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DEFORMATION THEORY VIA DEVIATIONS 

Martin Markl, James D. StashefF 

Introduction 

The present paper was inspired by Drinfel'd's introduction and study of quasi-Hopf algebras 

in [2] and [3]. 

His proof of the existence of a quasi-triangular quasi-Hopf algebra starting with initial 'classi­

cal' data was reminiscent of arguments in the ordinary deformation theory of algebras, but there 

was noticeably lacking an appropriate complex controlling an appropriate deformation theory. 

Given an algebra (in the most general sense for which it makes sense to talk about structure 

constants), there always exists a cohomology theory which controls the deformations, which is 

canonical (in some sense) and defined in all degrees. To construct it, take the affine coordinate 

ring k[M] of the variety M of structure constants and construct a resolution (A*, d) —> (k[M], d= 

0) with A* a graded commutative algebra A(K)* on a graded vector space X = © t > 0 K . and a 

differential satisfying d(X{) C A(K)t_i and 1It(A(K),d) = 0, i > 1. Let L* = Der(.4~k) and let 

6 be the differential on L* induced by d. Then H*(L,8) "captures the deformations". 

The above is too general to be useful for practical computation. The relevant part of (L*,6) 
is L° —• L1 —> L2. The first two pieces are easy to describe: L° is related to coordinates for the 

variety of structure constants and L1 is related to relations among the coordinates related with 

the axioms of our algebra. But L2 reflects the "relations among relations" - the 2nd syzygy, an 
ultimate mystery. 

In the case of quasi-Hopf algebras, there is a natural and fairly obvious proto-complex, but 

it fails to be a complex: S2 ^ 0. Our approach to the problem is to realize that the failure is a 
result of a relevant non-linearity. Our deviation calculus gives a way to capture these "relations 

among relations" using two-dimensional diagrams or at least to understand where these relations 

came from. 

1 . Basic principles 

In this section we introduce the notion of a deviation and prove the main principle - the 

additivity of deviations. Everything will be formulated for square diagrams only, but it will be 

obvious how to generalize our results and definitions for diagrams of more general forms. 
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Let us introduce first some notation. For a fixed field k, denote as usual by k[[t]] the ring 

of formal power series over k. For a k-module A, denote by At the k[[t]]-module A ®j- k[[t]]. 

Notice that every t-adically complete flat k[[t]]-module is of the form At for some k-module A 

and clearly A = At/(tAt). 

Definition 1.1 Let A,B,C and D be k-modules and consider the following diagram of k[[t]]-

modules and their maps: 

A,- •Ct 

(1) 

вt-
•Dt 

Suppose that this diagram is commutative modulo tn+1. The deviation of (1) is then the map 

^ : B -» C defined by 

tn+1q = f2a-pf1 modtn+2. 

The fact that $ is the deviation of (1) will be sometimes expressed as 

Ф V 

We hope that it is easy to understand what we mean by 

í\ is the samé as -ÍЧ 

For a k[[t]]-linear map g : Ut -> Vt let (g)0 : U -> V, U := Ut/(tUt) and V := Vt/(tVt), denote 

the map defined by (g)o(u mod tUt) = g(u) mod tVt (the "absolute" part of g). We need this 

notation in the formulation of the following main principle of our "deviation calculus". It is as 

simple as: 

P r o p o s i t i o n 1.2 (Addit iv i ty princ iple) Suppose that the diagrams 

At-
0 

•C, Ct- •E, 

and 

Bt- »Dt Dt- Ft 

commute modtn+1 and let $ i : B —> C resp. ty2 • D —̂  E be the corresponding deviations. Then 

the "big" diagram 
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106 At -L-2 ..£, 

h /« 

Bt ^ • * . 

commutes again mod tn+1 (this is trivial) and the corresponding deviation ty can be computed as 

* = (7)0*1 + *2(<*)0. 

Proof. By definition, we have the relations 

f2a = (3JX + tn+1^! mod tn+1 and f3S = 7 / 2 + tn+1tf2 mod *n + 1 . 

Using these, we get the following equality mod tn+2: 

f36a = 7 / 2 a + *n+1tf2a = 7/5/i + tn+1^1 + tn+1V2a, 

i.e. f3Sa - 7^/1 = * n + 1 (7^i + tf2a) mod tn+2 which means exactly tf = (7)0*1 + *2(a)o- • 

2. Classical examples 

Associative algebras. By an associative algebra we mean a couple A = (V,//), where V is a 

k-linear space and p : V ® V —i• V a bilinear map satisfying the associativity relation (1 = the 

identity map) 

(2) p(p®ll) -fi(l ®fi) = 0. 

Before reviewing some classical results about deformations of these objects, recall briefly the 

definition of Hochschild cohomology of A with coefficients in an A-bimodule M. 

For two k-vector spaces X and Y, let Hom(K, Y) be the space of k-linear maps / : X —> Y, 

The differential dHoch ..Hom(V®n,M) -> Hom(V®n+1,M) is, for / G Hom(V®n,M), defined as 

(3) <ZHoch(/) = ^ l < 8 > / ) + ^ 
0 < t < n - l 

where v\ : A ® M —• M and iv2 : M (g) A —* M are the left and right actions, respec­

tively. The Hochshild cohomology I-Hoch^ -^) *s ^ n e n defined as the cohomology of the complex 

(Hom(V®*,M),dHoch). 

Deformations of the algebra A as above are related with the Hochshild cohomology of A with 

coefficients in A considered in an obvious way as an A-bimodule (i.e. V\ = iv2 = p). For the 

convenience of the reader, we write explicitly the formulas for dHoch in relevant degrees: 

<feoch(/) = M1 ® / ) - / M + rtf ® --)• 
rfHoch(p) = M1 ® .9)-^(p®l)+5 f(ll ®p) -p (#® 1) and 

<*Hoch(V>) = M1 ® $) - V>(t~ ® l 2 ) + VK1 ® /* ® 1) - $(i2 ® /1) + u(V> ® 1), 
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where / € Hom(V V), g € Hom( V®2, V) and 0 € Hom(V®3, V). 

By a deformation of A = (V, p) we mean an associative k[[t]]-algebra At = (\4,pt), where 

Vt = V ® k[[t]] and At/(*At) — A. In other words, a deformation is given by a sequence of maps 
Hi : V <g> V -> V, i > 1, such that //* := /x + *pi + *V2 + • • • : Vt <g> V, -> Vt, satisfy (2) over k[[t]]. 

One of the basic problems of deformation theory is the following integrability problem: given a 

"partial" deformation /J = fJ> + tpi H r ̂ Vn satisfying (2) mod £n+1, is it possible to construct 

an honest deformation \it of p with fit = Ji mod £n+1? 

Recall now the classical approach to the construction of an obstruction theory related with 

the possibility of a step-by-step integration of fit as above. First, suppose we had some /tn+i : 
V <g> V -+ V such that /i := // + *pi + • • • + tnfin + * n + V n + i (= p + * n + V n + i ) satisfy (2) mod 

tn+2, i.e. that 

(7* + r + V n + i ) ( ( / I + *n+1pn+i) ® 1 ) - (/7 + t n + V n + i ) ( l ® (71 + t n + V n + i ) ) = 0 mod tn+2. 

An easy degree check shows that the last equation is equivalent to 

p(l ® pn+i) - pn+l(p ® 1) + l-n+l(l ® ,") - Ai(̂ n+1 ® 1) = VS 

where V , : V ® V ® V - + V i s defined by /-"(/J® 1) - / l ( l <g>/J) = *n+1V> mod *n+2, which can easily 

be rewritten as 

^ = ^Hoch(pn+l). 

Now tp is defined from p, without using pn+i. Suppose for the moment that we already know 

(4) dHoch(V0 = 0. 

Then we have the following theorem (see, for example [4]). 

