to T^r^M. 

Proof: Directly from (1.9) the mapping ()°'% is linear, local and regular. For every 
open sets U,V C M and for every difFeomorphism <f>: U —• V we have: 

Therefore by standard check the mapping ()°»' is natural. 

2. Classification of liftings to the pr -velocities bundle 
In this section we formulate the main result . It is classification of all liftings from 

M to the pr -velocities bundle. We present several lemmas and propositions useful for 

proof of the main theorem. 
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Lemma 2.1(see: [l]) Let f: Rk —• R be a differantiable function, 

(a). If f satisfies the condition 

__v£-° 
f-f 9v> 

then f is constant 

(b). If f satisfies the condition 

?.v#+/-
then f is identically zero on Rk. 

Lemma 2J2(see: [1]) Let (U,x%) be a chart on M and x0 be a point ofU. If u> is 

a closed 1-form on M, then there exists a vector field X on M such that 

(2.3) u = Lx{i*1) 

in some neibhborhood of XQ. 

Lemma 2.3 Let (U,x() be a chart on M. We denote by (*-1(J7),* ,>) the induced 

chart on T^p)M. Then 

a). 

Lxi+dxk = 6\dx*, 
9m* 

b). 

, ; 9 v C _ ^ - \ j t < l 9 

M<r 

c). for every function f on v~l(U) 

V^ctf-fa*-').- _ ^M^dx^+sifd^. 
Ul<r 

Proof: 
' I ' k n lrvsT.nl -tr..*..i4 .-»•-. 4*AIS-1 <mJ ^__ 

dz 
ad a). The local vector field ** £r is generated by the one-parameter group of 

transfoгmations фt given Ьy 

Ф,{x) = ф-Ҷxl iV + * ' , . . . , xn), 
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where (^, U) is a chart on Af, <f> = (a?1,..., xn). 

L(xi+)C(dxk) = Jim \(dxk - (*,)„(*»*)) = 
v a*»' t—*u x 

= lim i(dx* - dxk o <ty-t) = lim \(dxk - (*(-<*>$! + a?*)) = t—0 *v ' t—o tv v * // 

t->o * V * ' * 

ad b). The mapping T(f'pVt -s the one-parameter group of transformations of 

(^ ^ ) C - L e t ioM b e ** element of T ^ M . 

T(^Vt(io7) = 0'5(^"'(T1, - •. ,*V + 7*, • • •, 7n)), 

where 7* = (<f> o 7)*. Let calculate value of a?fc,|/ on the above jet. From (1.1) we have 

**,"Oo(*-1(7l,...,.y +7*' 7n)) = ̂ zr(7*+.«iv') = 

= ±D>(yk) + tSi
k±D>tf) = xk'(f0't) + t6i

kxi>l'(roy) 

The (ky i/)-coordinate of T ^ V t is equal xkyV -\-ih\x*tV and if t ^ fc this coordinate 
doesn't depend on t, therefore 

I J JL-\C — V^ i./. ^ 

ad c). Let f be a function on n~l(U). 

L(xi_L.)C(fdxk-n = 
x a*1' 

V ._U)c(/) • *.*•' + / • .t(#l_*.)c<fe*'' x a**' v a**' 

From Proposition 1.3 
L/Xjju)cdx '" = (Lxijj^dx ) . v a*1' a*1 

Using a), and (1.5) we obtain 

L^^cdx^^Sidx**" 

Now we calculate L(xj_&^\c(f)-

h^)C(f)=df((^^)c) = 
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.v., . — > = r J"JL 

Now the proof is finished 

= df( T «І^-Д-) = T ^-Ц-. 
Ы<r \џ\<т 

The proposition below provides classification of liftings for closed 1-forms on M. 

Proposition 2.4 Let M le a manifold. If C is a lifting of 1-forms to the pr-

velocities bundle, then there exist real numbers c„, where v € iV*:|i/| < r such that for 

every closed 1-form u) on M 

C(J) = £ *«<*>. 
\"\<r 

Proof: Let (U,x*) be a chart on M. Then 1-form C(dxx) on I<f')Af in local 
coordinates is given by 

n 

(2.5) £(d*l) = £2>Mrf**'*f 

*---lH<r 

where a*t„ are functions on 7r~1(CI). From Lemma 2.3 a) 

(2.6) LxiJt_dxk=Vkdx*. 

Using Proposition 1.3 we obtain 

(2.7) 6iC(dxi) = L,xi+)CC(dxk). 

For k = 1 from (2.7) we have 

6}C(dxi) = L(xi^)cC(dx1) 
v 0*% ' 

Next from (2.5) the following formula is valid 

6}C(dx*) = J2H ^ ^ K ^ ^ ) . 
t= l |H<r 

Applying Lemma 2.3 c) to / = a*,, we obtain 

6}C(dxi) = £ £ ( £ •",S5&*M + **,*"> = 
k = l |y |<r | / i |<r 
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(2.8) =£ £ (E^fe+4«M)^M-
*=lH<r |í.1<-

From (2.8) and (2.5) we have 

J ^a*," 

M<r 

For i = j = ib = 1 it gives 

(-•9) Í.Ч-EФ + W 
ІMІ<Г 

И<r 

Applying (2.8) to i = ,; ^ 1, ib = 1 we obtain 

Formulas (2.10) and (2.11) together give the following condition 

\џ\<r 

yy^p^^o. 
J—* *-** Ox*'* 
; = l | M | < r 

According to Lemma 2.1 a\tl/ is constant for every v € Np. From (2.9) for i ^ 1, k = 

j = 1 we obtain 

a?'M ^ . = 0. 
dx1^ 

\?\<r 

Let denote by c„ the constant value of a\tV. Then from previous considerations we 

can write C(dxk) in the form 

C(dxk) = £ ccfc1'". 
kl<r 

From Lemma 2.2 for every closed 1-form v there exists a vector field X such that 

u> = Lx(dxl). Therefore 

£(«) = C{LxdJ) = Lxc(C(dz1)) = 

= Lxc( £ tvd.1'") -. £ cvíxc(d.ř
1)(") = £ c^Lxdx^ = 

\"\<r \v\<r |.v|<r 

= £ c,c,e>. 
I»l<-
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Now the proof is finished. 

The main result can be expressed in the following theorem. 

Theorem 2.5 Let M bt a manifold such that dirn(M) > 2. If C is a lifting of 

1-forms from M to tht pr-vtlocitits bundlt thtn C is a lintar combination ovtr R of 

(X)-liftings and o,i-liftings, that is, thtrt exist rtal numbtrs c„, v € Np:|i>| < r and 

c0tiy i = 1 , . . . yp such that for tvtry 1-form u on M we havt 
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