Theorem 2.1 The primary obstruction to the integrability of a partial deformation Ji is an 

element [^] G Hgoch(A; A). 

The equality (4) is indeed always true. The classical proof of this statement [4, Proposition 3, 

page 69] uses the graded pre-Lie ring structure on the Hochschild cochain complex, invoking an 

inductive argument. We show that this formula (and, more generally, formulas of the same type) 

is a consequence of some combinatorial property of a 2-dimensional polyhedron which is formally 

described by what we call the deviation calculus. 

The first step is to interpret xj> as the deviation of some diagram. This is very easy; rp is, by 

definition, the deviation of 
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V- •v, 

(5) p(l®p) ЖF®-0 

Vt ® V, ® И - ^ ^ — V, ® Vf ® Vt 

The next step is to apply to (5) all operations which occur in the formula for dHoch^)- We 

get in turn: 

Applying /J(l ® *): 

Vt-

?(lвF)(lJв íO tf-N 
vt 

V®4 

/Г(1® Ï Ï)(1®ÏÏ®1) 

Ц®4 

where ^1 = ^ ( 1 ® ^ ) . The composition of (5) with (1 ® p ® 1) is 

Vf 

V®4 

- ł ( l ® / Г ) ( l ® / Г ® l ) 

1* 

,N 
Vt 

ï ľ ( / i ® i ) ( i ® - ł ® i ) 

V®4 

where \1>2 = VK-̂  ® /̂  ® 1). The application of p(* ® 1) gives 

Vf 

/Г(ÏÏ®1)(1®ÏГ®1) 

l 4 

^ 3 \ 
Vt 

да®i)(тг®i2) 

y®4 

with ^3 = MV* ® -0- Composing (5) with (p ® l 2 ) we get 
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vt-

V®4 

ïi(i®Ю(д®i2) 

i 4 

Ф4 
\ 

Vt 

ïľ(jľ®l)(/ľ®l2) 

v;®4 

where ^ 4 = ip(/i (g) l 2 ) and, finally, composing (5) with ( I 2 (g) p) we obtain 

V, 
\l>\ 

íi(i®/r)(i2®jr) 5 

Vt 

V®4 

7ľ(ïl®l)(l2®7ľ) 

Vť®
4 

with #5 = ^ ( 1 ®r0-

Noticing that Ji(ji ®l)(ll 2(g)/i) = Ji{ji ®Ji) = #(11 ® p)(A* ® l 2 ) , we can piece the diagrams 
above together into the following object: 

(6) 

where o denotes Vt and • denotes VJ®4. Consider the following subdiagrams of (6): 
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Clearly fii = ft3 = 0. By Proposition 1.2, ft2 = - ( ^ i + tf 2 + # 3 ) and D4 = tf4+#5 (notice that all 

horizontal maps in (6) are identities). Again by Proposition 1.2 we get also that Hi = ft2+fi3+ft4. 

Combining these equations we get ^ i + \1>2 + ^ 3 = ^ 4 + ^ 5 which is exactly dHoch(V0 = 0-

Loosely speaking, our arguments above were based on the following principle. The "deviation 

diagram" (6) is topologically a 2-sphere which has no boundary. This means that the sum of the 

"partial deviations" must be zero, which is exactly the equation dHoch(V0 = 0. But, as we will 

see in the case of quasi-Hopf algebras, we must be very careful when applying this principle. 

Bialgebras . By an (associative and coassociative) bialgebra we mean an object A = (V, /z, A) 

where V is a k-vector space, \i : V (8) V —• V and A : V —• V (8) V (the product resp. coproduct) 

are linear maps and the following conditions are satisfied: 

(7) p(p (8) 1) — p(l <8) p) = 0, (associativity) 

(8) (A ® 1)A - (1 (8) A)A = 0, (coassociativity) 

(9) (p (8) p)(S)(A (8) A) = Ap, (compatibility) 

where S is defined by S(xi®X2®X3®X4) = £i(8>.r3<8»Z2®.r4. Deformations of these objects are related 

with bialgebra cohomology, introduced in [6] (see also [5]). Recall the necessary definitions. For 

any q > 0, V®q has a natural structure of (V, p)-bimodule induced from p. This means that the 

formula (3) defines, for any p > 1, the differential 

dHoch : Hom(V®P, V®9) -* Hom(V®p+1, V®q). 

Similarly, V®9 has, for any p > 0, a natural structure of (V, A)-bicomodule (induced from A). 

This enables one to define dually the coHochschild differential 

dcoH : Hom(V®p, V®q) - • Hom(V®p, V®*+1). 



104 MARTIN MARKL - JAMES D. STASHEFF 

Consider the following hypercomplex 

Hom(V®4, V) -Hom(V®4, V®2) *-Hom(V®4, V®3) -Hom(V®4, V®4)-

^Hoch 

Hom(V®3,V) 

<-*Hoch 

<lcoH 

duoch 

dcoH 

<-Hoch 

dcoH 

*Hom(V®3, V®2) -Hom( ®3, ®3) -Hom(V®3, V®4)-

ťlcoH 

Hom(V®2, V) -Hom(V®2, V®2) >-Hom(V®2, V®3) -Hom( ®2, V®4)-

dcoll 

dnoch 

Hom(V, V) - Hom(V,V®2) 

^Hoch 

Hom(V,V®3) Hom(V, ®4) 

and let (C£(A; A),D) be the associated total complex with the degree convention that 

C£(A; A) = Hom(V, V®n) 0 Hom(V®2, V®""1) 0 • • • 0 Hom(V®n~1, V®2) 0 Hom(V®n, V). 

The (restricted) bialgebra cohomology of A with coefficients in A is then defined as H£(A; A) = 

H*(CjJ(A;A),D). For the convenience of the reader we again write down explicitly the differ­

entials of the bicomplex above in degrees relevant for our discussion: for fa € Hom(V®3, V), 

fa e Hom(V®2, V®2) and fa 6 Hom(V, V®3) we have 

Ĥoch(V'i) = i*(i®fa)-Mp®i2) + Mi®p®*)-Ml2®p) + t'(4>i®1)> 

4 O H ( ^ I ) = (fi(l®fJ.)®fa)(X)(A®A®A)-Afa + (fa®n(n®l))(X)(A®A®A), 

dHochtyi) = (^®fi)(Z)(A®fa)-fa(fi®l) + fa(l®fi)-(fi®fi)(Z)(fa® A), 

dcon(fa) = (fi®fa)(Z)(A®A)-(A®l)(fa) + (l®A)(fa)-(fa®fi)(Z)(A®A)y 

dHoch(fa) = (fJ-®^®fi)(Y)(A(l® A)® fa)-fa(fi) + (fi® n®fi)(Y)( fa® A(A®1)), 

dCon(fa) = (l®fa)A-(A®l2)(fa) + (l®A®l)(fa)-(l2®A)(fa) + (fa®l)A, 

where Z(x1®x2®x3®x4) = x^x&x&x^ X(x1®x2®x3®x4®x5®x6) = x1®x3®x5®x2®x4®x6 

and Y(x1®x2®x3®x4®X5®x6) = x1®x4®x2®x5®x3®x6. Notice also the "self-duality'' of the 

conditions above. 

Suppose we have a "partial" deformation (p, A) = (p -| \- tn/in, A-| tnAn) satisfying (7), 

(8) and (9) modulo tn+1 and look for some fin+1 € Hom(V®2,V) and A n + 1 G Hom(V, V®2) such 

that (p, A) := (JI + tn+1 nn+uA + tn+1 An+1) would satisfy (7), (8) and (9) modulo tn+2. Define 

fa e Hom(V®3, V), fa ^ Hom(V®2, V®2) and fa e Hom(V, V®3) by the following equations: 

J[(J[®1)-JI(1®JL) = tn+1fa modulo tn+2, 
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AJ*-0*®JT)(Z)(A®A) = T+1V>2 modulo r + 2 , 

(A<g>l)A-(l<g>A)A = *n+1V>3 modulo tn+2. 

As in the case of associative algebras, we can show that (/-n+i, An+i) and (^1,^2,^3) would be 

related by 

D(pn+i, An + i ) = (^1,^2,^3), 

where we consider (/~n+i, An + i ) in the evident sense as an element of C^(A;A) and (^1,^2,^3) 
as an element of C^(A; A). Then the condition 

(10) D(^l,^2,^3) = 0 

would imply the following theorem. 

Theorem 2.2 The primary obstruction to the integrability of a partial deformation (/I, A) is an 

element [(^1,^2,^3)] G H£(A;A). 

We prove (10) using our "deviation calculus". Notice that Theorem 2.2 is already known 

(see [6]) but the authors have never seen an explicit proof of (10) anywhere. 

Notice first that (10) is, by the definition of the differential of the total complex, equivalent 

to the following four conditions: 

(11 ) <*Hoch(V>l) = 0, 

(12) C-coHdM = dHochW, 

(13) dcon(ip2) = clHoch^) and 

(14) dcoHdfe) = 0. 

The equation (11) has already been proven in the first part of this paragraph while (14) is just 
its dual. It is enough to prove (12) only, because (13) is again only the dual of (12). 

As usual, start with interpreting \j>\ and ^2 as deviations of some diagrams (for V'l, it was 
already done in the first part of this paragraph): 

(15) 

V, - V , 

Жi®л) ^1 Ţi(ß®l) 

Vt <g> Vt ® Vt - Vt ® Vt ® Vt 
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Vť®Vť 

(16) (/ľ®p )(Z)(Д®Д) ^ 

Vť ® Vť 

Дp 

Vť®Vť Vť®Vť 

The next step will again be to apply to (15) and (16) operations which occur in dcoH(V,i) a i l c -

dHoch^)- Applying (/J(l ® JL) ® *)(K)(A ® A ® A) to (15), we get 

Vť®V — Vť ® V 

{џ ® ÏГ)(1 ® 7Г® 1 ® ÏГ)(X)(Д ® Д ® Д) í î l ^ 

Vť ® Vť ® Vť 

(Ti ® 7T)(1 ® 71 ® H ® 1 ) P 0 ( A ® A ® A) 

l 3 

Vť®V®Vť 

with Qi = (fi(l ® n) ® V,i)(X)(A ® A ® A) = (fi(fi ® 1) ® ̂ i)(K)(A ® A ® A) (p is associative 
but JL need not be). The application of A to (15) gives 

Vť®V Vť®Vť 

Дд(l®/.) П 2 ^ 

Vť ® V ® Vť 

Дм(7-®1) 

— Vť®Vť'®Vt 

with ft2 = AV»i. The composition of (15) with (* ® //(/J® 1))(X)(A ® A ® A) is 

Vť®Vt Vt®Vt 

(71® д ) ( i ® 7*® џ ® i ) ( * ) ( Д ® Д ® Д) fìз^ 

Vt ® V ® V 

(71® 70(71® 1 ® џ ® i)(*)(Д ® Д ® Д) 

l 3 

Vt®Vt®Vť 

with Q3 = (V>i® Ml*® 1))(K )(A® A ® A). Applying (p® p)(Z)(A ® *) to (16), we get 
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Vt<8>Vt Vt<8>Vt 

Л (7I®7I)(l®7i®l®7t)(A')(A® A® A) Ti 

v 

(7r®7i)(Z)(A®A)(i®7r) 

I 3 

Vt<8>Vt<8>Vt Vt<8>Vt<8>Vt 

where Ti = (p <8> p)(Z)(A <8> ^2) ; here we use t h e re lat ion 

(/7 <8> p)(Z)(A <8> (p<8> Ji)(Z)(A <8> A ) ) = (p <8> p)(l <8> p <8> 1 <8> p)(K)(A <8> A <8> A ) . 

Compo s ing (16) wi th ( 1 <8>p) from t h e right we get 

Vt<8>Vt Vt®Vt 

(7I®Д)(Z)(Д®Д)(1®7Г) Л 

Vt <8> Vt <8> Vt 

r2 

A7T(1 ® Ji) 

— Vt®Vt®Vt 

with T 2 = ^ 2 ( 1 <8> p). T h e compos i t ion of (16) with (p <8> 1) from t h e right is 

I 2 

Vt<8>Vt Vt<8)Vt 

(7i®7П(Z)(Д®Д)(7i®i) Л 

V, ® V, ® V, 

Гз 

Д7t(7Г®l) 

Vť <8> Vt <8> Vť 

wi th T3 = ^ 2 ( ^ ® 1) and, finally, applying (ft <8> p)(zT)(* <8> A ) t o (16) we get 

I 2 

Vt<8>Vt v,® v, 
, \ (7r®7r)(7T®l®7I®l)(^)(A® A® A) T 4 

(7I®7i)(Z)(A® A)(7T®1) 

I 3 

Vt<8>Vt<8>Vt Vt<8>Vt<8>Vt 

where T 4 = (p (8> fi)(Z)(ip2 <8> A ) and we use t h e relat ion 

(/I <8> r*)(^)((7- : <8> 7~")(Z)(A <8> A ) <8> A ) = (/I <8> 7Z)(7T<8> 1 <8> p <8> 1 ) ( K ) ( A <8> A <8> A ) . 

Now we can easily form t h e following object: 
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ĄyP 

гN 

ť^TN % 

Topologically, this is again a 2-sphere and by the same arguments as in the case of associative 
algebras, we can infer from this that the (oriented) sum of deviations must be zero, i.e. that 

fii + n3 + r4 + r3 = n2 + r2 + Ti, 

which is exactly (12). 

3. Drinfel'd algebras 

Following [2] and [3], by a Drinfel'd algebra (or a quasi-bialgebra in the terminology of [5]) 
we mean an object of the form A = (V, p, A, $), where V is a k-linear space, p : V <8> V —> V 
(the product) and A : V —> V <8> V (the coproduct)' are linear maps and $€V<8>V<8>V isan 

invertible (in the natural product structure induced on V <8> V <8> V by fi) element. Moreover, p 

is supposed to satisfy the associativity condition (7), p and A should satisfy the compatibility 

condition (9) and we also assume that the product p has an unit 1 6 V and that A(1) = 1<8)1. 

The coassociativity condition on A is in the Drinfel'd case replaced by 

(17) (l<8>A)A-$ = $-(A(8>l)A 

and, moreover, the validity of the following "pentagon" condition is supposed: 

(18) (I 2 <8> A ) ( $ ) • (A <8> l 2j($) = (1 <8> * ) • (1 <8> A <8> !)($) • (* <8> 1). 

In both equations above • denotes the multiplication induced by //. Notice that our definition 

of a Drinfel'd algebra is the same as the definition of a quasi-Hopf algebra given in [2] and [3], 

except that we do not require the existence of an antipode. Notice also that an (associative and 

coassociative) bialgebra A = (V, p, A) can be in a canonical way considered as a Drinfel'd algebra 

- put $ = 1. 

A suitable cohomology theory which captures deformations of (associative and coassociative) 

bialgebras in the category of Drinfel'd algebras is already known - see [8], [11], [5] or [13]. 

As the first step toward a cohomology theory capturing deformations of a general Drinfel'd 

algebra, we describe a cohomology theory related to Drinfel'd deformations of A = (V,/x, A , $ ) 

(no additional restrictions on $ or A) leaving A and p fixed. The program is then completed 

in [9]. 

It can be expected that, as in [2], the cobar construction over the coalgebra (V, A) will 

play the central role in our computation. The standard definitions still make sense even for 
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noncoassociative A, but the condition d2
ob = 0 may be violated. We aim to give a suitable 

generalization of the cobar construction for coalgebras for which the coassociativity is replaced by 

the pentagon condition (18). The construction is rather sophisticated and involves the following 

objects. 

Let F* = © n > 0 Fn be the free unitary nonassociative algebra on the vector space V and 

let • denote the product in F*. As a vector space, Fn is isomorphic with the direct sum of 

copies of V®n indexed by various bracketings of n indeterminates, F° = k, F1 = V, F2 = V.?2, 

F3 = v®'., © v$„ F* = i # M ) © v,?.4.).,. © v&<~> © y"(..).» © C ) > . ' ~ • 

Notice first that F* admits a natural left action of the algebra (V, p), ( a , / ) i--> a • / G F*, 
given by the following two rules: 

1. f o r / 6 F , = V , a . / = / 1 (a , / ) , 

2. a • ( / * g) = X/(A'(a) • / ) * (A"(a) • g) where we use the standard notation A(a) = 
£A'(a)®A"(a). 

The right action (/, 6) •—> / • 6 is defined by similar rules. 

It is easy to verify that these operations define on F* the structure of a (Vp)-bimodule, i.e. 

that a • (b • / ) = (a • 6) • / , a • ( / • 6) = (a • / ) • 6 and ( / • a) • 6 = / • (a • b) for a, b G V and 

/ G F * . 

Having in mind future applications, we give a more explicit description of the •-action. To 

this end, let Bn denotes, for n > 1, the set of all bracketings of n nonassociative indeterminates 

(the disjoint union \\Bn with the evident multiplication is exactly the free magma [10, I.4.§1] 

on one element). For 6 G Bn and 1 < ii < n, let 6[t] G Bn+i denote the bracketing obtained from 

6 by the replacement • i—> (••) at the i-th place. Notice that any bracketing can be obtained 

from the "trivial bracketing" (•) G B\ by a successive application of this operation (for example, 

( • • ) • = ((*)[i]))[i].. • ( • • ) = ((•)i]))[2]v)- The following two conditions clearly define, for any 

b G #«, a map A<6> : V -> V®n: 

1. A<#> = 1 and 

2. A<6N> = ( l - - - ® A ® ln-*')(AW) for 6 G /3n and 1 < i' < n. 

We have the following lemma. 

Lemma 3.1 For a G V and / G Vb, b G #n , we have 

a . / = A<6>(a)./, 

where • denotes the usual multiplication induced by \i. A similar formula holds also for the right 
•-action. 

Proof. The proof is based on the formula 

A{66'} = ^ { 6 } 0 A {6 '}^ A j b e ftj y e B^ 
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(where the "multiplication" bb' € 5,+j has an obvious meaning) which immediately follows from 

an easy inductive argument. The rest is a consequence of the very definition of the opera­

tion •. • 

Let ~ be the relation, •-multiplicatively generated on F* by expressions of the form 

(19) $ • (x*(y*z)) = ((x*y)*z) • 4>, a; ,y,zGF*, 

where $ • (x • (y • z)) means, expanding $ as £ ( $ i ® $2 ® $3), simply £ ( $ 1 • x) * ((^2 • y) * 

($3 • z)), the meaning of the right-hand expression being similar. Finally, let M* be the graded 

k-module F*/ ~ . 

Propos ition 3.2 

1. The left and right actions • o/(V,p) on F* induce on M* the structure (denoted again by 

•) of a graded (V, fi)-bimodule. 

2. The (nonassociative) multiplication • on F* induces on M* a (nonassociative) multiplica­

tion 0 satisfying 

(20) $ • [p 0 (q 0 r)] = [(p 0 q) 0 r] • $ , 

where again 0 • [p 0 (q 0 r)] abbreviates £ ( $ 1 • p) 0 (($2 • 9) © ($3 • r)) and similarly for 

the second expression. 

Proof a ) . We shall show that the left ©-action is compatible with (19), i.e that 

(21) a • [$ • (x • (y • z))] = a • [((x • y) • z) • $] . 

We have, by definition, a«[$»(.r*(y*z))] = ^a»[(Oi«x)*(($2«2/W^3«z))] = ^2(A'(a)»($1 • x))* 

( A " ( a ) . ( ( $ 2 ^ ) * ( * 3 « z ) ) ) = £ ( ^ ^ 

E a A ^ . ^ O . ^ ^ ^ A W ^ . ^ . ^ ^ a A ^ ^ a ) . ^ ) ^ ) ) ) = [(1® A)A(a).*].(**(y**)) = 
[$ • (A 0 1)A(a)] • (x • (y • z)) = 0 • [(A'A'(a) • z) • ((A"A'(a) • y) • (A"(a) • z))] so, summing 
up, 

(22) a • [$ • (x • (y • z))] = $ • [(A'A'(a) • x) • ((A"A'(a) • 2/) * (A"(a) • *))]. 

On the other hand, a • [((x • y) • z) • $] = [a • ((x • y) • z)] • $ and from the definition of the 

•-action we get 

(23) a • [((* • y) • z) • <D] = [((A'A'(a) • *) • (A"A'(a) • y)) • (A"(a) • . ? ) ] • * 

and (21) is an easy consequence of (22), (23) and (19). The argument for the right action is 

similar. 

Proof b ) . The fact that 0 is well defined follows from the very definition of ~ . The relation (20) 

is then simply the projection of (19). • 
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Proposition 3.3 There exists a unique isomorphism J : M* —> V®* satisfying the following 

condition: 

Let x £ Mn and let v £ V(f.!\##)...#)#)#
 a n - w € V#?

n(#...(##)...)) &e ^wo representatives of x. Then 

(24) J(x) = A-v = w- B for some invertible A, B £ V®71. 

Here • denotes, as usual, the multiplication induced by fi. 

Proof. Recall that we denoted by Bn the set of all bracketings of n nonassociative variables. 

The existence of an isomorphism M* = V®* follows from the following conditions: 

(25) if 6, 6' £ Bn and v £ V6®
n then v ~ v' for some v' £ V®n, 

(26) if v, v' £ V6®
n then v ~ v' if an only if u = i/. 

The condition (25) is an easy consequence of the definition of ~ . The condition (26) is trivial for 
n < 3. For n = 4, it is a consequence (in fact, it is equivalent) to the pentagon condition (18) (a 

nice exercise). For n > 4, it follows from the celebrated Mac Lane coherence theorem [7] which, 

loosely speaking, says that "there are no unexpected relations provided the pentagonal condition 

is satisfied". 

We show that there exists a unique J satisfying (24). By (25) and (26), J\M* is uniquely deter­

mined by a choice of an isomorphism V#?"(#...(##)...)) — V®n> so suppose directly that J(x) = A • v 

for some invertible element A of V®n and for x and v as in (24). If w is a representative of 

x in V(f.!\##)...#)#)# then clearly v = X • w • Y for some invertible X, Y £ V®n and, of course, 

J(x) = A • X • w • Y. We see now that (24) is fulfilled with A = X~l and B = Y. • 

We state without proof (as we will not need it) the following lemma. 

Lemma 3.4 If J is the map from Proposition 3.3, 6 £ Bn and v £ V®n is a representative of 

some x £ Mn, then J(x) = K -v- L, where K and L are invertible elements ofV®n created from 

$ by applications of A and tensoring by the identity (no inverses involved). 

Example 3.5 We would like to write down explicit formulas for J : Mn —> V®n for small n. To 
this end, it is good to have in mind the following picture (which also illustrates the omnipresence 

of the associahedra Kn, introduced in [12]). 

For n > 2 and 0 < i < n — 2, let Bnj be the set of all (meaningful) insertions of i pairs 

of brackets between n nonassociative indeterminates. Clearly #n,n_2 = Bn, the set of all (full) 

bracketings introduced above. Denote also, for n > 3, En = #n .n_3 and for n = 2 put £2 = 0. Let 

Ln be, for n > 2, the graph whose vertices are in one-to-one correspondence with the elements of 

Bn and whose edges are indexed by the elements of Sn. The incidence relations in Ln are defined 

by the rule that b £ Bn is an endpoint of e £ Sn if and only if 6 can be obtained from e by 

inserting one more pair of brackets. It is clear from this description that Ln is the 1-skeleton of 
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the associahedron Kn (see [12] or [1, 1.2] for the definition of Kn). Another way to describe the 

edges of Ln is the following: 

Let ni, n2, n3 and k be positive natural numbers, k < n and ni + n 2 + n3 + k = 
n + 1. Let 6 G Bjb and 6t G Bni, i = 1,2,3. Let b' be the bracketing obtained 

(27) from 6 by the replacement • >-> (6162)63 at the j-th place and let b" G Bn 

be obtained from 6 by the replacement • »-> 6i(6263) at the same j-th place, 
1 < j < fc. Then the vertices b' and b" are endpoints of an edge of Ln. 

It is easily seen that the relation bf < b" induces on Ln the structure of an oriented graph. 

By definition, the components of the space Fn are in one-to-one correspondence with the 

vertices of Ln while the edges of Ln correspond to the defining relations of Mn. More precisely, 

let b' and b" be as in (27) and let e G Sn denote the edge of Ln corresponding to the pair (6', 6"). 

Then we identify v G V®n with Cne(u) G V®n, where Cne : v >-> (Q,e) • v • (Q^-1 is the conjugation 

by Qe = F _ 1 <g> A*6l>($i) ® A<62>($2) (g> A<63>($3) <8> l*_i. Here $ = £ $1 0 $ 2 <g> $ 3 and we use 

the description of the •-action given in Lemma 3.1. 

The computation of the map J is based on the following scheme. Let v G V?!?(«»)....).). D e a 

representative for x G A/n, let 6 G Bn and let w G V6®
n be another representative of x. Choose 

a path, say e = eie2 • • • em, joining ((• • • (••) • • • • ) • ) • with 6 in Ln. Then w = fte • v • ft"1 with 

fte = ftem • Hem_1 fie, and we moreover know that J(x) = A • v = X -w-Y ioi some invertible 

elements A, K, Y G V0n (see Proposition 3A and its proof). From this we obtain easily 

(28) K"1 • A = ne = Y. 

In the special case when 6 = • ( • ( • • • • (••) • • •)), Proposition 3.1 says that X = ln , therefore 

(29) A = flj for a path / joining ((• • • (••) • • • • ) • ) • and • ( • ( • • • • (••) • • •)) in Ln. 

Plugging this value back into (28) enables us to carry out the computation for an arbitrary 

beBn. 
We give the explicit formulas for J : Mn —> V®n, n < 5. To simplify the notation, we index 

the edges of Ln's directly by the corresponding elements fie G V®n. For 6 G 23n, vb G V̂ ®n will 

denote a representative of x G Mn. 

n = 1,2 J is the identity (trivial). 

\n = 3 L3 is the arrow 

(••)• Ф •(••) 
• •* 

and 

J(-r) = tЦ..) • Ф = Ф • v(..)< 

\n = 4 | L4 is the pentagon 
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(••)(••) 

((••)•)• 

(Д®12)(Ф) 

Ф®I 

(•(••))• •((••)•) 

We obtain the following description of J: 

J(x) = ( I 2 ® A)(*) • *>(.•)(••) * (A ® 1 2)(^) = ( I 2 ® A ) ( * ) * ( A ® W ) ' <>(((••)•)•) 

= v(.(.(..))) • ( I 2 ® A)($) • (A ® 1 2 )($) = (1 ® $) • v(.((..).)) • (1 ® A ® ! ) ( $ ) • ($ ® 1) 

= (1 ® $) • (1 ® A ® ! ) ( $ ) • v((.(..)).) • ($ ® 1). 

\n = 5 | We use the following projection of L& (borrowed from [2], for another projection of this 

graph see Diagram 38): 

(•((••)•))• 

I®Ф®I 

(1®(Д®1)Д®1)(Ф) •(((••)•)• 

\ ŕ l ® Д ® l ) ( Ф ) ® l 1®(Д®12)(Ф) / 

((•(••))•)• (( l®Д)Д®l 2 ) (Ф) (•(••))(••) •((••)(••)) 

^ ^ (1®Д2)(Ф) 

((••)•)(••) ^ ^ Ф ® 1 2 

Ф®12 ^ r * \ 

1®(12®Д)(Ф) 

^ s ^ ^ ч (Д®l®Д)(Ф) v , .(.(.(..))) 
^ ^ ( ( Д ® l ) ( Д ) ® l 2 ) ( Ф ) \ ( 1 2 ® ( 1 ® Д ) Д ) ( Ф ) ^ ^ 

(((••)•)•)• < ̂ ^ \. ^ ^ 

(Д®12)(Ф)®1 

J^Г l2®ф 
1 2 ® Ф ^ ^ (••)(•(••)) 

(Д2®1)(Ф) ^ У ^ 

((••)(••))• (••)((••)•) (12®(1®Д)Д)(Ф) •(•((••)•)) 

/ ( i 2 ® д ) ( ф ) ® i i ® ( i ® д ® i ) ( ф ) \ ^ 

r л 

1®Ф®1 

(•(•(••)))• (1®(1®Д)Д®1)(Ф) •((•(••))•) 

The formulas for J are already rather complicated, but we will need them for the description of 

the relevant part of the differential in our cohomology. The computation is still straightforward. 

We have 

J(x) = ( l 2 ® ( l®A)A)($) . (A®l®A)($) . ( (A®l)A®l 2 ) ($)- i ; ( ( ( . . ) . ) . ) . 

= v . ( . ( . ( . . ) ) ) . ( l 2 ® ( l®A)A) ($) . (A®l®A) ($)-( (A®l)A®l 2 ) ($) 
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= (l(g)(l2(g)A)($)) .( l(g)AoA)($).(( l0A)A(g)l2)($) .U ( ( # ( # # ) ) # ) # . ($®l2) 

= ( l 2®$).U # ( # ( ( # # ) # ) ) . ( l 2®(A(gl)A)($) . (A®Aol)($) . ( (A(g)l 2 ) ($)(g) l ) 

= ( l ® ( l 2 ® A ) ( * ) ) . t ; . ( M ( . ^ 

= (l2<g)*Hl2®(A<g>l)A)($).(A®^ 
= ( l 2 ®$).( l®(l®A®l)($)) . í ; # ( ( # ( # # ) ) # ) . ( l®(l (g)A)A(g) l ) ($) . 

• ( ( I 2 ® A)($)®1).((A®12)($)®1) 

= (1®(1 2®A)($)) . (1®(A®1 2 ) ($))- (1®(A®1)A®1)($) . 

• U ( # ( ( # # ) # ) ) # . ( ( 1 ® A ® 1 ) ( $ ) ® 1 ) . ( $ ® 1 2 ) 

= ( l 2 ®(l®A)A)($) - i ; ( # # ) ( # ( # # ) ) . (A®l®A)($) . ( (A®l)A®l 2 ) ($ ) 

= ( l 2 ®(l®A)) ($) . (A®l®A)($) - i ; ( ( # # ) # ) ( # # ) . ( (A®l)A®l 2 ) ($ ) 

= ( l®( l 2 ®A)($) ) . ( l®(A®l 2 ) ($ ) ) . i ; # ( ( ( # # ) # ) # ) ( l®(A®l)A®l) ($ ) . • 

• ( (1®A®1)($)®1)-($®1 2 ) 

= (12®$).(1®(1®A®1)($)) .(1®(1®A)A®1)($).1 ; ( # ( # ( # # ) ) ) # . 

• ( ( l 2 ® A)($)®1)-((A®12)(*)®1) 

= (1®(12®A)($)) .(1®A®A)($)- Í ; ( # ( # # ) ) ( # # ) . ( (1®A)A®12)($) .($®12) 

= (12®$).(12®(A®1)A)($).1 ; ( # #) ( ( # #)#)(A®A®1)($).((A®12)($)®1) . 

The last thing we need before giving the definition of our variant of the cobar construction is 

the following notation. 

Let x G M n and let v G V^0n be, for some bracketing b G Bn, a representative of x. For 

1 < i < n, let d{(x) be defined to be an element of M n + 1 whose representative in \^®n+1 is 

( 1 , _ 1 ® A ® ln~*)(i;); here &[,-] G Bn+i is the bracketing obtained from 6 by-the replacement 

• «-> (••) at the z-th place. The following statement is an easy exercise. 

Lemma 3.6 The map dt : M n —> M n + 1 is well defined, i.e. it does not depend on the particular 

choice of the bracketing b G Bn and the representative v G VJ,®n. 

Now, define dqo : M n -> M n + 1 by 

d^(x) = d0(x) - dx(x) + • • • + (- l)ndn(x) + ( - l ) n + 1 d n + 1 (x ) , 

where d\,..., dn are defined above, do(x) : = l 0 a ; and dn+1 = x 0 l . 

Lemma 3.7 For x G M n . 

< n ( x ) = [lQ(Wx) - ( l © l ) 0 x ] + ( - l ) n [ ( l O x ) O l - lO(xOl) ] + [xO(l©l ) - (xOl )Ol] . 

Proof will be based on the following formulas 

(30) dkdi = c?/+14, 1 < k < I < n + 1, 

(31) d0di = 4n<-o, 1 < / < n, 

(32) dkdn+1 = dn+2<4, 1 < k < n. 
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Notice that (30)-(32) plus the equations <% = d\d0, dn+2d0 = d0dn+1 and dn+1 = dn+2dn+1 would 

give the usual conditions on coboundary operators in a cosimplicial module. 

We discuss (30) first. Let x G Mn and choose a representative v G V®n of x. Then di(x) 

is, by definition, the class of (l'"1 <g) A (g> ln"')(u) in V6®
n+1 (b[i\ G Bn+1 is defined above), while 

dkdi(x) is the class of 

(33) (l*-1<g)A<g)ln+1-fc)(l'-1<g>A<g>ln-')(i;) in V®n+2. 

Similarly, di+1dk(x) is the class of 

(34) ( l ' ® A ® l " - 1 ) ( l * - 1 ® A ® l - * ) ( t » ) in V^t+i]. 

For / > k we easily get from the equations above that 

dkdt(x) is the class of (l*"1 <g> A (g) l'"*"1 <g) A (g> ln"')(v) in V®n+2 

and that 

dl+\dk(x) is the class of (l*"1 <g) A <g) l'"*"1 <g) A <g) ln"')(v) in V®n+2
+i . 

Observing that (&[/])[&] = (b[k])[i+\] w e s e e that in this case really dkdi = di+\dk. 

Suppose k = I and prove that dkdk(x) = dk+\dk(x). By (33) we have that 

dkdk(x) is the class of (l*"1 (g) (A <g) 1)A <g> ln~k)(v) in V(^
n{J 

while (34) gives that 

dk+1dk(x) is the class of (l*"1 <g) (1 <g> A)A ® ln"*)(v) in V®^^. 

Recall that, by (17), $-(A(g)l)A = (l(g>A)A-$. An easy consequence of the defining relation (19) 
is that an element u G V®."."}"2. -s identified with (l*"1®*® l"-*) .*-^*- 1®*® P"*)-1 G V(®

n]+2
+1] 

from which we get that (ffcdfc(x) = <2*+i<2fc(.r). Thus (30) is proven. 

Prove (31). Let again v G V®n be a representative for some x G Mn. Then d0d\(x) is 

the class of 1 <g) (l '"1 ® A <g> ln"')(u) in V#®
n+

}
2 (the meaning of the notation %(h) for h G 5* 

being clear) and di+\d0(x) is the class of ( l ' <g) A (g) ln"')(l <g) u) in V/?(J))2 ,• Because clearly 

1 ® ( l ' _ 1 <g> A <g) ln"')(i;) = (1' <g) A ® l n - ' ) ( l <g> u) and • (6N) = (•(6))[/+1]; d0dt = dl+\d0 and we 

have (31). The proof of (32) is similar. 

Using (30)-(32), we can easily reduce the equation 

<n= E (-1)'4 E ("-)'* 
0<j<n+2 0<t<n+l 
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to 

dqn = (^0 - did0) -I- ( - l ) n (d n + 2 d 0 - d0dn+i) + (dn+1 — d n + 2 d n + i ) , 

which is exactly the formula in our lemma. • 

The following lemma shows that the differential dqn is compatible with the •-action of (V,p) 

onM*, 

Lemma 3.8 For any a, 6 € V and x £ M*, 

dqn(a • x) = a • dqn(x) and dqn(x • 6) = dqn(x) • b. 

Proof. To prove the compatibility with the left •-action, it is enough to show that 

(35) di(a • x) = a • dt(x) for all a £ V, x £ M* and 1 < i < n. 

Let b £ Bn and let v £ V®n be a representative for x. Then, by Lemma 3.1 and the definition 

of dt, ( I 1 - 1 (8) A (8) ln_»')(A<6>(a) • v) is a representative of d{(a • x) in J/®n+1. But 

( l ' - 1 <g> A <g> ln-*')(A{6}(a) • v) = ( r ' " 1 ® A ® ln" t ')(A{6}(a)) • ( l ' " 1 ® A ® ln~*)(i>) 

= A { 6[ ' ) }(a)-(r ' - 1(8)A(8)l n- t ' )H, 

which is, again by Lemma 3.1 and the definition of dt, a representative of a • d t(x). We thus have 

proved (35). The argument for the right •-action is similar. • 

Lemma 3.7 shows that (M*,dqn) is not, generally speaking, a complex, i.e. that a?n -̂  0 

(see also the explicit examples below). However, the next statement says that M* contains a 

(nontrivial) subspace M* C M* such that d^Q is zero on Mf. 

Proposition 3.9 Define the subspace Mj C M* by M n = {x £ M n ; a • x — x • a = 0 for all a £ 

V}. where • is u\e action of B = (V,p) on M* (I for "invariant"). Then dqn(Mj) C MJ and 

d^p = 0 on Mj, in other words, (MJ,d<$i) is a cochain complex. 

Proof. The inclusion d^(MJ) C MJ immediately follows from Lemma 3.8. Let us prove that 

1 0 (1 O x) = (1 O 1) 0 x for any x £ M". By Proposition 3.2 we have 

(36) $ • [1 0 (1 0 x)] = [(1 0 1) 0 x] • $ . 

On the other hand, if $ = £ $x 0 $ 2 © $ 3 then $ • [1 0 (1 © x)] = £ $ ! © ($ 2 © $ 3 • x) = 

2 $ i O ($2 0 x • $3) = [1 0 (1 0 x)] • 0 , because $ 3 • x = x • $ 3 from the invariance. Com­

bining it with (36), we obtain that 1 0 (1 0 x) = (1 © 1) © x. Similarly, we can show that 

1 © (x © 1) = (1 © x) © 1 and 1 © (1 © x) = (1 © 1) © x, for an arbitrary invariant x. In the light 
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of Lemma 3.7, this gives our proposition. • 

Explicit formulas Proposition 3.3 enables us to identify Mn and V®n in a canonical way. This 

canonical identification offers the possibility of expressing dqn directly in terms of V®* (i.e. to 
compute JdqnJ-1)- We give explicit formulas for this presentation of dqn at least in degrees 
important for the deformation theory. 

t For v € V, 

dqfi(v) = 1 ® v - A(v) + v (8) 1, 

i.e. dqn coincides with the usual cobar differential. 

• For v € V®2, 

dqfl(v) = (1 (8) v) • $ - $ • (A <8> l)(v) + (1 <8> A)(v) • $ - $ • (v ® 1). 

• For v e V®3, 

d<&(v) = ( l ® i ; H l ® A ® l ) ( $ ) - ( $ ® l ) - ( l 2 ® A ) ( $ ) . ( A ® l 2 ) ( v ) 

+(1®$)-(1® A®l)(v)- ($®1) - ( 1 2 ® A ) ( V ) - ( A ® 1 2 ) ( $ ) 

+ ( 1 ® $ ) - ( 1 ® A ® 1 ) ( $ ) - ( V ® 1 ) . 

• For v e V®4, 

dqn(u) = ( l ® v ) . ( l ® ( A ® l ) A ® l ) ( $ ) - ( ( l ® A ® l ) ( $ ) ® l ) - ( $ ® l 2 ) 

- ( 1 2 ® ( 1 ® A ) A ) ( $ ) - ( A ® 1 3 ) ( I ; ) + (1®(12® A)($ ) ) - ( l® A®l 2 ) (v) - ($®1 2 ) 

- ( 1 2 ® $ ) . ( 1 2 ® A ® 1 ) ( V ) - ( ( A ® 1 2 ) ( $ ) ® 1 ) + ( 1 3 ® A ) ( V ) - ( ( A ® 1 ) A ® 1 2 ) ( $ ) 

- ( l 2 ® $ H l ® ( l ® A ® l ) ( $ ) ) - ( l ® ( l ® A ) A ® l ) ( $ ) - ( v ® l ) . 

These formulas can be obtained as a combination of the definition of dqn and explicit formulas 

for J as given above. We note that in the special case $ = 1, the relation ~ identically identifies 

various copies of V"®n, the map J is the identity and dqn coincides with the usual cobar construc­

tion on (V, A). The following lemma gives a description of M\ in terms of V®*; the proof is an 

easy exercise. 

Lemma 3.10 An element v £ V®n is invariant (in other words, J~l(v) € Mn) if and only if 

(ln-2<8> A)( l n " 3 ® A)- • -(1® A)A(a) • v = v • (A ®l n " 2 ) (A ®l n " 3 ) . • -(A ®l )A(a) , 

for any a 6 V, where • denotes, as usual, the multiplication induced on V®n by fi. 

We show now how the cohomology of the complex (M/,dqn) is related to deformations of a 

DrinfePd algebra A = (V,/x, A, $) with /it = p and At = A. 

To this end, suppose that $ = $ + t $ \ + • • • + tn$n is a "partial" deformation, i.e. that $ 

satisfies (17) and (18) mod tn+l. Notice also that, by Lemma 3.10, (17) means that $ t , when 
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considered as an element of V®3, is invariant, 1 < i < n. Look now for some $n+i € V®3 such 

that $ := $ + tn + 1$n+i satisfies (17) and (18) mod 2n+2, which is the same as looking for an 

invariant $n+i € V®3 such that $ above satisfies (18) mod tn+2. Plugging $ into (18), we see 

that this is equivalent to 

<~qn(*n+i) = * , 

where \P is defined by the following equation: 

t»+-tf = (I 2
 0 A ) ( $ ) . ( A 0 1 2j( f ) _ (1 ® 5 ) . (1 ® A ® 1)(5) • ( 5 ® 1) mod tn+2 . 

We shall show that clqn(ty) = 0, without assuming $n+i exists. As usual, first interpret # as 

the deviation of some diagram. If we agree to identify elements v of V®n and maps V®n —> V®n 

given by left multiplication by v, then tf is the deviation of 
y*4 

( i®Ф) 

y®4 
Ф 

(37) ( 1 ® Д ® 1 ) ( Ф ) 

( l 2 ® Д)(Ф) 

\ 
V®4 

(Д®1 2 )(Ф) 

(Ф®1) 

The application of (1 ® *) on (37) gives 

( i 2 ® ф ) 

vm 

0 

Фo 1® ( l 2 ® Д)(Ф) 

ш 
I 1 ® (1 ® Д ® 1)(Ф) [б] 

и 
1 ® ( Д ® 1 2 ) ( Ф ) 

with #o = 1 ® # (the labels Q - 0 denote different copies of V<®5). The application of (A® I 3 ) 

on (37) gives 

0 
( i 2 ® ф ) 

ø 
*. 

(A® A ® 1 ) ( * ) 

S 
\ 

( A ® 1 2 ) ( * ) ® 1 

( Д ® 1 ® Д)(Ф) 

( ( Д ® 1 ) Д ® 1 2 ) ( Ф ) 

\u\ 
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with tfi = (A ® 1 3 )(*) . Applying (1 ® A ® l 2 ) we get 

0 
1 ® ( Д ® 1 2 ) ( Ф ) 

н 
^ 2 \ ( 1 ® A ® A ) ( $ ) 

î (1 ® (Д ® 1)Д ® 1)(Ф) QГ] 

ш 
( ( 1 ® Ą ) Д ® 1 2 ) ( Ф ) 

((1 ® Д ® 1)($) ® 1) 

н 
with * 2 = (1 ® A ® 1 2 )(*) . The application of ( l 2 ® A ® 1) on (37) gives 

® (1 ® Д ® 1)(Ф) * v 

г-ì " ^ 

ш 
\ ( 1 ® ( Д ® 1 ) Д ) | 

j ( 1 ® ( 1 ® Д ) Д ® 1)(Ф) [ïï] 

н 
( 1 2 ® Д ) ( Ф ) ® 1 \ / 

/ (Д® Д®1)(Ф) н 
( 1 2 ® Д ) ( Ф ) ® 1 \ / 

with tf3 = ( l 2 ® A <g> 1 ) ( # ) . The application of ( l 3 ® A) gives 

Ho] 
1 ® ( 1 2 ® Д)(Ф) 

н 
# 4 \ ( 1 2 ® ( 1 ® A ) A ) ( * ) 

|(1®Д®Д)(Ф) [ӣ] 

ш 
( Д ® 1 ® Д)(Ф) 

EЗ 

with ^ 4 = ( I 3 (g) A)(^) and, finally, tensoring (37) by 1 from the right we get 

H 
(1®Ф®1) 

Ш 
* 5 \ ( 1 2 ® A ) ( $ ) ® 1 

î ( 1 ® Д ® 1 ) ( Ф ) ® 1 [ j ] 

ш 
( Д ® 1 2 ) ( Ф ) ® 1 

(ф ® l 2 ) 

0 
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with \Ps = \P <8> 1. We can form the following diagram 

(38) 

which is the "associahedron" introduced' in [12]. Notice that we already used this object in 

Example 3.5. It consists of six pentagonal subdiagrams (whose deviations are discussed above) 

and three square diagrams. We claim that these square diagrams are commutative. Look, for 

example, at the diagram 

( i ® $ ® l) 

0 • E 

Ш-

( 1 ® ( Д ® 1 ) Д ® 1 ) ( Ф ) 

(1®Ф® 1) 

( 1 ® ( 1 ® Д)Д®1)(Ф) 

ш 
The commutativity of this diagram easily follows from the invariance of $: if $ = ^2 $ i (8) 

<f2 <8> <->3, then (1 (8) ¥ (8> 1) • (1 <8> (A <8> 1)A 0 ! ) ($ ) = £ ^ i 0 $ • (A 0 1)A($ 2 ) 0 $ 3 = 

£ $ ! 0 ( 1 0 A)A($ 2) • <F 0 $ 3 = (1 (8>(1 <8> A ) A 0 l ) ( $ ) • (1 0 $ 0 1). Here we needed the 

invariance of $ to have $ • (A (8> 1)A($2) = (1 -0 A)A($2) • 0 . The argument for the remaining 

square diagrams is the same. 

Notice that (38) is again topologically a 2-sphere. Try to apply the principle saying that in 

this case "the oriented sum of all deviations must be zero". This principle was, in fact, formulated 

already in [2], where also the role of K5 in the deformation theory of quasi-Hopf algebras was 

observed for the first time (however, there is no explicit mention of the deformation theory there). 

Applying this principle in our situation, we would get # 0 — # i + # 2 — #3 + #4 — #5 = 0, i.e. 

1 0 tf - (A 0 l3)(tf) + (1 0 A ® l2)(tf) - ( I 2 0 A 0 l)(tf) + ( I 3 0 A)(#) - # 0 1 = 0 , 

(the usual cobar differential) and this formula is false! The explanation is that in our Proposi­

tion 1.2 not only the bare deviations, but deviations composed with corresponding maps, come 
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into play. Notice that in the case discussed in [2] (the case with <]> = 1) this makes no difference 

as all maps in the corresponding diagrams there are 11 mod t. 

In order to obtain a correct formula, it is necessary to begin once again to think in terms 

of maps rather than of the deviations alone. First, choose two vertices of (38), a source and a 

sink. There are no restrictions on our choice (notice that all maps in (38) are invertible) and 

the resulting formula will depend on our choice simply via multiplication by a nonzero element. 

However, there is at least a preferred choice: take [I - , which corresponds to (((••)•)•)•, as a 

source and [To], corresponding to •(•(•(••))), as a sink. Consider the following chains of maps 

from f~i] to [io]: 

(P,) [i-^rj3]^[u]^rjo| 
(p.) rj-^[-i]^{-]-»Q{]^rjo] 
(P3) 0_»g-»0-»[-]-»r jo] 
(p.) ---»H-m - 0 - 0-r j-
(p5) -- ----»[-]--» Q- -»Q--»[-| _»[-] 
(P6) r j-^Qg-0-0-0-H-rjo] 
(p7) rj- - B O - 0 - 0 - E - - -
(P8) [ ^ ^ g ^ r j - ^ Q - ^ r j o ] 
(p9) -- - n ] - - - - 0^021 
(p10) ( - ^ - ^ - r n ] . - - -
where Pi = Pio. Their mutual differences are described by the following diagrams (Dt,t+i stands 

for the difference between Pt and Pt+i): 

rj-

(^1,2) 

0 — • 0 

(02,3) 

(D3,<) ГÜl -* 0 
\ ' / 

0 — 0 

*2| ' 0 - 0 

(D<,s) [ӣ]^[-]^[-]- 0 ' ф f Iю| 
\ >/ 

0 — 0 
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( а д 

(-V) 

(Dт,в) 

0 
/ \ 

0-0- 0 0-0-0 
\ / 

s 
m—* m 

/ T | X 

0 *M 0-0-0-0 
i-Г 

ш — ш 
/ т l Ч 

l»j — Ш ФЧ И - 0 
0 ' 

0 
/ \ 

(D8,9) " - - > [ - ] - > - - |uj| 

\ / 

0 
0 — 0 

/ T 1 ^ 

(-W 0 *M 0 - 0 
Now we discuss the contributions of the diagrams Di,2-D9,io above. The contributions of 

1^2,3, H5,6 and D8,9 are trivial, because the corresponding square diagrams are commutative. 

Try to determine, for example, the contribution of Di)2. By Proposition 1.2 it is given as the 

composition of \1>4 and the 2°-part of [12]—> [13], which is ((A (g) 1)A (8) 1 2 ) ($) . Therefore, the 

contribution of Di)2 is 

Ci := tf4 • ((A (8) 1)A (8> 1 2 )($) = ( I 3 (8> A)(¥) • ((A (8) 1)A <8> 12)($) . 

Similarly, the contribution of D3)4 is 

C2 := (1 (8) ( I 2 <8> A)(*)) • tf2 • (* ® l2) = (1 ® (I 2 (8> A)($)) • (1 ® A ® 12)(*) • ($ ® l2) , 

the contribution of D4)5 is 

C3 = tf0-(l<8>(A®l)A®l)($).((l®A®l)($)®l).($®l2) 

= (1 ® tf) • (1 ® (A ® 1)A ® ! ) ($) • ((1 <8> A <8) ! ) ($ ) ® 1) • (* ® l 2 ) , 

the contribution of D6)7 is (note the minus sign) 

C4: = - ( l 2 ® $ ) • (1 ® (1 ® A ® ! ) ( $ ) ) • ( 1 ® ( 1 ® A ) A ® ! ) ( $ ) • tf5 
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= - ( l 2 0 $) • (1 0 (1 0 A 0 ! ) ($)) • (1 (8) (1 (8) A)A 0 ! ) ( $ ) • (tf 0 1), 

the contribution of D7f8 is 

C5 = - ( l 2 0 $) • # 3 • ((A 0 12)($) 0 1 ) = - ( l 2 0 $) • ( I 2 0 A 0 ! ) ( * ) • ((A 0 12)($) 0 1) 

and, finally, the contribution of D9.10 is 

Ce := - ( I 2 0 ( 1 0 A)A)($) • *1 = - ( I 2 0 (1 0 A)A)($) • (A 0 l 3 ) ( t f ) . 

Since Pi = Pi0, Ci + C2 + G3 + CA + C5 + C6 = 0 which is 

<*qn W = 0. 

Before formulating the final result of this chapter, we remark the following two things. 

First, the computation above enables one to understand the role of multiplicative factors in 

the formula for dqn - they correspond to the "tails" connecting local deviations with the source 

and sink. Second, we see that the deviation calculus enables one to derive linear conditions on 

the obstruction to the integrability without knowing a priory the cohomology theory into which 

everything embeds. 

Theorem 3.11 The primary obstruction to the integrability of a partial deformation $ is an 

element [9] £ H3(M*+1 ,d q n ) . 

REFERENCES 

[1] BOARDMAN J.M, VOGT R.M. uHomotopy Invariant Algebraic Structures on Topological Spaces", 
Springer-Verlag, 1973. 

[2] DRINFEL'D V.G. "Kvazichopfovy algebry", Algebra i Analiz, 1,6(1989), 114-148. 

[3] DRINFEL'D V.G. "0 kvazitreugol'nych kvazichopfovych algebrach i odnoj gruppe, tesno svjazan-
noj s Gal(QjQ)", Algebra i Analiz, 2,4(1990), 149-181. 

[4] GERSTENHABER M. "On the deformation of rings and algebras", Ann. of Mathematics, 
79(1964), 59-104. 

[5] GERSTENHABER M., SCHACK S.D. "Algebras, bialgebras, quantum groups and algebraic 
deformations", preprint. 

[6] GERSTENHABER M., SCHACK S.D. "Bialgebra cohomology, deformations, and quantum 
groups", Proc. Natl. Acad. Sci. USA, 87(1990), 478-481. 

[7] MAC LANE S. "Categorical algebra" Bull. Amer. Math. Soc., 71(1965), 40-106. 

[8] MARKL M. "A letter to James Stasheff", unpublished. 

[9] MARKL M. "Quasi-Hopf algebras via deformations", in preparation. 

[10] SERRE J.-P. "Lie Algebras jand Lie Groups", Benjamin, 1965. 



1 2 4 MARTIN MARKL - JAMES D. STASHEFF 

[11] SHNIDER S. "Deformation cohomology for bialgebras and quasi-bialgebras", to appear. 

[12] STASHEFF J.D. "Homotopy associativity of H-spaces I.,IL", Trans. Amer. Math. Soc., 108(1963), 
275-312. 

[13] STERNBERG S. "Notes from the seminar on Drinfel'd algebras", Tel Aviv, Spring 1991. 

MATEMATICKY USTAV CSAV DEPARTMENT OF MATHEMATICS 
ZlTNA 25 UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL 
115 67 PRAHA 1 CHAPEL HILL, N.C. 27514 
CZECHOSLOVAKIA U.S.A. 
markl at csearn.bitnet jds at math.unc.edu 


		webmaster@dml.cz
	2012-09-18T11:02:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




